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Abstract

Objectives: To develop a methodology for predicting operative times for robot-assisted radical prostatectomy
(RARP) using preoperative patient, disease, procedural, and surgeon variables to facilitate operating room (OR)
scheduling.
Methods: The model included preoperative metrics: body mass index (BMI), American Society of Anesthe-
siologists score, clinical stage, National Comprehensive Cancer Network risk, prostate weight, nerve-sparing
status, extent and laterality of lymph node dissection, and operating surgeon (six surgeons were included in the
study). A binary decision tree was fit using a conditional inference tree method to predict operative times. The
variables most associated with operative time were determined using permutation tests. Data were split at the
value of the variable that results in the largest difference in mean for surgical time across the split. This process
was repeated recursively on the resultant data.
Results: A total of 1709 RARPs were included. The variable most strongly associated with operative time was the
surgeon (surgeons 2 and 4—102 minutes shorter than surgeons 1, 3, 5, and 6, p < 0.001). Among surgeons 2 and 4,
BMI had the strongest association with surgical time ( p < 0.001). Among patients operated by surgeons 1, 3, 5,
and 6, RARP time was again most strongly associated with the surgeon performing RARP. Surgeons 1, 3, and 6
were on average 76 minutes faster than surgeon 5 ( p < 0.001). The regression tree output in the form of box plots
showed operative time median and ranges according to patient, disease, procedural, and surgeon metrics.
Conclusion: We developed a methodology that can predict operative times for RARP based on patient, disease and
surgeon variables. This methodology can be utilized for quality control, facilitate OR scheduling, and maximize OR
efficiency.
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Introduction

Prostate cancer (PCa) is the most common cancer for
men in the United States and is one of the most expensive

cancers to treat. Medical expenditures for PCa treatment
amount to $1.3 billion annually, with inpatient care ac-
counting for nearly 50% of total spending.1 Radical prosta-
tectomy (RP) is the treatment of choice for the majority of
patients with localized PCa. Robot-assisted radical prosta-
tectomy (RARP) increased from 14% in 2004 to 80% in 2014
of RP because RARP has lower intraoperative blood loss,
fewer complications, and shorter length of hospital stay than
open RP.2,3 RARP has significantly higher costs, which

include capital cost (USD 1.5–2 million) and annual main-
tenance (USD 150,000) that result in direct hospitalization
cost ‡USD 2500.4–8 Attempts have been made to reduce costs
associated with RARP. Ramirez et al. found that excluding
high-cost energy instruments (averaging $250 per instrument
per case) reduced RARP costs by 40%.7 Better scheduling
and more efficient utilization of operating room (OR) time
can increase the profitability of hospitals and account for the
higher associated expenditure of RARP.

The OR accounts for almost 30% of total hospital charges.9

Longer operative times increase medical costs, with each OR
minute adding roughly $15 to overall hospital expenditures.10

Managing OR scheduling is a challenging task. Confounding
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factors, such as patient body mass index (BMI), disease stage,
procedural complexity, and surgeon experience, have been
shown to influence the length of operative times and influ-
ence intraoperative costs, and therefore should be consid-
ered.11–13 Extended time gaps between operations in addition
to late start and stop times can lead to suboptimal OR utili-
zation, which can potentially decrease profitability and can
increase costs associated with staffing, and reduce patient
satisfaction.9 We aimed to develop a methodology for
scheduling RARP that considers the variability in patient and
disease characteristics, procedural modifications (such as
nerve-sparing or lymph node dissection) and surgeon volume
and experience. We hypothesize that by utilizing this meth-
odology, OR times can be managed more efficiently.

Methods

We retrospectively reviewed 2000 RARPs performed at
Roswell Park Cancer Institute performed by six different
surgeons from 2004 to 2017. Operative time was defined as
time elapsed between skin incision and wound closure. Re-
levant preoperative patient, disease, procedural, and surgeon
variables were included in the predictive model. Patient vari-
ables included age, BMI, American Society of Anesthesiolo-
gists (ASA) score, Charlson Comorbidity Index (CCI), history
of prior abdominal surgery, and history of prior irradiation.
Disease variables included National Comprehensive Cancer
network (NCCN) risk stratification, Gleason grade, prostate
weight, and preoperative prostate-specific antigen (PSA) va-
lue. Procedural variables included planned extent and laterality
of pelvic lymph node dissection (pLND) and nerve-sparing
laterality. Patients were excluded who had any missing pre-
operative variables or operating start and end times.

