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Abstract

The purpose of this article is twofold. The first is to provide evaluative information
on the recovery of model parameters and their standard errors for the two-
parameter item response theory (IRT) model using different estimation methods by
Mplus. The second is to provide easily accessible information for practitioners,
instructors, and students about the relationships between IRT and item factor analy-
sis (FA) parameterizations. Specifically, this is done using the ‘‘Theta’’ and ‘‘Delta’’
parameterizations in Mplus for unidimensional and multidimensional modeling with
dichotomous and polytomous responses with and without the scaling constant D.
The first objective aims at investigating differences that may occur when using differ-
ent estimation methods in Mplus for binary response modeling. The second objective
was motivated by practical interest observed among graduate students and applied
researchers. The relations between IRT and Mplus FA ‘‘Theta’’ and ‘‘Delta’’ parame-
terizations are described using expressions without the use of matrices, which can
be understood efficiently by applied researchers and students.
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Mplus (L. K. Muthén & Muthén, 1998-2012) is a widely used program in structural

equation modeling (SEM) research. Mplus software has flexible modeling capacity

and can implement factor analysis, mixture modeling, and complex SEM for catego-

rical and continuous variable data that have multilevel structure, to name a few (e.g.,

B. Muthén & Asparouhov, 2006; Nylund, Asparouhov, & Muthén, 2007). Mplus is

also equipped with a variety of model estimation methods, such as maximum

likelihood–based estimation, least square–based estimation, and Bayesian Markov

chain Monte Carlo (MCMC).

From the factor analysis and Mplus users’ point of view, popular item response

theory (IRT) models, such as one-parameter and two-parameter IRT models, are the

measurement modeling part of SEM and are special cases of factor analysis with cate-

gorical ordinal data; thus, those who are mainly the users of Mplus for factor analysis

with categorical ordinal data might wonder the degree of performance of those IRT

model estimation by Mplus. In addition, because Mplus provides several different

estimation options, users may be curious about the comparative performance of dif-

ferent estimation options embedded in Mplus for the estimation of IRT models. The

same curiosity regarding the performance of SEM software for IRT model estimation

may also exist among the IRT software users and researchers. Thus, this study aims

at generating practical information regarding the unidimensional IRT model imple-

mentation by the Mplus IRT model estimation for dichotomously scored data. The

IRT model under investigation in this study is the unidimensional two-parameter

logistic model. To characterize psychometric behaviors of item responses, the two-

parameter model has slope (discrimination) and location (difficulty) parameters in the

item response function (IRF), which relates the latent trait (measured construct) to the

probability of a correct (or yes) response (see also Lord & Novick, 1968, for the

detailed development of the two-parameter model). When a cognitive test consists of

short answer items or when a psychological test has items with two options (e.g.,

agree or disagree; yes or no), the two-parameter model can be a useful tool for test

construction, scaling, and scoring (e.g., Yen & Fitzpatrick, 2006 for applications of

the two-parameter and other IRT models).

There have been many studies on factor analysis model estimation for categorical

data. Such studies typically focused on the investigation of different estimation meth-

ods. Previous studies that used both limited and full information estimation

approaches with relatively rigorous simulations (i.e., 100 or more replications for

simulations) include Boulet (1996), Gosz and Walker (2002), Reiser and VanderBerg

(1994), and Forero and Maydeu-Olivares (2009). The work by Forero and Maydeu-

Olivares was more systematic and comprehensive than the other works in their simu-

lation. Forero and Maydeu-Olivares conducted simulations with over 324 conditions

(1,000 replications per condition) where unidimensional and multidimensional mod-

els were simulated with dichotomous and polytomous item response data, in addition

to accommodating other variations such as sample sizes and test lengths. However,

previous studies have not investigated all available estimation methods in Mplus for

the estimation of IRT models. For instance, Forero and Maydeu-Olivares (2009)
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restricted their choices to two estimation methods: marginal maximum likelihood

(MML) estimation (full information approach) and unweighted least squares (limited

information approach). Asparouhov and Muthén (2016) and L. K. Muthén and

Muthén (2013) listed variations of weighted least squares (including the unweighted

least squares) as legitimate choices in the Mplus IRT model estimation. In this study,

we considered all estimation methods currently available in Mplus. Specifically, this

study included three types of least square estimations (two weighted least squares

and one unweighted least squares methods) in the limited information estimation

approach and the full information maximum likelihood estimations with different

standard error estimation methods for the two-parameter IRT model estimation.

Providing more detailed results about the Mplus undimensioanl IRT estimation using

different estimation approaches can help practitioners with their applications of an

IRT model in Mplus, specifically regarding the choice of an estimation method. The

current study investigated two aspects of the two-parameter model calibration with

different estimation methods in Mplus: (1) recovery of the structural parameters (item

slope or discrimination and difficulty parameters) and (2) the standard errors of the

structural parameters. The next section describes details of the estimation methods

used in the study.

