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Abstract The biasing role of stereotypes is a central theme
in social cognition research. For example, to understand the
role of race in police officers’ decisions to shoot, partici-
pants have been shown images of Black and White males
and instructed to shoot only if the target is holding a gun.
Findings show that Black targets are shot more frequently
and more quickly than Whites. The decision to shoot has
typically been modeled and understood as a signal detec-
tion process in which a sample of information is compared
against a criterion, with the criterion set for Black targets
being lower. We take a different approach, modeling the
decision to shoot as a dynamic process in which evidence
is accumulated over time until a threshold is reached. The
model accounts for both the choice and response time data
for both correct and incorrect decisions using a single set
of parameters. Across four studies, this dynamic perspec-
tive revealed that the target’s race did not create an initial
bias to shoot Black targets. Instead, race impacted the rate
of evidence accumulation with evidence accumulating faster
to shoot for Black targets. Some participants also tended to
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be more cautious with Black targets, setting higher decision
thresholds. Besides providing a more cohesive and richer
account of the decision to shoot or not, the dynamic model
suggests interventions that may address the use of race
information in decisions to shoot and a means to measure
their effectiveness.
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There is no shortage of reports of unarmed Black citizens in
the United States being shot by police officers (America’s
police on trial, 2014; Cobb, 2016; Don’t shoot, 2014; The
counted: People killed by police in the US, 2016). These
shootings have raised the questions of whether and how
racial stereotypes might impact officers’ split-second deci-
sions to shoot.1 Clearly, police officers deciding whether or
not to use deadly force are in an uncertain and high-pressure
situation, especially when the target person is holding an
object in need of rapid identification. It is in the face
of such uncertainty that stereotypes can impact behavior
by providing information—traits and behaviors associated
with the social category (Higgins, 1996; Tajfel, 1969)—that

1Measuring the degree of bias based on actual shootings is not straight-
forward due to questions about the biases and reliability of the reports.
In general, however, reports indicate that the proportion of Blacks
relative to Whites being shot by police is greater than would be
expected based on population proportions alone (Brown & Langan,
2001; Geller, 1982; Geller & Scott, 1992; Jacobs & O’Brien, 1998;
Meyer, 1980; Robin, 1963; Ross, 2015; Smith, 2004). Recent analyses
show that a racial bias in the use of force is still present after control-
ling for arrest rates, but if one conditions solely on the use of lethal
force then, on average, no statistically reliable racial disparity is found
(Goff, Lloyd, Gelle, Raphael, & Glaser, 2016), or perhaps the opposite
racial disparity is found (Cesario, Johnson, & Terrill, 2017).
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seems to disambiguate the situation. For example, clas-
sic work in social psychology has shown that people rate
an ambiguous shove as more violent when performed by
a Black than a White individual (Duncan, 1976; Sagar &
Schofield, 1980).

In the context of shooting decisions, the challenge has
been to understand not only whether stereotypes impact the
decision to shoot, but how they enter the process. To begin
to answer these questions, simplified computer-based ana-
logues of the decision situation have been constructed: A
target individual appears on a computer screen and par-
ticipants must decide whether or not to shoot the target
(Correll, Park, Judd, & Wittenbrink, 2002). Mathematical
models of the decision process are then applied to the choice
data to determine how race impacts the decision process.
The model most commonly used to understand the decision
to shoot is based on signal detection theory (SDT; Green
& Swets, 1966; Macmillan & Creelman, 2005). According
to SDT, individuals take a sample of information from the
scene and decide to shoot if and only if the strength of the
sample exceeds a criterion level of strength. Modeling the
decision in this way has indicated that the criterion used for
Black targets is lower than that applied for White targets
(Correll et al., 2002; Correll, Park, Judd, & Wittenbrink,
2007a).

A great limitation of SDT is that it treats the decision to
shoot as a static decision process. That is, it assumes that all
the information used to make a decision is extracted from
the scene in a single sample. Static approaches often pro-
vide a reasonable approximation of the decision process and
certainly capture some psychologically important aspects of
the decision. In this article, however, we take a different
approach and model the decision to shoot as a dynamic process
in which information is accumulated as evidence over time
until a decision threshold is reached (Edwards, 1965; Laming,
1968; Link & Heath, 1975; Ratcliff, 1978; Stone, 1960).

Moving to dynamic models has important consequences
for understanding how stereotypes impact the decision to
shoot. One consequence is that the models quantitatively
predict both choice and response times, whereas static mod-
els predict choices only. A second consequence is that it
can provide a more nuanced understanding of how race and
other factors impact the different components of the deci-
sion process. As we show below, both of these advantages
are important because (1) race in some conditions only has
a statistically reliable impact on response times and not the
observed choices, and (2) race may have multiple, even
antagonistic effects on different decision components. Both
of these features are difficult for traditional static decision
models to handle.

The structure of this article is as follows. We first review
the first-person shooter task (FPST; Correll et al., 2002),
a task used to study how race impacts the decision to use

deadly force. We then describe the drift diffusion model
(DDM), the dynamic decision model that we used to model
the decision process. We use the model to develop a set
of hypotheses and questions about how race might impact
the decision process. We next test those hypotheses on four
FPST datasets and present results that speak to the valid-
ity of the model to meaningfully measure properties of the
decision process. Finally, we integrate the data across the
four common conditions of the studies to provide an overall
summary of the effect of race on the decision process. Taken
together, the DDM reveals a multifaceted effect of race on
decision making that is stable at the cognitive level across
datasets, regardless of the study conditions.

On a methodological note, an important aspect of these
four datasets is that they are typical of studies in the pub-
lished literature, with the observed race bias being more pro-
nounced in response times (Study 1), in error rates (Study 2
and Study 4), or weakly so in both (Study 3). They are also
typical in that the designs are close to those used in exper-
imental social psychology, where many subjects complete
a small number of trials over many conditions. This type
of design presents a unique challenge; fitting dynamic deci-
sion models like the DDM typically requires experimental
designs in which a few subjects complete many trials over
a small number of conditions (often more than 2,000 tri-
als per subject per condition; e.g., Ratcliff & Smith, 2004).
We solved this issue by embedding our models within a
Bayesian hierarchical framework (Vandekerckhove Tuer-
linckx, & Lee, 2011; Wabersich & Vandekerckhove, 2014).
The hierarchical framework allows data from one subject to
inform their own parameter estimates in different conditions
as well as the parameter estimates of other subjects in the
same conditions. It thus enabled us to acquire reliable and
accurate estimates of the parameters of the decision process.
Another advantage of this approach is that it facilitates the
integration of data across studies, allowing us to synthesize
the evidence for the overall effect of race on the decision
process and to analyze how the effect of race on the decision
process changed or did not change across studies.