Data were summarized using descriptive statistics. A binary
decision tree was fit using a conditional inference tree method to
predict the distribution of RARP operative times. The condi-
tional inference tree method was applied using the ‘‘ctree’’ al-
gorithm, which is implemented in the ‘‘party’’ package for the
R statistical software language. The variable having the strongest
association with operative times was determined using permu-
tation tests. Data of this variable were split at the value resulting
in the greatest difference in mean for operative times across the
split. This process was repeated recursively on the resultant data
until no significant association between the remaining variables
and RARP operative times was found by the permutation tests.
The resulting data sets were called terminal nodes. Each terminal
node represents operative time outputs for specific preoperative
(patient, disease, procedural, surgeon) inputs.

Comparisons for continuous variables were performed
using Kruskal–Wallis tests for equality of distribution by
surgeons. For categorical variables Freeman–Halton tests
were used to determine if there was independence between
surgeon and the variable in question. Due to the sample size
Monte Carlo methods were used to estimate p-values with
100,000 iterations. The software package output multiple box
plots depict the median, interquartile ranges, and the mini-
mum and the maximum duration of operative times within
each terminal node. Operative times were viewed as log-
normally distributed.14 A lognormal model was fit within
each terminal node to the operative times of patients included
in the node. This lognormal model fit made it possible to
estimate any quantity associated with the distribution of

operative times. All tests were two-sided, with statistical sig-
nificance defined as p £ 0.05. R software was used to perform
all statistical analyses (version 3.2, R Core Team [2016]. R: A
language and environment for statistical computing; R Foun-
dation for Statistical Computing, Vienna, Austria. https://www
.R-project.org/).

Results

The final analysis comprised 1709 RARPs (Table 1). Mean
age was 60 years (standard deviation [SD] 7). Fifteen percent
had Gleason sum >7, 16% had Gleason grade 4 + 3 = 7, and
35% had Gleason grade 3 + 4 = 7. The mean prostate weight
was 49 g (SD 21), and the mean preoperative PSA value was
7.3 ng/mL (SD 7.5). Forty-nine percent had bilateral, and 6%
had unilateral pLND. The median total lymph node yield was
2 (interquartile range [IQR] 0–7). Sixty-eight percent had
bilateral and 23% had unilateral nerve-sparing procedures.
Median operative time was 221 minutes (IQR 176–283).
There was a statistically significant difference between the
six surgeons in preoperative patient factors (BMI, ASA score,
CCI, prostate weight, prior abdominal surgery, and history of
other cancers), and disease characteristics (Gleason grade
and NCCN risk). Operative variables and pathologic out-
comes were also different among surgeons (Table 1).

The variable most strongly associated with surgical time
was the surgeon and it resulted in the largest mean difference
(surgeons 2 and 4—102 minutes shorter than surgeons 1, 3, 5,
and 6, p < 0.001) (Fig. 1). For surgeons 2 and 4, RARP time
was most strongly associated with BMI; patients with BMI
£27 kg/m2 had shorter operative times (20 minutes, p < 0.001).
The shortest operative time (node 21; 160 minutes) was ob-
served in patients with BMI £27 kg/m2, who did not receive
pLND, and who had prostate weights £73 g. The longest op-
erative time (node 26; 231 minutes) was observed in patients
with BMI >41 kg/m2 who had prostate weights £67 g.

Among patients operated by surgeons 1, 3, 5, and 6, RARP
time was again most strongly associated with the surgeon per-
forming RARP. Surgeons 1, 3, and 6 were on average 76
minutes faster than surgeon 5 ( p < 0.001). The shortest operative
time (node 14; 244 minutes) was observed in bilateral nerve-
sparing procedures by surgeons 1, 3, and 6, performed on pa-
tients with BMI £30 kg/m2, who did not receive pLND, who had
prostate weights £55 g. The longest operative time (node 3; 355
minutes) was observed in patients operated on by surgeon 5.

Applying the binary decision tree to scheduling OR times
is best illustrated with an example. Assume surgeon 1 had a
patient with BMI 25 kg/m2 and prostate weight 50 g. The
patient has low-risk PCa and is scheduled for a RARP with
bilateral nerve sparing and no pLND. Starting at the top of the
regression tree (Fig. 1), we proceed to the left (urologist is
surgeon 1). Then, at node 2, we proceed to the right because
the urologist is surgeon 1. At node 4, we proceed to the right
because the patient is scheduled for bilateral nerve sparing.
At node 10, we proceed to the left because patient’s BMI is
<30 kg/m2. At node 11, we proceed to the right because the
patient is not scheduled for pLND. Finally, at node 13, we
proceed left because prostate weight is <55 g. From Table 2,
we can see that similar operations (n = 176) had mean oper-
ative time 244 minutes (SD 57 minutes). Similarly, the me-
dian, minimum, maximum, and IQR for similar RARPs are
available in Table 2.
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Discussion