Another objective is to provide a clear and easily accessible summary of the

closed form relations between the IRT and the item factor analysis (FA) parameteri-

zations under the ‘‘Theta’’ and the ‘‘Delta’’ parameterization used in Mplus for the

normal ogive and logistic IRT IRFs, with and without the scaling constant of D = 1.7

in unidimensional and multidimensional modeling for dichotomous and polytomous

data. The relations between FA and IRT parameterizations have been explored in

previous studies (e.g., Asparouhov & Muthén, 2016; Bolt, 2005; Forero & Maydeu-

Olivares, 2009; Kamata & Bauer, 2008; L. K. Muthén & Muthén, 2013; Raykov &

Marcoulides, 2011; Takane & de Leeuw, 1987). However, the presentation here can

still benefit applied researchers and graduate students who want to understand the

relation between IRT FA in Mplus for three reasons. First, the level of mathematical

abstraction used in those cited articles above may be challenging for some applied

researchers and graduate students who are beginning to learn IRT and FA.

Describing the relations between IRT and FA in a more readable fashion for unidi-

mensional and multidimensional modeling can enhance the accessibility for a wider

range of consumers of FA and IRT in education and psychology. Second, although

trivial for those who are familiar with both logistic and normal ogive IRT modeling,

the relation of FA with the logistic IRT modeling with the use of a scaling factor D

(=1.7) is not always clearly delivered in previous works, which tends to be part of

confusion experienced by applied researchers and graduate students in understanding

the relation of FA and the logistic IRT model with or without D. Third, the provision

of clearly understandable expressions of the relations between FA and IRT facilitates

the interpretation of parameter estimates for either FA or IRT users. For example, a

researcher who is mainly a user of FA but not familiar with IRT can convert the IRT
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slope parameters into more familiar FA parameterization, such as FA loadings and

make sense of the magnitudes of IRT slope parameters.

Two-Parameter IRT Model in Mplus

In Mplus, categorical ordered item responses are modeled using the graded response

model (GRM; Samejima, 1970). Suppose that item response k is scored

0, 1, 2, . . . , Ki, where the subscript i represents the ith item (i = 1, 2, . . . , I). In GRM,

a cumulative response function is used to describe the probability of the response k

or higher. The cumulative response function in GRM is

P�nik = f
XM
j = 1

aijunj � dik

 !
, ð1Þ

where P�nik is the probability of the response k or higher for the nth person

n = 1, 2, . . . , Nð Þ with the ith item, unj is the nth person’s trait or ability parameter

for the jth dimension j = 1, 2, . . . , Mð Þ, aij is the ith item slope parameter for the jth

dimension, dik is the ith item category boundary location parameter, and f �1 �ð Þ is a

link function. When f �1 �ð Þ is a logit link function, Equation 1 is the multidimen-

sional logistic GRM. If a probit link function is chosen for f �1 �ð Þ, Equation 1

becomes the multidimensional normal ogive GRM. Note that Mplus uses the nega-

tive sign for the dik parameter. The option response function when 0\k\Ki is

obtained by

Pnik = P�nik � P�ni k + 1ð Þ, ð2Þ

where Pnik is the probability of response k. By the definition of the cumulative

response function, P�nik = 1 when k = 0, and P�
ni k + 1ð Þ = 0 when k = Ki. Thus,

Pnik = 1� P�
ni k + 1ð Þ when k = 0, and Pnik = P�nik when k = Ki.

When item responses are dichotomous, the option response function or the cumu-

lative response function above is reduced to the probability of a correct (or ‘‘yes’’)

answer, which is the IRF for the two-parameter IRT model. The unidimensional IRF

for the dichotomous item response in Mplus is

Pni = f aiun � dið Þ, ð3Þ

where di is typically referred to as the ith item intercept parameter. A more conven-

tional unidimensional two-parameter IRT IRF takes the form of

Pni = f ai un � bið Þ½ �; ð4Þ

where bi = di=ai is the ith item difficulty. Mplus estimates the parameters in the IRF

of Equation (1) in general. In the case of the unidimensional modeling, Equation (3)

is used for parameter estimation and the estimates of the model parameters are con-

verted into the estimates of the parameters in Equation (4). The delta method (e.g.,
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Casella & Berger, 2002) is used for the standard error estimation of item difficulty in

Equation (4). Note that the delta method is a general statistical method to obtain a

variance and does not refer to the ‘‘Delta’’ parameterization in Mplus. When the link

function is the normal ogive, the model is called the two-parameter normal ogive

IRT (2PN for short) or probit model. If the logistic link is used, it is called the two-

parameter logistic IRT (2PL for short) or logistic model. Though not frequently used

recently, a logistic link with scaling constant D = 1.7 has been used to approximate

the 2PN. The logistic model with D in this case is

Pni = f Dai un � bið Þ½ �, ð5Þ

where D = 1:7 and f �1 �½ � is the logit link. The direct estimation of the model in

Equation 5 is not available in Mplus.