We should note that there have been some applications
using the DDM to model the decision process in studies of
social cognition (Benton & Skinner, 2015; Klauer & Voss,
2008; Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007;
van Ravenzwaaij, van der Maas, & Wagenmakers, 2010;
Voss, Rothermund, Gast, & Wentura, 2013), including one
report modeling how race impacts the decision to shoot that
was published as we worked on this project (Correll, Wit-
tenbrink, Crawford, & Sadler, 2015). Our work builds on
these studies, but also goes beyond them in at least three
ways. First, the previous studies largely used conventional
methods to fit models at the individual level only (though
see Krypotos, Beckers, Kindt, & Wagenmakers, 2015). To
this end, they either simplified their experimental designs
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to focus on a single manipulation or simplified the model
and examined how a reduced set of process parameters
were impacted by race. The Bayesian hierarchical approach
allowed us much more flexibility to examine how race
impacts many more aspects of the decision process. Second,
we used the model to examine how other key factors (e.g.,
context and response window) might moderate the effect of
race or even impact the decision process directly. Third, our
Bayesian hierarchical approach offers a solution for estimat-
ing the parameters and uncertainty in these parameters at
both the individual and the group level. This approach, we
contend, is useful not only for gaining a better understand-
ing of the psychology behind decisions to shoot, but also
for other questions in social cognition and social psychol-
ogy where response time and decision data are obtained for
a single task across many trials.

First-person shooter task

Psychologists studying how stereotypes influence the use
of deadly force have developed laboratory analogues of this
decision, the most common of which is the FPST (Correll et
al., 2002). Participants in the FPST view a series of neigh-
borhood images on a computer screen. After a short period
of time a target individual appears holding an object. Partic-
ipants are instructed to press a button labeled “Shoot” if the
target is holding a gun and a button labeled “Don’t Shoot” if
the target is holding a harmless object (e.g., phone, wallet).

The FPST and similar tasks have been used in count-
less investigations of the role of race in the decision to
shoot. The task has revealed a robust race bias in the
decision among undergraduate participants and community
samples (e.g., Correll et al., 2002; James, Klinger, & Vila,
2014; Plant, Peruche, & Butz, 2005). In some conditions,
particularly when participants face a response deadline of
630 ms, the bias appears more reliably in error rates: Par-
ticipants are more likely to shoot unarmed Black targets
than unarmed White targets (e.g., Correll et al., 2002;
Correll, Park, Judd, & Wittenbrink, 2007a; Correll, Park,
Judd, Wittenbrink, Sadler, & Keesee, 2007b). When the
response window is increased from 630 ms to 850 ms, the
observed race bias tends to shift to response times: Partici-
pants are faster to shoot armed Black targets and slower to
not shoot unarmed Black targets (Correll et al., 2002; Green-
wald, Oakes, & Hoffman, 2003; Plant & Peruche, 2005;
Plant et al., 2005). This form of bias also tends to be observed
in trained police officers (Correll, Park, Judd, Wittenbrink,
Sadler, & Keesee, 2007b; Sim, Correll, & Sadler, 2013) and
people more familiar with the task (Correll et al., 2007a).

Modeling the decision to shoot

To go beyond the behavioral data and better understand the
race bias at the cognitive level, researchers have employed

mathematical models to analyze the decision process in the
FPST. The most common approach is to treat the deci-
sion as a signal detection process using SDT (Green &
Swets, 1966; Macmillan & Creelman, 2005). From this per-
spective, on each trial, the shooter extracts a sample of
information reflecting the degree to which the target appears
to be holding a gun. The shooter then compares the strength
of that information against a criterion to detect whether a
gun (i.e., a signal) is present (Correll et al., 2002, 2007b,
2011). When the choice data are subjected to this approach,
race affects the decision criterion, with participants setting
a lower criterion for Black targets than for White targets,
reflecting a bias in their response process.2

A limitation of SDT as a model of the decision process is
that it is silent in terms of response times. This is problem-
atic when it comes to explaining differences in race effects
observed between experiments. Recall that race primarily
affects the observed error rates in some cases, but the speed
of correct responses in others (a pattern we replicate in our
data). Why is extending the response window from 630 to
850 ms enough to induce race-based differences in response
times while suppressing any differences in the observed
decisions? Conversely, why should reducing the response
window to 630 ms be enough to significantly increase the
probability of incorrectly shooting unarmed Black targets,
while simultaneously suppressing race-based differences in
response time? And why focus solely on response times for
correct choices and not also incorrect responses? Finally,
what should one conclude when the race bias is present in
response times but not error rates as is the case, for instance,
in some instances when police officers complete the task
(Correll et al., 2007b; Sim et al., 2013)? While an SDT
approach cannot answer these questions, as we show below
the DDM is able to do so.

Drift diffusion model of the first-person shooter task

The DDM describes decision making as a dynamic process
that unfolds over time predicting both choice and response
time. A realization of this process is shown in Fig. 1.
According to the DDM, the decision to shoot or not is based
on an internal level of evidence. At the onset of the trial, this

2Another model that has been used is the process dissociation model
(Payne, 2005, 2006; Plant et al., 2005). Although the process dissocia-
tion model and SDT models have different conceptual interpretations,
they reparameterize the choice data in a similar manner and con-
sequently their parameters will often be perfectly correlated. For
instance, the measure of control in the process dissociation model and
the measure of sensitivity in SDT are both a function of the difference
between the hit and false alarm rates and are thus perfectly positively
related. A similar relationship holds between the measure of auto-
maticity in the process dissociation model and the response criterion
in SDT. Thus, the limitations we identify with SDT’s account of the
decision to shoot also apply to the process dissociation model.
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Fig. 1 A realization of a drift diffusion process during the first-person
shooter task. According to the model, participants deciding whether or
not to shoot sequentially accumulate evidence over time. The jagged
line depicts the path the evidence takes on a hypothetical trial. The
distributions at the top and bottom illustrate the predicted distribution

of times for the given set of process parameters at which the evidence
reaches each threshold. The relative area under each distribution is the
predicted proportion of trials in which participants will choose each
response

evidence can have an initial bias towards either option. Over
time, participants extract further information from the scene
on whether or not to shoot, which gives rise to an evolv-
ing (latent) level of evidence depicted by the jagged line in
Fig. 1. The jaggedness arises because each sample of evi-
dence is noisy (i.e., the scene itself and the cognitive and
neural processes used to extract evidence introduce variabil-
ity into the evidence). Once a threshold level of evidence
has been reached, a decision is made: the “Shoot” option
is selected if the accumulated evidence reaches the upper
threshold, the “Don’t Shoot” option if it crosses the lower
threshold. The time it takes for the evidence to reach either
threshold is the predicted decision time, tD .