PCa is responsible for about 25% of male cancers in the
United States and results in *70,000 RARPs performed
annually.15,16 The objective of this study was to develop a
patient-based model for estimating RARP operative times.
An accurate estimate of operative times facilitates schedul-
ing, decreases unexpected idle time between cases, and
minimizes staffing costs associated with overtime use.9,17

Different strategies exist for OR scheduling that commonly
include open, block, and modified block strategies. Open
scheduling is done by assigning an OR at the convenience of
the surgeon on a ‘‘first-come, first-served’’ basis. Block
scheduling assigns each surgeon a block of time into which
they arrange their procedures. Modified block combines open
and block strategies; scheduling is done by blocking a portion
of time, marking the rest as open, and releasing any remaining
time that is unused.17 The key to maximizing OR utilization is
to block off the appropriate amount of time for each operation
using different variables that may affect its duration.

Historical data averaging the operative times for a sur-
geon’s last 10 cases and using a surgeon’s estimation of how
long an operation will take have been explored as mean for
scheduling operative times, but these techniques did not show
reliable predictive validity.18 OR utilization has been re-
ported as low as 80% of desired targets, which significantly
increases medical expenditures.19 Accurate prediction of OR
times helps manage the OR by anticipating fluid load chal-
lenges and planning for intensive vs high dependency bed
requirements.12 Surgery planning and scheduling is complex
due to so much uncertainty. Multiple patient, disease, pro-
cedural, and surgeon variables can influence operative time.
Our methodology considers these factors, and generates an
individualized scheduling time that is unique for each patient.
A main advantage of using the algorithm is that each insti-
tution can develop its own ‘‘decision-tree’’ based on their
surgeons and patients.

Different statistical models have been proposed for esti-
mating operative times. Selecting the appropriate method is
based on examining the data distribution, where linear re-

gression can be used in cases of normal distribution.
Intelligent-based models and data mining techniques are used
to predict operative times, although the initial results have
been unsatisfactory.20 Our study used a multilevel condi-
tional inference tree model that handles complex interactions
among variables, and determines the contribution of each
variable at each level to predict operative times. Tree-based
models are advantageous because they can be scaled to large
numbers of explanatory variables, can fit data that are not
normally distributed, and can be easily interpreted and uti-
lized by nonstatisticians.12 It is noteworthy that the tree will
change from one practice to another and will be tailored based
on the institution’s own historical data, therefore accounting
for each surgeon’s experience and also for the learning curve.

Several variables were significantly different among the
six surgeons. However, not all of them were clinically rele-
vant, such as ASA score (mean = 2 for all), BMI, and prostate
weight (minor difference). The main differences were related
to the disease stage (Gleason grade and NCCN risk), and
patient characteristics (CCI, prior abdominal surgery, and
history of other cancers). Disease and patient-related factors
are the main determinants of performing LND and nerve-
sparing procedures, in addition to the surgeon experience and
skill. Therefore, although disease stage and risk were not
significant in the ctree, their implication on the procedure
(i.e., the decision to perform a nerve-sparing procedure or
LND) significantly contributed to OR time. Technically,
Gleason 8 disease itself may not pose additional difficulty to
RARP if it is organ confined, but a Gleason 6 disease in a
large prostate with bilateral nerve sparing may take a longer
time. For example, although surgeon 2 had the second highest
proportion of high-risk patients (22%) and the highest nerve-
sparing rates (77%), he had the shortest median operative
time among all surgeons. This reflects that OR time is most
likely determined by a combination of surgeon skill and ex-
perience, in addition to the patient and disease-related fac-
tors, or procedural modifications (such as LND and nerve
sparing). The strength of our model is that it considers in-
teractions between all the variables and also sorts them ac-
cording to the contribution of each. Postoperative variables

Table 2. Mean, Standard Deviation, Ranges, Median, and Interquartile Range (Gray)

for Operative Times for Each Node

Node
Patients

in node (n)

Mean
operative

time (minutes)
SD

(minutes)

Minimum
operative

time (minutes)

Maximum
operative

time (minutes)

25th
percentile
(minutes)

Median
operative

time (minutes)

75th
percentile
(minutes)

3 89 355 57 193 509 320 354 389
7 155 283 50 159 475 256 282 316
8 51 316 58 226 475 275 311 344
9 77 324 67 186 542 279 322 359

12 91 274 57 178 466 230 260 306
14 176 244 57 112 483 210 242 277
15 39 277 64 134 423 246 280 314
16 128 284 70 132 460 235 285 316
19 121 178 43 84 297 152 177 209
21 118 160 36 76 263 133 156 182
22 11 217 47 141 314 200 226 238
25 521 184 44 73 340 152 184 209
26 23 231 58 141 356 188 227 272
27 109 213 57 113 475 176 205 251
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(pT, lymph node yield [LNY], N1, and positive margins)
were not included in the ctree as they will not be useful in a
tool intended for preoperative use.