Mplus IRT modeling may be classified by the estimation approach (full informa-

tion vs. limited information), the link function (logit or probit), and the types of para-

meterization called ‘‘Theta’’ or ‘‘Delta’’ (see Asparouhov & Muthén, 2016; L. K.

Muthén & Muthén, 2013, for the details of these parameterizations). Table 1 sum-

marizes choices for the two-parameter IRT model estimation.

Asparouhov and Muthén (2016) and L. K. Muthén and Muthén (2013) list three

estimation options for the full information estimation and four options for the limited

information estimation approach when using Mplus for the IRT model estimation.

Table 1. Item Response Theory Model Estimation Options in Mplus.

Full information estimation

Logit Probit

ML 3 3
MLR 3 3
MLF 3 3

Limited information estimation

Logit

Probit

‘‘Theta’’ parameterization ‘‘Delta’’ parameterization

WLS NA 3 3
WLSM NA 3 3
WLSMV NA 3 3
ULSMV NA 3 3

Note. ML = maximum likelihood; MLR = maximum likelihood with robust standard errors; MLF =

maximum likelihood with standard error approximation using the first-order derivative; WLS = weighted

least squares; WLSM = weighted least squares with mean-adjusted chi-square test; WLSMV = weighted

least squares with mean- and variance-adjusted chi-square test; ULSMV = unweighted least squares with

mean- and variance-adjusted chi-square test; NA = not applicable. ‘‘3’’ indicates that the estimation

option is available.
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Full information estimation options are ML (maximum likelihood with conventional

standard errors), MLR (maximum likelihood with robust standard errors, estimated

by what is known as sandwich estimator), and MLF (maximum likelihood with stan-

dard error approximation using the first-order derivative). The four limited informa-

tion estimation options are WLS (weighted least squares with conventional standard

errors), WLSM (weighted least squares with mean-adjusted chi-square test for good-

ness of fit testing), WLSMV (weighted least squares with mean- and variance-

adjusted chi-square test for goodness of testing), and ULS (unweighted least squares).

The full information estimation approach uses information contained in all item

response patterns. Its objective function (which is a function optimized to obtain

parameter estimates) is based on the strong principle of local independence (see

McDonald, 1999, for strong and weak principles of local independence). The objec-

tive function is the MML function,

LMML =

ðY
n

Y
i

PnidF uð Þ, ð6Þ

where
Q
n

Q
i

Pni is the product of the IRF across items and person, and F uð Þ is the

distribution function for u. Model parameter are those estimates that maximize the

MML function (see Bock & Aitkin, 1981; Baker & Kim, 2004 for the MML estima-

tion. Point estimates for item parameters are the same across ML, MLR, and MLF

methods. There are differences when calculating item parameters’ standard errors

across the three options. One can choose either a probit or logit link when using the

full information estimation approach in Mplus. The full information estimation

approach does not involve ‘‘Theta’’ or ‘‘Delta’’ parameterization (this only becomes

relevant when a limited information approach is used).

In the limited information estimation approach, the threshold for each item and

the polychoric correlations between items are calculated. Note that the threshold is

calculated based on the first order marginal or the univariate information, and the

polychoric correlation is calculated using the second-order marginal or the bivariate

information from data. Model parameters are obtained such that the difference

between the sample-based first- and second-order statistics (sample threshold and

polychoric correlation) and the model-based reproduced first- and second-order sta-

tistics (predicted threshold and polychoric correlation) is minimized. Simply speak-

ing, the objective function is a weighted difference between observed and predicted

first-order and second-order marginals. Differences among the four estimation

options in the limited estimation approach are made via the choice of the weight

based on the inverse of the covariance matrix of the threshold and polychoric corre-

lations. WLS uses the full weight matrix, meaning the weight matrix does not have

any element restrictions. Both WLSM and WLSMV use the same weight matrix,

which is a diagonal matrix where all off-diagonal elements are zero. The weight

matrix in ULS is the identity matrix that is the diagonal matrix where the diagonal

elements are unity. Point estimates and their standard errors for item parameters are
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the same for both WLSM and WLSMV. ULS and WLS estimates and their standard

errors are not necessarily the same as WLSM or WLSMV estimates due to differ-

ences in weight matrices.

In the limited information estimation approach, a continuous latent response vari-

able is assumed to underlie observed categorical ordered responses for an item. The

correlations of those latent continuous response variables for items are the polychoric

correlations (or tetrachoric correlations when item responses are dichotomous).

Furthermore, the relationship between a continuous latent response variable and the

target construct (or dimension) is described as an additive linear form as in the tradi-

tional factor analysis that posits the linear relationship between the observed continu-

ous variable and the target construct. Due to the introduction of those continuous

latent response variables, extra constraints (compared to the traditional factor analy-

sis for continuous variables) must be imposed to resolve the model identification.

The ‘‘Theta’’ and the ‘‘Delta’’ parameterizations are connected to how to handle

such constraints.