The DDM decomposes the observed distribution of
choices and response times into four psychologically mean-
ingful parameters. Descriptions of these four main DDM
parameters and their substantive interpretations are given in
Table 1. Estimates of the parameters are obtained by fitting
the DDM directly to the observed distributions of choices
and response times. This can be done because, as stated ear-
lier, the DDM predicts the probability of choosing to shoot
or not shoot and the distribution of possible response times
for a given set of parameters for each trial (Fig. 1).

The drift rate δ describes the average strength of evidence
in each sample.3 A positive drift rate indicates evidence on
average pointing to the presence of a gun. A negative drift
rate indicates evidence on average pointing to the presence

3The noise in each sample is determined by the parameter σ 2 called
the drift coefficient. For our purposes it is set to 1.0. This is because the
drift coefficient is a scaling parameter; that is, if the parameter were
doubled, other parameters of the model could be doubled to produce
exactly the same predictions. However, with multiple conditions we
can estimate how this noise parameter changes and potentially obtain
better fits and more accurate parameter estimates (Donkin, Brown, &
Heathcote, 2009).

of a non-gun object. The magnitude of the drift rate in either
direction characterizes the strength of the evidence for each
option.

The drift rate has similar properties to measures of sensi-
tivity such as d ′ in SDT (Green & Swets, 1966; Macmillan
& Creelman, 2005). One difference is that δ can be concep-
tualized as a measure of sensitivity per unit of time whereas
d ′ represents sensitivity across time and thus confounds
accuracy with processing time (Busemeyer & Diederich
2010). Another difference is that the DDM can estimate
separate drift rates for gun and non-gun objects, whereas
d ′ is a single value representing the difference in sensi-
tivity between the two classes of objects. As we will see,
the ability of the DDM to separately measure the quality
of information for gun and non-gun objects provides new
insights into how race affects the decision process.4

The separation α between the two thresholds describes
the amount of evidence required to make a decision, with
larger values indicating greater amounts of information.
Decreasing the threshold separation α reduces the amount
of evidence needed for a choice, which in turn reduces the
amount of time a person takes to make the decision and
also increases the chances of an error (due to the variabil-
ity in evidence). Thus, the threshold separation α reflects
the extent to which a person trades accuracy for speed. This
is the mechanism that helps explain how different response

4In principle, each object could have a different drift rate, modeling
the variability between objects (e.g., different guns, different non-gun
objects). One way to do this is to model the stimuli as random effects
rather than fixed effects, which would perhaps be more appropriate
throughout experimental psychology (see Clark 1973; Judd, Westfall,
& Kenny, 2012). Although the Bayesian modeling framework we
introduce later allows this, for simplicity, we do not model the vari-
ability between stimuli and instead focus on modeling the systematic
variability between gun and non-gun trials.
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Table 1 Four main parameters of the drift diffusion model and their substantive interpretations

Drift Diffusion Model Parameter Description

Drift rate (δ) The average strength in evidence at each unit of time, with −∞ < δ < ∞. The sign of the drift rate
indicates the average direction of the incoming evidence, with negative values indicating evidence in favor
of “Don’t Shoot” and positive values indicating evidence in favor of “Shoot.” The magnitude of the drift rate
characterizes the quality of the incoming information.

Threshold separation (α) The separation between the thresholds, with 0 < α. With this parameterization, the choice threshold for the
uncertain option is set at α, and the choice threshold for the certain option set at 0. The threshold separation
determines how much a person trades accuracy for speed (i.e., the speed–accuracy tradeoff), with larger
values indicating more accurate but slower decisions.

Relative start point (β) The location of the starting point for evidence accumulation relative to the thresholds, with 0 < β < 1.
With this parameterization, the start point z is z = β · α. The relative start point indexes an initial bias for
either response, with values of β greater than .5 indicating a bias to choose “Shoot” and values lower than .5
indicating a bias to not shoot.

Non-decision time (NDT) The amount of contaminant time in the observed response times beyond the deliberation time specified by
the DDM, with 0 < NDT . The non-decision time includes the time spent on encoding the stimulus, executing
a response, and any other contaminant process.

windows in the FPST lead to race bias being present in
either error rates or response times.

An important aspect of the DDM is that it can also cap-
ture an initial bias in the decision to shoot. This bias is
characterized by the parameter β, which is the location of
the starting point of evidence accumulation relative to the
total threshold separation. When β = .5 there is no bias;
biases toward shooting have values closer to 1; and biases
toward not shooting have values closer to 0.

Finally, the non-decision time parameter NDT measures
contaminants to response times beyond the deliberation
time specified by the DDM (see dashed line in Fig. 1).
These contaminants include pre- and post-decision deliber-
ation (e.g., encoding vs. motor time) as well as any other
process that adds to the response. In practice, it is not usu-
ally possible to identify these different contaminants. Thus,
the observed response time t is an additive combination of
a single non-decision time and the predicted decision time
from the model, t = td + NDT .