Several studies have examined the different factors that
may contribute to operative times in RARP. In agreement
with our findings, prior studies have linked obesity with
prolonged operative times for RARP.21 Age has been asso-
ciated with operative times for radical cystectomy, where older
patients were found to have shorter operative times, which may
reflect surgeons’ concern about the possible hazardous effects
of prolonged anesthesia and operative times.11 However, this
study did not find age as a significant predictor. In agreement
with our findings, Martin et al. reported no significant effect of
prior surgery or radiation on surgical times for RARP.22 Prior
abdominal surgeries or pelvic radiation may cause adhesions
and altered fascial planes. Such history increases surgical
complexity, heightens the risk of intraoperative complications,
and may increase operative times.12,23,24 However, this study
did not find abdominal surgeries or pelvic radiation as signif-
icant predictors.

Several disease-related variables can affect RARP operative
times. Prior studies have shown a clear association between
biopsy Gleason score and preoperative PSA values and longer
operative times.25,26 We did not find an association with Glea-
son score, PSA value, or NCCN risk group. Although advanced
disease may render RARP more challenging, early detection of
high-risk patients, while the disease is still prostate confined,
may negate some of the adverse factors that increase the risk of
intraoperative complications and time.

Multiple studies have reported a relationship between pros-
tate size (volume or weight) and operative times. Larger pros-
tates were associated with longer surgical times, where each
10 cc increase in prostate gland size increased operative time by
2.7 minutes.25,27,28 Our study demonstrated that larger prostate
weights were associated with longer operative times. Adjunct
procedures (such as pLND) have been linked with longer op-
erative times.26 Our study demonstrated that any form of pLND
was associated with increased RARP times. These procedures
require additional time for dissecting lymphatic tissue from
the major vessels and for controlling lymphatic vessels to avoid
lymphocele. Procedural modifications (bladder neck or ure-
thral sparing, nerve-sparing techniques) may affect operative
times.29,30 Yong et al. reported nerve sparing as an independent
predictor of prolonged operative time.28 In contrast, our results
demonstrated that bilateral nerve sparing was associated with
shorter operative times compared with unilateral or non-nerve-
sparing procedures. This may be explained by the fact that
surgeons who perform nerve-sparing procedures are usually
more experienced and would take shorter time (surgeon is most
predictive variable of operative time in this study). Several
studies have shown that surgeon experience influences RARP
operative times.21,26,28 Simon et al. in a study of six hospitals
showed that each additional RARP per year per institution is
associated with a 0.80- to 0.89-minute decrease in operative
time.26 We found that surgeons 2 and 4, who performed 52% of
the total RARPs, had shorter operative times compared with the
remaining surgeons. Patients who underwent bilateral nerve-
sparing procedures had lower average BMI than those who
underwent unilateral or no nerve-sparing (the second most
predictive variable in our study) procedure.

This study provides a unique methodology for predicting OR
times at the individual patient level, but it has several limita-

tions. Limitations inherent to retrospective study design are well
recognized. The Current Procedure Terminology (CPT) code
defines the operative time as the time elapsed from incision to
wound closure. Nonoperative times that include delays in pa-
tient arrival, frozen sections, anesthesia induction, patient dis-
charge, and turnover are needed to calculate the overall OR
time. Unfortunately, these times were not recorded often. Still,
developing a reliable OR schedule relies primarily on accu-
rately estimating the time needed to perform the operation ra-
ther than turnover or cleaning times.12 Operations that take
significantly more or less time to perform can lead to OR un-
derutilization. Events such as unexpected intraoperative find-
ings induce variability between actual and scheduled times that
cannot be avoided. Another limitation is that our study only
included RARPs performed by six surgeons at a single high-
volume referral institution, which may include variation in the
technique among these surgeons, and may limit generalizability
of the results. However, the methodology can be replicated with
institution-specific data to allow institutions to produce their
own decision trees.

Conclusion

A large database of RARP patients was used retrospec-
tively to develop a methodology for estimating operative
times based on preoperative patient, disease, procedural, and
surgeon metrics that can be used to assist the OR for sched-
uling RARP more efficiently.
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