When using the limited information estimation approach, the ‘‘Theta’’ and the

‘‘Delta’’ parameterizations in Mplus are related to the constraint imposed on the resi-

dual (or unique) variance and the variance of a continuous latent response variable

assumed to underlie the observed categorical ordered item responses, respectively.

The ‘‘Theta’’ parameterization sets the residual variance equal to one. In the ‘‘Delta’’

parameterization, the variance of a latent continuous response variable is set to one.

The appendix (Part I) provides a derivation of the normal ogive FA model and its

relation with the IRT parameterization for a unidimensional dichotomous item

response data. (Those readers mainly interested in the relations of the model parame-

trization between IRT and FA can skip Part I.). More important, Part II of the appen-

dix provides a detailed summary of closed form expressions for the relations between

IRT and ‘‘Theta’’ and ‘‘Delta’’ FA parameterizations for unidimensional, multidi-

mensional, dichotomous, and polytomous item response modeling.

In this study, for full information estimation, ML-Logit, MLR-Logit, MLF-Logit,

ML-Probit, MLR-Proit, and MLF-Probit were used because of their different stan-

dard error estimation procedures for a given link function. For the limited informa-

tion estimation approach, WLS-Probit-Theta, WLSMV-Probit-Theta, and ULSMV-

Probit-Theta were employed because WLSM and WLSMV are the identical estima-

tors, and the ‘‘Theta’’ and ‘‘Delta’’ parameterizations produce the same results in

terms of the IRT discrimination and difficulty parameter estimates. Also note that

our study used ULSMV instead of ULS because the ULS option in Mplus does not

permit the direct use of item response data, and ULSMV and ULS are the same esti-

mator with the differences in the adjustment of the goodness of fit test statistic. Thus,

among the 14 estimation options listed in Asparouhov and Muthén (2016) and L. K.

Muthén and Muthén (2013), except for the MCMC estimation methods, there are

essentially nine estimation options that may produce different results with regard to

either point estimates or their standard errors (or both). The investigation of para-

meter recovery was always made in terms of the IRT parameterization of the item
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slope (or discrimination) and item difficulty (i.e., Equation 4). When estimating 2PN

(probit) and 2PL (logit) models in Mplus, all the default options besides changing the

estimation method were used.

Simulation Design

Item response data were generated following the standard IRT simulation technique:

For the response of the ith item and the nth person, (1) calculate the IRF value

(Equation 4 with the logit link and D = 1 or 1.7) with the assumed u and item para-

meter values, which are explained shortly; (2) draw a uni value, randomly from the

standard uniform distribution; and (3) assign 1 (correct or yes response) if uni � the

IRF value and assign 0 (incorrect or no response) otherwise.

Test length and sample size varied in the data simulation: Test length of 11

(small), 22 (medium), and 44 (large), and sample sizes of 200 (small), 500 (medium),

and 1,000 (large). These conditions were fully crossed, leading to nine data genera-

tion conditions. In each of the nine conditions, 4,000 replications were conducted.

For a given replication, all nine estimation options (ML-Logit, MLR-Logit, MLF-

Logit, ML-Probit, MLR-Proit, MLF-Probit, WLS-Probit-Theta, WLSMV-Probit-

Theta, and ULSMV-Theta) were used.

The data-generating parameter values were randomly drawn from a log-normal

distribution for the item slope parameters and the standard normal distribution for

the difficulty parameters, respectively, ai;logNormal :3, :32
� �� �

and bi;N 0, 1ð Þð Þ.
Person trait parameters were also randomly drawn from the standard normal distribu-

tion u;N 0, 1ð Þð Þ. For each replication, us were drawn at random anew while ai and

bi were fixed once selected. Table 2 presents the summary statistics of the data-

generating parameter values.

Table 2. Summary of Data-Generating Parameter Values.

Slope (a)

Minimum Median M Maximum SD

11-item test 0.82 1.43 1.40 2.14 0.42
22-item test 0.77 1.35 1.33 2.01 0.31
44-item test 0.78 1.42 1.43 2.33 0.38

Difficulty (b)

Minimum Median M Maximum SD

11-item test 21.52 20.12 20.04 1.67 1.02
22-item test 21.93 0.18 20.01 1.87 1.05
44-item test 22.05 0.00 20.04 1.98 0.87
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For the item parameter recovery and standard error comparisons, bias, root mean

squared error (RMSE), and mean absolute difference (MAD) were computed. For a

given parameter,

Bias =
1

R

� �XR

r = 1

ĵr � j; ð7Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXR

r = 1

ĵr � jð Þ2=R

vuut ; and ð8Þ

MAD =
XR

r = 1

jĵr � jj=R; ð9Þ

where j is the parameter of interest and r is the replication number index

(r = 1, 2, . . . , R). In the item parameter recovery investigation, each of the data-

generating parameters is j. For the standard error investigation, the standard devia-

tion (SD) of the ĵ values over all replications was used for j when calculating bias,

RMSE and MAD. These indices were averaged across all items to compute summary

indices for a given condition. The average of bias tended to be close to zero and both

RMSE and MAD behaved similarly, preserving the same rank order of their values.