For a given relative starting point β, threshold separation
α, drift rate δ, and non-decision time NDT , the model pre-
dicts the probability of a “Shoot” or “Don’t Shoot” decision,
as well as the response time distributions for each decision.
Expressions and derivations for these functions can be found
elsewhere (Busemeyer & Diederich 2010; Cox & Miller
1965; Voss & Voss 2008). More complex models capturing
other important aspects of the decision process exist, such
as versions including trial-by-trial variability in parameters
to account for slow and fast errors (Ratcliff, 1978; Ratcliff
& Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999),
changes in information processing as attention switches
between attributes or sources of information (Diederich,
1997; Diederich & Busemeyer, 2015), extra processing
stages to account for confidence (Pleskac & Busemeyer,
2010), decay parameters to account for memory decay or

the leakage of evidence (Busemeyer & Townsend, 1993; Yu,
Pleskac, & Zeigenfuse, 2015), linkage functions to account
for neural data (Turner, van Maanen, & Forstmann, 2015),
or ways to model choices with more than two alternatives
(Diederich & Busemeyer, 2003, Krajbich & Rangel, 2011)
or even continuous ratings (Kvam, 2017; Smith, 2016). We
have explored some of these more complex models such
as models with trial-by-trial variability in the parameters.
However, the experimental designs of most studies do not
permit accurate estimates of these aspects. For this reason,
we focus here on the simpler version of the model, investi-
gating how race and other aspects of the decision scenario
impact the four core cognitive parameters specified dur-
ing the FPST decision process. We believe the theoretical
framework we develop here is an important foundation for
gaining a better understanding of the decision to shoot and
opens the door to future work to build a more complete
processing model of the decision.

We should also mention that the DDM is one of many
different dynamic decision models that assume a sequen-
tial sampling process. In general, these models can be
divided into accumulator models and random walk/drift dif-
fusion models (Ratcliff & Smith, 2004; Townsend & Ashby,
1983). Accumulator models accumulate evidence separately
for each response alternative, allowing the evidence for
one alternative to be independent of the evidence for the
other (e.g., Audley & Pike, 1965; Brown & Heathcote,
2008; LaBerge, 1962; Townsend & Ashby, 1983; Usher
& McClelland, 2001). Random walk/drift diffusion mod-
els, in contrast, accumulate evidence dependently for each
response alternative, such that evidence for one alternative
is evidence against the other (e.g., Edwards, 1965; Laming,
1968; Link & Heath, 1975; Ratcliff, 1978).5 The two model

5DDMs are the continuous-time versions of random walks.
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types often make very similar predictions; for our purposes,
they typically differ only in the quantitative details of the
predictions (Ratcliff & Smith, 2004). In this article, we rely
on the DDM to test our general hypothesis that the deci-
sion to shoot is best modeled as a dynamic decision process.
We focus on the DDM for two reasons. First, to date it
is arguably the most successful approach for capturing the
dynamic process of evidence accumulation (e.g., Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Busemeyer &
Townsend, 1993, 2007; Krajbich & Rangel, 2011; Nosof-
sky & Palmeri, 1997; Pleskac & Busemeyer, 2010; Ratcliff,
1978; Ratcliff & Smith, 2015; Voss, Rothermund, & Voss,
2004; Wagenmakers et al., 2007). Second, as we have men-
tioned and will discuss shortly, in order to model the data
we need Bayesian hierarchical instantiations of the models,
which are currently available for the DDM (Vandekerck-
hove et al., 2011; Wiecki, Sofer, & Frank, 2013) (though,
for very recent accumulator model implementations, see
Annis, Miller, & Palmeri, 2016; Turner, Sederberg, Brown,
& Steyvers, 2013).

Hypotheses on the effects of race on the decision process

According to the DDM, there are different mechanisms
by which race can impact the decision to shoot. However,
within the framework of the model, there are only two
plausible hypotheses by which race can lead to an asym-
metric change in error rates and faster “Shoot” decisions for
armed Black targets and slower “Don’t Shoot” decisions for
unarmed Black targets (Correll et al., 2015; Klauer, Dittrich,
Scholtes, & Voss, 2015).

Start point hypothesis

One mechanism is through the relative start point β, with
participants setting a starting point closer to the shoot
threshold for Black targets than for White targets. This shift
in the relative start point thus captures what is meant by the
term “trigger happy.” One issue of note here is that, in any
given FPST trial, participants do not know the target’s race
until the target appears holding the object. Thus, to entertain
this hypothesis, we would need to assume that the race of the
target individual is the first piece of information that is pro-
cessed (before any accumulation of gun/non-gun evidence).

Evidence hypothesis

A second hypothesis is that the evidence participants extract
from the scene depends not only on the object, but also on
the target. That is, participants process both the target and
the object as evidence in determining whether to shoot or
not. Thus, the degree to which the evidence from guns points
towards “Shoot” and the evidence from non-gun objects

points towards “Don’t Shoot” also depends on the race of
the target. This hypothesis suggests two possible effects of
race on drift rate δ, one for guns and one for non-gun objects.

The first effect is that the drift rate for armed Black tar-
gets could be stronger (evidence accumulates more quickly)
than that for armed White targets: When a Black target is
armed, the evidence for “Shoot” is stronger than when a
White target is armed. Consequently, armed Black targets
are more likely to be shot than armed White targets and on
average will be shot more quickly. Therefore, changes to the
drift rate for guns would account for both decreased misses
and faster correct “Shoot” decisions for Black targets.

The second effect is that the drift rate for unarmed
Black targets could be weaker (evidence accumulates more
slowly) than that for unarmed White targets: When a
Black target is unarmed, the evidence for “Don’t Shoot” is
weaker than when a White target is unarmed. Consequently,
unarmed Black targets are more likely to be incorrectly shot
than unarmed White targets and the decision not to shoot
will be registered more slowly for Black than for White tar-
gets. Therefore, changes to the drift rate for non-guns would
account for both increased false alarms and slower correct
“Don’t Shoot” decisions for Black targets.

Thus, a race effect on the drift rate for the gun objects,
the non-gun objects, or both, can explain both response
time and error rate differences for Black and White tar-
gets in the FPST with reference to a single set of parameter
changes. Either combination is sufficient to produce an
interaction between race and object type in error rates or
response times (i.e., race bias). Indeed, at the behavioral
level, the reported interaction is sometimes due to race reli-
ably impacting unarmed targets (Plant & Peruche, 2005),
armed targets (Study 2 in Correll et al., 2002), or both (Cor-
rell, Wittenbrink, Park, Judd, & Goyle, 2011). The DDM
enables us to better measure which target shows more of a
race effect and why, with important consequences for both
predicting and correcting race bias.

Threshold-separation question

The DDM also raises a number of new empirical ques-
tions about the decision process during the FPST. One
question is whether the race of the target impacts the quan-
tity of evidence accumulated, i.e., threshold separation α.
Given that the race of the target and the object become
apparent simultaneously, it is possible that race has no
effect on α. However, perhaps due to increased anxiety or
sense of urgency, participants may simply rush to make a
decision—any decision—when they see a Black target and
thus reduce the threshold separation α for Black targets (see,
for example, Thura, Cos, Trung, & Cisek, 2014). An alter-
native possibility is that participants increase the threshold
separation α for Black targets, perhaps as a means to con-
trol their possible stereotype biases (i.e., a motivation to
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control prejudice; Plant & Devine, 1998). Note just as with
the start-point hypothesis, these possible effects on thresh-
old separation do necessitate that some pre-processing of
target race must occur.

Context question

A second question pertains to the moderating effect of con-
text on the race bias. Correll et al. (2011) reported that the
race bias is eliminated when targets appear in dangerous
neighborhood backgrounds in the FPST. According to SDT,
this is because participants lower their criterion for danger-
ous contexts, which in turn washes out the effect of race on
the criterion. In Studies 2, 3, and 4, we investigated how
changes in context impact the decision process when the
DDM is employed.

Discriminability question

Finally, we asked how reducing the discriminability of the
object (i.e., blurring the image of the gun or other object)
changes the decision process. This question actually gets
at the properties of the evidence gleaned from objects dur-
ing the decision to shoot. To see how, consider the decision
from the perspective of a signal detection process. From
this perspective, the gun is the signal. Blurring the gun
object should reduce the average strength of the signal (the
strength of the information extracted from the gun object).
Now consider what might happen with non-gun objects.
If non-gun objects provide no signal (i.e., are just noise),
then blurring them should have no effect on the informa-
tion extracted. However, if non-gun objects also carry some
signal (e.g., either by bearing a resemblance to a gun or
carrying some information of danger), then blurring them
should also reduce the strength of information extracted
from non-gun objects. If this is the case, the SDT model will
characterize the effect of blur not as a change in discrim-
inability, but as a change in the criterion. This is because
discriminability in the SDT model is the difference between
the strength of the signal for armed and unarmed targets,
and the model assumes that the average signal inferred from
the non-gun trials is fixed at 0 (i.e., just noise). The DDM,
however, can measure the strength of the evidence for armed
and unarmed targets separately and thus can accurately iso-
late the effect of blur to the strength of the evidence being
accumulated (i.e., drift rates).

General methods

Experimental methods

We tested the DDM using four separate and previously
unpublished datasets. Studies 1 and 2 were unpublished data

collected by another lab from undergraduates recruited from
psychology subject pools at the University of Chicago.6 In
Study 1, participants (N = 56 self-identified Caucasians)
completed 100 trials of a FPST in which the target appeared
holding either a gun or a non-gun object. Race of the target
was manipulated between trials, and all targets appeared in
front of neutral neighborhood scenes (the standard scenes
used in the FPST, e.g., parks, city sidewalks). In Study 2,
participants (N = 116 self-identified Caucasians) com-
pleted 80 trials of a FPST which manipulated the race of
the target individual, the object held by the target (both
within-subjects), and the dangerousness of the context in
which targets were presented (between-subjects). Targets
were presented in either the standard neutral scenes or urban
scenes meant to convey danger, including images of dilapi-
dated buildings, dumpsters, subway terminals with graffiti,
etc. (from Correll et al., 2011).

We designed and collected the data for Studies 3 and
4 recruiting participants from the psychology department
subject pool at Michigan State University. In Study 3, we
sought to replicate the results ourselves. We asked partic-
ipants (N = 38 self-identified Caucasians) to complete a
larger number of trials (320) of a FPST that manipulated
within-subjects the race of the target individual, the object
held by the target, and the context (neighborhood) in which
targets were presented. We also manipulated the discrim-
inability of the target to better understand the nature of the
information being accumulated during the decision process.
The results of Study 3 were, in general, consistent with
those of Studies 1 and 2, but the DDM analysis isolated
the effect of race to be on the non-gun objects rather than
the gun objects. Therefore, we ran a fourth study with a
larger sample size. In this final study, participants (N = 108
self-identified Caucasians) completed 320 trials of the FPST
that again manipulated the race of the target individual, the
object held, and the context (neighborhood).

The basic FPST method was consistent across all four
studies. We do not have the precise experimental set up for
Studies 1 and 2. In Studies 3 and 4, participants completed
the task in PsychoPy (1.80.06) on an 20 inch (16.96 by 10.60
inch) iMac computer running OS X (10.6.8). The stimuli
were presented so that they filled the screen without stretch-
ing (14.13 inch by 10.60 inch). In study 3 participants sat
approximately 12 inches from the monitor. In Study 4 we
manipulated distance from the screen with participants rest-
ing their heads in a chinrest either 12 inches or 24 inches
away from the computer screen.

On each trial, one of four background scenes appeared for
a fixed duration each. The duration was chosen at random

6We thank Josh Correll for sharing these data.
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from one of three possible durations (e.g., 500, 750, or
1000ms).7 After these background scenes, a target indi-
vidual was shown holding either a handgun or a non-gun
object (e.g., wallet, cell phone, camera). Participants were
instructed to press a button labeled “Shoot” if the target
individual was armed with a handgun and a button labeled
“Don’t Shoot” if he was holding any other object. The tar-
get individuals were 20 young to middle-aged adult men;
half were Black and half were White. Each individual was
presented four times, twice with a handgun and twice with
a non-gun object. These 80 individuals appeared in random
locations within the backgrounds. Participants first com-
pleted a set of practice trials (typically 16) before moving to
the experimental trials.

Participants were instructed to respond as quickly as pos-
sible, with the response window set at 850ms (Study 1),
630ms (Study 2 and Study 4), or 750ms (Study 3). As is
the convention in the FPST task, participants earned points
for their performance, and the point structure was designed
to bias participants to shoot and reflect to some degree the
payoff matrix officers face in the decision to shoot (Cor-
rell et al., 2002). A hit (correctly shooting an armed target)
earned 10 points and a correct rejection (not shooting an
unarmed target) earned 5 points. A false alarm (shooting an
unarmed target) was punished by a loss of 20 points, and
a miss (not shooting an armed target) led to the deduction
of 40 points. If participants responded outside the window,
points were deducted and they were told that their response
was too slow.