As a result, averages of MAD were reported in the result section. The summary of

bias and RMSE values are also available on request from the authors. MAD has a

direct straightforward interpretation of how far an estimate is from a true (data-gen-

erating) parameter on average in absolute value.

Results

Mplus was used to estimate the two-parameter model with default convergence cri-

teria. (Example files of Mplus IRT run syntax and output content are available on

request from the authors or by accessing the following link: https://www.dropbox.-

com/sh/5x3vubg0j0ifz3w/AACNSJjxn-if82y8D-PSnIyBa?dl=0). First, nonconver-

gence in the model estimation was examined. Mplus full information estimation

approaches had no convergence issue in any conditions, but the Mplus limited infor-

mation approaches showed convergence problems in some conditions in this study.

WLSMV-Probit-Theta (probit model with ‘‘Theta’’ parameterization in the WLSMV

estimation) had two nonconvergent conditions: nonconvergence rates of 0.05% (2

out of 4,000 replications when test length = 11 with N = 200) and 0.2% (8 out of

4,000 when test length = 22 with N = 200). ULSMV-Probit-Theta (probit model with

‘‘Theta’’ parameterization in the ULSMV estimation) had one condition that showed

0.025% nonconvergence rate (1 out of 4,000) for the test length = 11 and N = 200.

WLS-Probit-Theta (probit model with ‘‘Theta’’ parameterization in the WLS estima-

tion) had eight conditions showing the nonconvergence rates of 32% (test length =
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11 with N = 200), 0.65% (test length = 11 with N = 500), 10.95% (test length = 22

with N = 500), 0.23% (test length=22 and N = 1,000), and 100% (test length = 22

with N = 200; test length = 44 with N = 200; test length = 44 with N = 500; and test

length = 44 and N = 1,000). In general, WLS-Probit-Theta had a tendency to show

non- (or did not run at all) when the number of parameters in the model relative to

the sample size increased, in which case Mplus sent out a message of ‘‘nonpositive

definite’’ weight matrix.

The nonconvergence cases described above were excluded in the summary.

Because of the relatively large number of the simulation samples (4,000 per condi-

tion) in the study, those simulation conditions with even high nonconvergence rates

still provided a large number of converged replications for analysis (except for those

four conditions addressed above for WLS-Probit-Theta). In the highest nonconver-

gence cases that had 32% and 10.95% nonconvergence rates (test length = 11 with N

= 200 and test length = 22 with N = 500 with WLS-Probit-Theta), the numbers of

the remaining converged replications were 2,720 and 3,562. Thus, all the results

including WLS-Probit-Theta were summarized and compared. Again, WLS-Probit-

Theta was not compared with other estimation methods in the four conditions show-

ing 100% nonconvergence (test length = 22 with N = 200; test length = 44 with N =

200; test length = 44 with N = 500; and test length = 44 with N = 1,000).

Model Parameter Recovery

The recovery of item discrimination and difficulty parameters is presented in Figure

1.

On the x-axis in Figure 1, numbers indicate estimation approaches: 1 = ML-Logit,

2 = MLF-Logit, 3 = MLR-Logit, 4 = ML-Probit, 5 = MLF-Probit, 6 = MLR-Probit,

7 = WLS-Probit-Theta, 8 = WLSMV-Probit-Theta, and 9 = ULSMV-Probit-Theta.

Numbers 1 through 3 represent the Mplus full information logit modeling and num-

bers 4 through 6 represent the Mplus full information probit modeling. The numbers

7 through 9 represent Mplus limited information probit modeling.

Again, ML-Logit, MLF-Logit, and MLR-Logit (1, 2, and 3 on the x-axis in Figure

1) produce the same point estimates in terms of item parameters, and therefore the

same results. Also, ML-Probit, MLF-Probit, and MLR-Probit yield the same point

estimates for item parameters (4, 5, and 6 on the x-axis in Figure 1), which lead to

the same results.

Between the logistic and normal ogive (or probit) models for the full information

estimation approaches in Mplus (1, 2, and 3 vs. 4, 5, and 6 on the x-axis in Figure 1),

both produced almost the same results for the recovery of item difficulty, but the nor-

mal ogive (or probit) modeling (4, 5, and 6 on the x-axis in Figure 1) showed better

recovery for the item slope parameters compared to the logistic modeling.

Between the full information probit modeling and the limited information probit

modeling, except the WLS-Probit-Theta (4, 5, and 6 vs. 8 and 9 on the x-axis in

Figure 1, without 7 which is the WLS-Probit-Theta), both exhibited similar recovery
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results. Of the three limited information probit modeling estimations, WLS-Probit-

Theta was the worst, showing large nonconvergence rates compared to both

WLSMV-Probit-Theta and ULSMV-Probit-Theta (which again showed very close

performance to each other).
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Figure 1. Recovery of item discrimination and difficulty parameters.
Note. MAD = mean absolute difference; ML = maximum likelihood; MLF = maximum likelihood with

standard error approximation using the first-order derivative; MLR = maximum likelihood with robust

standard errors; WLS = weighted least squares; WLSMV = weighted least squares with mean- and

variance-adjusted chi-square test; ULSMV = unweighted least squares with mean- and variance-adjusted

chi-square test. On the x-axis, 1 = ML-Logit, 2 = MLF-Logit, 3 = MLR-Logit, 4 = ML-Probit, 5 = MLF-

Probit, 6 = MLR-Probit, 7 = WLS-Probit-Theta, 8 = WLSMV-Probit-Theta, and 9 = ULSMV-Probit-Theta.
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Standard Error Recovery

Figure 2 shows the recovery of SEs. The general patterns of the SE recovery across

different estimation approaches resembled those of the item parameter recovery.

As in the item parameter recovery, WLS-Probit-Theta showed poor performance

compared to other limited information approaches and the full information

Figure 2. Recovery of standard errors (SEs) of item discrimination and difficulty parameters.
Note. MAD = mean absolute difference; ML = maximum likelihood; MLF = maximum likelihood with

standard error approximation using the first-order derivative; MLR = maximum likelihood with robust

standard errors; WLS = weighted least squares; WLSMV = weighted least squares with mean- and

variance-adjusted chi-square test; ULSMV = unweighted least squares with mean- and variance-adjusted

chi-square test. On the x-axis, 1 = ML-Logit, 2 = MLF-Logit, 3 = MLR-Logit, 4 = ML-Probit, 5 = MLF-

Probit, 6 = MLR-Probit, 7 = WLS-Probit-Theta, 8 = WLSMV-Probit-Theta, and 9 = ULSMV-Probit-Theta.
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estimation approaches. The full and limited (except for WLS-Probit-Theta) informa-

tion approaches showed comparable performance when N = 500 or 1,000.

Summary and Conclusion

The highly flexible nature of Mplus’ estimation approaches could raise a question of

the comparability of the results from various estimation approaches of an IRT model.

This study compared the performance of nine different estimation approaches in

Mplus for the two-parameter IRT model in terms of item parameter and standard

error estimation.

One limited information estimation approach, WLS-Probit-Theta often showed

convergence problems across many simulation conditions. Unless the number of

items is small with a large sample size (e.g., test length = 11 and N = 1,000 in this

study), WLS-Probit-Theta showed either the poorest performance or serious noncon-

vergence problems. This seems to indicate difficulty in estimating the full weight

matrix for the WLS approach. In terms of item discrimination parameter recovery,

some noticeable differences were observed. The three full information probit and the

two limited information probit modeling approaches outperformed other estimation

approaches. Better performing methods in Mplus regarding the discrimination para-

meter recovery were ML-Probit, MLF-Probit, MLR-Probit, WLSMV-Probit-Theta,

and ULSMV-Probit-Theta. Note again that the first three ML-Probit, MLF-Probit,

and MLR-Probit produce the same point estimates for item parameters but different

standard error estimates. WLSMV-Probit-Theta, and ULSMV-Probit-Theta yield dif-

ferent point estimates and standard errors. When the sample size was 500 or greater,

all these five approaches in Mplus exhibited nearly the same results. When the sam-

ple size was small and the test length was not large (i.e., N = 200 and test length =

11 or 22 in this study), ULSMV-Probit-Theta (limited information approach) and the

three full information approaches (ML-Probit, MLF-Probit, and MLR-Probit,)

showed slightly better standard error recovery than WLSMV-Probit.

When the purpose of a latent variable modeling is to accurately estimate para-

meters and their standard errors for the 2-parmaeter IRT model via Mplus, our results

show that, for a sample size of 500 or 1,000, one of the three full information probit

modeling approaches (ML-Probit, MLF-Probit, or MLR-Probit) or one of the limited

information probit modeling approaches (WLSMV-Probit-Theta or ULSMV-Probit-

Theta) is preferred. However, if the sample size is small such as 200, and paired with

a small or a moderate test length of 11 or 22, our findings show that ULSMV-Probit-

Theta or one of the three limited information probit modeling is a better choice in

terms of performance with regard to the standard error estimation of the discrimina-

tion parameters. Given that the WLSMV is a popular choice for ordinal item response

data, the use of ULSMV-Probit-Theta or one of the three full information probit mod-

eling approaches addressed above should be treated as a competitive choice or a bet-

ter one when the sample size is small and test length is small in size. It is conjectured

that using a larger sample than those used in this study (e.g., 5,000) would further
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decrease the differences between these estimation methods. Also, the performance of

WLS-Probit-Theta may be expected to improve both when the number of items in a

test is small (e.g., less than 10 items) and when samples are larger than those in this

study, because of the provision of more data and the reduction of the burden in esti-

mating the full weight matrix due to the decrease in the number of components in the

weight matrix. All these conjectures leave room for future investigations, which may

include different IRT models (e.g., Rasch model or GRM) and estimation methods

(e.g., MCMC). Also, this study did not compare the Mplus IRT model estimation

with more recently developed IRT programs such as flexMIRT (Cai, 2017) and SAS

IRT Procedure (SAS Institute, 2015). This line of evaluative research could generate

practical and helpful information for researchers and practitioners who use those

programs.