Behavioral analysis

Although our focus is on how race impacts decisions at
the process level, we also report the effects of race at the
behavioral level. To do so, we followed convention in the
literature and submitted the error rates and correct response
times from each study to an analysis of variance. The
Supplemental Material provides the full ANOVA tables for
all behavioral-level analyses. As the studies were designed
within the framework of Null Hypothesis Testing, we rely
on p-values and estimates of effect sizes for the substantitive
conclusions from the behavioral level analyses. However,
we also report Bayes factors for each effect as a means of
informing the interpretation and the degree of confidence
one can have in the specific conclusion.

Inclusion Bayes factors provide an estimate of the evi-
dence for a particular effect combined across all the possible
ANOVA models containing the effect (Rouder et al., 2016).
The Bayes factors were estimated using JASP (JASP Team,

7In Studies 1, 2, and 3, there was no reliable effect (interaction or main
effect) of foreperiod duration on choice accuracy or mean response
times. Study 4 did not record the foreperiod duration used for each
trial. Thus, for all analyses we collapse across this factor.

2017; Morey & Rouder, 2015). The Bayes factors are pro-
vided in terms of the evidence in favor of the alternative
hypothesis, thus we use the notation BF10. Conventionally,
Bayes factors between 1 and 3 are understood as indicating
weak evidence for the given hypothesis, 3 to 20 as indicat-
ing positive evidence, 20 to 100 strong evidence, and greater
than 100 very strong evidence. Bayes factors less than 1
indicate evidence in favor of the other hypothesis (Raftery,
1995).

Process-level analysis

We examined the effect of race and other manipulations on
the process using the DDM. To do so, we embedded the
models within a hierarchical framework and used Bayesian
estimation techniques to estimate the model parameters and
the effects of the different conditions on those parame-
ters (Kruschke, 2014; Lee & Wagenmakers, 2013). This
hierarchical approach allowed us to reliably estimate the
parameters of the DDM for the experimental designs used
with the FPST, in which a large number of subjects com-
plete a limited number of trials across several conditions.
These designs are a challenge for conventional methods of
fitting the DDM because the reliability and accuracy of the
parameters are impacted (especially estimates of drift rates;
Ratcliff & Childers, 2015). The hierarchical framework
offers a solution to this problem by simultaneously model-
ing both individual- and group-level differences so that data
from each participant inform the parameter estimates of the
others.

Figure 2 depicts the general hierarchical DDM. The
Supplemental Material provides the JAGS code and the
specifications of the priors used to estimate the model. The
hierarchical structure means that each process parameter of
the DDM had a higher order group-level prior. For example,
the model encapsulated our beliefs in possible a priori val-
ues of the relative starting point for condition i, subject j ,
with a truncated normal distribution,

βi,j ∼ N(μ
β
i , τβ).

The normal distribution was truncated so that it fell between
.1 and .9.8 The parameters μ

β
i and τβ are the mean and

precision (the inverse of the variance) of the group-level
distribution. Our prior beliefs in possible values of these
hyperparameters were set to be uniform for the mean, and
gamma distributed for the precision parameter.9

8This truncation was done for theoretical reasons as β must fall
between 0 and 1, and for practical reasons as the estimation process
becomes unstable with values close to 0 and 1. Thus, we set the upper
limits away from these boundaries.
9Using different priors, such as more diffuse normals, had minimal
impact on the parameter estimates.
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Fig. 2 Diagram of the hierarchical drift diffusion model (DDM). The
kth response time for subject j in within-subject condition i, between-
subject condition i∗, and with stimulus h is generated by a drift
diffusion process. The markers on the normal distributions indicate

that the priors were truncated. Similar markers placed on the DDM
process indicate the possibility of modeling the censored data in Study
1 and 2, where choice and response time were not recorded if the
response fell beyond the deadline

Figure 2 also has vertical lines at the tails of the response
time distributions. This property reflects the fact that, in
Studies 1 and 2, data outside the response window were cen-
sored (i.e., the observed response and response time were
not recorded for trials in which the response was made out-
side the response window). This is a problem for the DDM
and any model of the distribution of response times: If cen-
soring is not accounted for, the distributions of response
times will appear faster than the true empirical distribu-
tion, which will in turn impact the parameter estimates (e.g.,
increasing the magnitude of the estimated drift rates). The
Bayesian approach makes it possible to build censoring
directly into the model (Kruschke, 2014, p. 730) and we
use this opportunity in Studies 1 and 2. More details are
provided in the Supplemental Material.

As we have noted, many previous studies using the FPST
have employed SDT to analyze choice data (Correll et al.,
2002, 2007a, b; Greenwald et al., 2003; Kenworthy, Bar-
den, Diamond, & del Carmen, 2011; Sadler, Correll, Park,
& Judd, 2012; Sim et al., 2013). Therefore, for all the stud-
ies we report in this paper we also submitted the data to
a Bayesian signal detection analysis (Lee, 2008; Lee &
Wagenmakers, 2013). A full description of the SDT model,

and the analysis are provided in the Supplemental Mate-
rial. Our goal in doing this was to establish how the DDM
gives a different, more complete, account of the data. In
general, our analyses confirmed this showing that in addi-
tion to being unable to explain response times, the signal
detection model was unable to identify a race bias in Study
1, incorrectly isolated a manipulation of discriminability in
Study 3 to the criterion, and in general showed a varying
effect of race on the decision criterion as the response win-
dow was manipulated across the four studies. Please see the
Supplemental Material for more information.

Model estimation and specification

We estimated the posterior distributions over the parame-
ters of the hierarchical models using Markov Chain Monte
Carlo (MCMC) methods. These are numerical methods for
approximating a distribution with a large representative
sample. A full description of the estimation technique is
provided in the Supplemental Material.

In parameterizing the DDM, we were guided by our two
central hypotheses about how race impacts the decision pro-
cess. This implied that the starting point, drift, and threshold
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should be allowed to vary as a function of the race of the
target. To accomplish this, we let the group means of the
DDM process parameters vary as a function of the race of
the target as well as any of other experimental manipulation
(e.g., context, discriminability). That is, we did not arbitrar-
ily fix the DDM parameters to be equal across conditions
and instead sought to examine how the data impacted (if at
all) these parameters.