As an additional didactic purpose, the appendix in this study also provides a clear

presentation of the relations between IRT and the Theta/Delta FA parameterization

in Mplus. The easily accessible closed form expressions in the appendix should help

facilitate learning and understanding of IRT and the item factor analytic framework

employed in the Mplus program for practitioners and graduate students in education

and psychology.

Appendix

I. Normal Ogive Item Factor Analysis and IRT Parameterization for
Unidimensional Dichotomous Response Data

For categorical ordered item response data, the limited information estimation

approach assumes a (continuous) latent response variable for the observed categori-

cal ordered response and a linear relationship between the latent response variable

and the factors (or latent traits) as in the case of the traditional linear factor analysis

with continuous observed variables. Part I of the appendix presents the relation

between the item factor analytic model (FA) and IRT model parameterization for a

unidimensional case. Those readers who want a more detailed treatment of the rela-

tions between FA and IRT are referred to, for example, Asparouhov and Muthén

(2016), Bolt (2005), Forero and Maydeu-Olivares (2009), Kamata and Bauer (2008),

L. K. Muthén and Muthén (2013), Raykov and Marcoulides (2011), and Takane and

de Leeuw (1987).

For a dichotomously scored item response ui (ui = 0 or 1), suppose a continuous

latent variable y�i and

ui = 0 if y�i\ti or 1 if y�i � ti:

There is some ti (ith item threshold parameter) such that a response of 1 is observed

when y�i is equal to or greater than ti and 0 is observed otherwise. Also assume

y�i = ci + lij + ei,
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where ci is the ith item intercept, li is the ith item loading, j is a factor, and ei is the

ith item residual. For the purpose of model identification, ti is treated usually as

free parameters but ci is fixed such that ci = 0: Thus, the above equation is written

usually as

y�i = lij + ei:

Assume that the conditional distribution y�i on j is normal with a constant variance,

that is, y�i jj;N lij, c2
i

� �
, which implies E eijjð Þ = 00 and var eijjð Þ= c2

i . Imagine

about a plot where the x-axis represents j and the y-axis is for y�i . ti is a threshold (or

cutoff) on the y-axis that decides the manifestation of a 0/1 response. Then, given j,

because of the assumption y�i jj;N lij, c2
i

� �
,

P ui = 1jjð Þ=
ð‘
ti

1ffiffiffiffiffiffi
2p
p

ci

exp � 1

2

y�i � lij

ci

� �2
" #

dy�i :

Let y� = cit + lij and ti\y�\‘. dy� = c�1
i dt and ti � lijð Þ=ci\t\‘. Thus,

P(ui = 1jj) =

ð‘
ti�lij

ci

1ffiffiffiffiffiffi
2p
p exp � t2

2

� �
dt

=

ðlij�ti
ci

�‘

1ffiffiffiffiffiffi
2p
p exp � t2

2

� �
dt

=F
lij� ti

ci

� �
=F

li

ci

j� ti

ci

� �
=F aiu� dið Þ,

where ai = li=ci and di = ti=ci, which shows the relation of IRT slope and intercept

parameters with the FA parameters.

A typical FA parameterization assumes that the marginal variance, var y�i
� �

= 1,

which is the ‘‘Delta’’ parameterization, so that the residual variance c2
i becomes a

free parameter.

If we further assume the marginal variance, var jð Þ = 1 in addition to var y�i
� �

= 1,

then var eið Þ= c2
i = 1� l2

i under the ‘‘Delta’’ parameterization. If the ‘‘Theta’’ para-

meterization is used, that is, assuming var eið Þ= 1, then ai = li and di = ti, which is

the IRT parameterization. In order to provide the complete solution for resolving the

scale indeterminacy in y�i and j, in practice the most popular assumptions are

y�i ;N 0, 1ð Þ and j;N 0, 1ð Þ, although the normality of j is not required in the deriva-

tion of the normal ogive model and its relation to the IRT parameterization.
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II. Factor Analytic and IRT Parameterization in Unidimensional/
Multidimensional Dichotomous/Polytomous Item Response Data

Part II of the appendix provides a summary of the expressions between FA (i.e, factor

loading and threshold parameterization) and IRT (slope and intercept or discrimination

and difficulty parameterization). All descriptions below are made in the context of the

Mplus framework. IRT parameterization is related to the Mplus ‘‘Theta’’ and ‘‘Delta’

parameterizations. The ‘‘Theta’’ parameterization gives unbounded range for the value

of the loadings in FA (or the slope parameter in IRT), while the ‘‘Delta’’ parameteriza-

tion makes the range of the value of the loadings in FA within 61. All equations below

assume that the latent traits (us) follow a (multivariate) normal distribution and hold

only when the errors (or residuals) in FA are uncorrelated. Estimation-wise, this involves

the marginal maximum likelihood (MML) estimation with the usual local independence

assumption in IRT modeling. The mean(s) of the normal distribution for the latent

trait(s) is(are) set to zero(s) and variance(s) is(are) set to one(s) as part of the model iden-

tification. Fixing the parameters of the population distribution of u (e.g., as standard nor-

mal distribution) is a popular model identification solution in the unidimensional IRT

when MML is employed in the full information estimation approach, as well as in the

unidimensional FA.

Unidimensional Modeling. The ‘‘Theta’’ parameterization in the limited information

approach leads to the normal ogive GRM (2PN model in the dichotomous response

case). GRM has the slope parameter ai for item i and the intercept parameter dik for

the category k in the item i, or the category step parameter bik . For dichotomously

scored data, GRM is the two-parameter IRT model either in the logistic version (2PL

model) or the normal ogive version (2PN model). Also, the dik or bik parameter

simply drops the category index k in the dichotomous response modeling. (Thus,

when k = 2, bi for dichotomous response data is the item difficulty parameter in

IRT.). Henceforth, FA with ‘‘Theta’’ parameterization and with ‘‘Delta’’

parameterization are denoted as ‘‘Theta’’ FA and ‘‘Delta’’ FA. In addition, let li and

tik be the factor loading for item i and the threshold for category k in item i in the

FA parameterization.

From ‘‘Theta’’ FA to normal ogive IRT GRM (or logistic IRT GRM with D = 1.7).

ai = li ðA1Þ

dik = tik ðA2Þ

bik = tik=li ðA3Þ
From ‘‘Theta’’ FA to logistic IRT GRM without D.

ai = Dli ðA4Þ

dik = Dtik ðA5Þ
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bik = tik=li ðA6Þ

From ‘‘Delta’’ FA to normal ogive IRT GRM (or logistic IRT GM with D = 1.7).

ai = li=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

i

q
ðA7Þ

dik = tik=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

i

q
ðA8Þ

bik = tik=li ðA9Þ
From normal ogive IRT GRM (or logistic IRT GRM with D = 1.7) to ‘‘Delta’’ FA.

li = ai=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + a2

i

q
ðA10Þ

tik = dik=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + a2

i

q
= aibik=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + a2

i

q
ðA11Þ

From ‘‘Delta’’ FA to logistic IRT GRM without D.

ai = Dli=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

i

q
ðA12Þ

dik = Dtik=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

i

q
ðA13Þ

bik = tik=li ðA14Þ

From logistic IRT GRM without D to ‘‘Delta’’ FA.

li = ai=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 + a2

i

q
ðA15Þ

tik = dik=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 + a2

i

q
= aibik=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 + a2

i

q
ðA16Þ

Multidimensional Modeling. In multidimensional modeling, the slope and intercept

parameterization is a possible form in the IRT GRM, which has the intercept para-

meter dik and the slope parameter aij (dimension index j = 1, 2, . . . , M): Note that dik

does not have a subscript for dimension because only one set of the k � 1 intercept/

step parameters is possible to estimate for an item regardless of a single or multiple

dimensions. That is, dijk which depends on j (dimension) is not estimable.

From ‘‘Theta’’ FA versus normal ogive multidimensional IRT (MIRT) GRM (or logistic
MIRT GRM with D = 1.7).

aij = lij ðA17Þ

dik = tik ðA18Þ
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From ‘‘Theta’’ FA to logistic MIRT GRM without D.

aij = Dlij ðA19Þ

dik = Dtik ðA20Þ
From ‘‘Delta’’ FA to normal ogive MIRT GRM (or logistic MIRT GM with D = 1.7). Let

rjj0 be the correlation of dimension j and j0 (j0 = 1, 2, . . . , M)

aij = lij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XM
j = 1

XM
j0 = 1

lijlij0rjj0

vuut ðA21Þ

dik = tik=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XM
j = 1

XM
j0 = 1

lijlij0rjj0

vuut ðA22Þ

From normal ogive MIRT GRM (or logistic MIRT GRM with D = 1.7) to ‘‘Delta’’ FA.

lij = aij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

XM
j = 1

XM
j0 = 1

aijaij0rjj0

vuut ðA23Þ

dik = tik=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

XM
j = 1

XM
j0 = 1

aijaij0rjj0

vuut ðA24Þ

From ‘‘Delta’’ FA to logistic MIRT GRM without D.

aij = Dlij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XM
j = 1

XM
j0 = 1

lijlij0rjj0

vuut ðA25Þ

dik = Dtik=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XM
j = 1

XM
j0 = 1

lijlij0rjj0

vuut ðA26Þ

From logistic MIRT GRM without D to ‘‘Delta’’ FA.

lij = aij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 +

XM
j = 1

XM
j0 = 1

aijaij0rjj0

vuut ðA27Þ

dik = tik=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 +

XM
j = 1

XM
j0 = 1

aijaij0rjj0

vuut ðA28Þ
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