One question we did face was how to handle object type.
The group means of the drift rates were allowed to vary as
a function of object as well. This means the strength of the
evidence for gun objects does not have to correspond to the
strength of the evidence for non-gun objects, similar to other
approaches that add a criterion to classify the evidence fed
into the evidence accumulation process (see also Ratcliff,
1978; White & Poldrack, 2014).

However, one could ask if the other parameters also vary
as a function of the object type. Mathematically, estimating
the relative start point requires stimuli that on average point
towards the upper boundary and stimuli that on average
point to the bottom boundary (Link, 1978). Thus, the relative
starting point must be fixed across the different object types.

To investigate the necessity of allowing the threshold sep-
aration and non-decision time to vary as a function of object
type, we carried out a model comparison analysis where one
or the other, both, and neither were allowed to vary at the
group level as a function of object types. Using the Deviance
Information Criterion (DIC; Spiegelhalter, Best, Carlin, &
Van Der Linde, 2002) as measure of goodness of fit, all
four studies showed that a model allowing both the thresh-
old separation and non-decision time to vary as a function of
object type provided a better fit to the data. However, based
on two observations, we constrained the threshold separa-
tion to be constant across object type in all of our analyses.
First, across all four studies, examination of the posterior
estimates of the group-level mean threshold separation (μα)
showed no or negligible effects of object type. Second, in
another study where we manipulated the response window
within subjects, we found that the threshold separation did
not vary as a function of race. This finding was confirmed
both with model comparisons using the DIC and by examin-
ing the posterior distributions (Johnson, Cesario, & Pleskac,
2017). For the rest of the article, “hierarchical DDM” refers
to the model in which the relative starting point, threshold
separation, drift rate, and non-decision time were allowed to
vary as a function of race and all other experimental manip-
ulations (e.g., context, discriminability), and only drift and
non-decision time were allowed to vary as a function of
object type as well.

In order to verify the appropriateness of the model for
the FPST, we conducted a parameter recovery analysis of
the hierarchical DDM. The analysis (reported in the Sup-
plemental Material) showed that the model accurately and

reliably recovered the parameters of the hierarchical DDM.
We also conducted the posterior predictive checks for each
study comparing the predicted and observed choice prob-
abilities, mean response times, and response time distribu-
tions (see the Supplemental Material). The posterior predic-
tive checks showed that the model gave a good account of
the data across all four studies and all conditions. Neverthe-
less, future investigations should design studies better suited
to evaluate the viability of more complex models, such as
models including trial-by-trial variability in the parame-
ters (Ratcliff, 1978; Ratcliff & Rouder, 1998) and multiple
stages of processing (Diederich & Busemeyer, 2015).

Inferences from the hierarchical models

As our interest is on assessing howmuch and in which direc-
tion factors like race and context impact the decision process
and the uncertainty in these effects, we take an estimation
approach to our analyses (Gelman, Carlin, Stern, & Rubin,
2003; Kruschke, 2014). Thus, in our analyses, we report the
mean posterior value and the 95% Highest Density Interval
(HDI) in brackets next to the mean to describe the poste-
rior distribution over the parameters. Values within the HDI
are more credible (i.e., have higher probability density) than
values outside the HDI, and the values within the HDI have
a total posterior probability of 95%. To assess the effect of
different conditions on the parameters, we report the differ-
ence between conditions in terms of the parameter value and
the corresponding HDI as well as the differences in the esti-
mates of the parameters standardized by their group-level

variability in the parameter (e.g., d = μδ
Black−μδ

White√
1/τ δ

). Our

focus, especially at this stage of study, is on estimating the
effect of particular conditions, but in comparing the conditions
we generally asked if the credible values contained 0 or not.

Taking this estimation approach does raise the question
of whether we are begging the question, that is, presuppos-
ing a difference and testing the difference. To investigate
just how well our hierarchical DDM can identify differ-
ences in the parameters, we simulated three different types
of settings: (1) a difference between conditions in the rela-
tive start-point (β) but no other parameters, (2) a difference
between condition in the drift-rates but no other parame-
ters; and (3) a difference in the drift rates and a difference
in the threshold but no other differences in the parameters.
We then estimated the hierarchical DDM from each of these
simulated datasets. Across all three settings, the hierarchi-
cal DDM does a good job of correctly identifying the true
effect (> 92% of the time) and never incorrectly identified
an effect in a different process parameter (see Supplemental
Material for more details). We take this as evidence that our
approach has good accuracy in terms identifying the effect
of different factors on the decision to shoot.
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Another Bayesian approach that could be taken is a
model comparison approach that tests different hypotheses
by comparing different models (e.g., Rouder, Speckman,
Sun, Morey, & Iverson, 2009; Rouder, Morey, Speckman,
& Province, 2012; Rouder, Morey, Verhagen, Swagman, &
Wagenmakers, 2016; Wagenmakers, Lodewyckx, Kuriyal,
& Grasman, 2010). This approach has several advantages
including identifying a model that minimizes the chance of
overfitting the data. However, we did not take this approach
for several reasons. First, at this stage in the research our
interest is on estimating the effect of the manipulation and
our uncertainty in that effect on all the parameters. This,
we feel, is the most informative approach in terms of uncer-
standing how the process model accounts for this type of
data. Second, our model recovery analyses give us confi-
dence that we can reliably detect differences between con-
ditions with the parameter estimates. Third, the conclusions
from a model comparison approach are highly sensitive
to the priors that are chosen whereas the parameter esti-
mates are relatively robust. Thus, we rely on the Bayesian
estimation approach (for further discussion on these issues
see Gelman & Rubin, 1995; Kruschke & Liddell, in press;
Kruschke & Vanpaemel, 2015; Lee, in press; Wagenmakers
et al., in press; Wagenmakers, Lee, Rouder, &Morey, 2017).

Note that the posterior distribution, as examined in our
Bayesian analysis, is the same regardless of the number of
statistical tests conducted or the intentions of the experi-
menter (Kruschke, 2014). It depends only on the data and
the specified model, including the priors and the likelihood
function. Thus, there is no need to correct error rates for
multiple comparisons or for the use of an omnibus test.
Our analysis focused on examining the posterior distribu-
tion from the most informative angles in terms of how race
and other factors impacted the decision process. We report
these results in the paper. The Supplemental Material pro-
vides tables listing the main effects and interactions on each
process parameter for the Bayesian hierarchical SDT model
and the Bayesian hierarchical DDM.

Study 1: what happens under conditions where
race bias is predicted only in response times?

Study 1 might be regarded as a “standard” FPST design,
with race manipulated within subjects, targets in neutral
contexts, and the response window set at 850 ms. Past
research has found that, with this response window, race
bias emerges primarily in response times and not in error
rates. That is, participants are faster to correctly shoot
an armed Black target than an armed White target, but
slower to correctly not shoot an unarmed Black target than
an unarmed White target (Correll et al., 2002). A simi-
lar pattern of results emerges when trained police officers
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Fig. 3 Error rates and response times for correct choices from Study
1. Error bars are 95% confidence intervals with the standard error esti-
mated from the mean squared error of the interaction term between
race and object from the ANOVA

complete the task with shorter response windows (Correll et
al., 2007b; Sim et al., 2013). We expected to find the same
pattern of results at the behavioral level, with race having an
effect only on response times but not on errors. This expec-
tation is a challenge for SDT (and for any theory that treats
decision making as a static process), which fails to include
time as an identifiable variable and thus is silent on the race
bias in these datasets.

Behavioral analysis

Response times

Figure 3 displays the error rates and response times from
Study 1. As expected, with an 850 ms window, there was
a significant race by object interaction in response times,
F(1, 55) = 75.45, p < .001, η2p = .58, BF10 >

1000.10 Participants were slower to correctly not shoot
unarmed Black targets than unarmed White targets, t (55) =
−6.50, p < .001, BF10 > 1000, but faster to cor-
rectly shoot armed Black targets than armed White targets,
t (55) = 5.97, p < .001, BF10 > 1000. There was also a
main effect for objects, such that participants were slower to
correctly not shoot than shoot, F(1, 55) = 349, p < .001,
η2p = .86, BF10 > 1000.

10ANOVA analyses with response times were calculated using an
inverse transformation of observed response times.
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Error rates

Figure 3 also shows that there was an interaction in error
rates between object and race, F(1, 55) = 5.04, p = .03,
η2p = .08, BF10 = 3.01. However, the pattern of the inter-
action was not consistent with that typically reported in past
studies: There were fewer errors for unarmed Black targets
than for unarmed White targets (t (55) = −3.25, p = .002,
BF10 = 14.99) and statistically no race differences in the
error rates for armed targets.

Note also that the higher error rate for White armed tar-
gets led to a main effect of race, with more errors for (armed
or unarmed)White target individuals, F(1, 55) = 7.26, p =
.01, η2p = .12, BF10 = 7.35. Finally, consistent with past
studies and with the point structure of the FPST, there was
also a main effect of the object, with higher rates of shoot-
ing unarmed individuals (false alarms) than of not shooting
armed individuals (misses), F(1, 55) = 6.26, p = .015,
η2p = .10, BF10 = 4.13.

Drift diffusion analysis

Figure 4 displays the group-level estimates of the relative
start point μβ , threshold separation μα , drift rate μδ , and
non-decision time μNDT .

Relative start point

We first turn to start point β, and ask: Were participants
more inclined to shoot or not shoot at the start of the

decision process, and did this inclination differ by target
race? As Fig. 4 shows, participants were on average biased
towards shooting, with an average relative start point above
.5. This relative bias towards shooting was predicted in that
the payoff structure encouraged shooting. This position of
the relative start point explains why participants were on
average slower to choose to not shoot as well as the higher
rate of shoot decisions. It also speaks to the validity of the
model, in that the estimated relative start point accurately
reflected the payoff structure of the task.

With respect to the start point hypothesis, we did
not find that the start point was biased towards shoot-
ing for Black targets. In contrast, the start points for
Black targets were closer to the “Don’t Shoot” bound-
ary than the start points for White targets were (M =
−0.05 [−0.08, −0.01], d = −0.85 [−1.56, −0.14] ).
This difference explains the lower level of errors for Black
unarmed targets observed in this sample.

Threshold separation

Figure 4 also shows that participants tended to set a greater
distance between thresholds (μα) for Black than for White
targets, though the difference was not credible (M =
0.09 [−0.001, 0.18], d = 0.60 [−0.002, 1.22]).

Drift rate

Turning to the drift rates, we asked whether race influenced
the strength of evidence of the gun and non-gun objects
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during evidence accumulation. The bottom left panel of
Fig. 4 shows that, in this study, the effect of race on drift
rates depended on the object. Race did not have a cred-
ible impact on the drift rates for non-gun objects (M =
0.09 [−0.26, 0.43], d = 0.16 [−0.44, 0.75]). There was,
however, a credible difference in the drift rates for guns:
Drift rates were larger for Black targets than for White tar-
gets (M = 0.62 [0.29, 0.96], d = 1.07 [0.48, 1.68]). That
is, evidence to shoot had a faster rate of accumulation when
a Black target was holding a gun than when a White target
was holding a gun.

Non-decision time

Finally, non-decision time estimates were smaller for
guns than for non-guns (M = −47.1 [−59.9, −34.1],
d = −1.04 [−1.34, −0.74]), potentially due to the vari-
ety of non-gun objects used in the FPST. There was
very little effect of race on non-decision times (M =
−3.1 [−16.1, 9.9], d = −0.07 [−0.36, 0.22]). There was
an interaction between race and object on non-decision
times (M = 17.7 [4.8, 30.5], d = 0.39 [0.11, 0.68]).
However, as this interaction was not observed in our other
studies, we do no interpret it further.

Interim conclusion

The results of Study 1 support the evidence hypothesis on
the effect of race on the decision process. In particular, the
drift rates for gun objects were higher for Black targets than
for White targets, suggesting that the race of the target indi-
vidual is processed as evidence when deciding whether or
not to shoot.

This is a different understanding of the effect of race
than the one provided by SDT, where the effect is typi-
cally isolated to the response process of setting a lower,
more liberal criterion to shoot for Black targets. In fact,
fitting SDT to this dataset shows no credible effect of
race on the decision criterion (M = 0.13 [−0.01, 0.26],
d = 1.64 [−0.38, 4.75]) (see Supplemental Material). If
anything, as the estimates suggest, there was a trend for
the opposite effect. Conventionally in the literature on the
FPST this would be accepted because the race bias in
Study 1 was only expected in the response times and not
in error rates. We see this as a distinct advantage of the
DDM in that it can can identify influences of race on deci-
sion parameters even in the presence of no race effects on
error rates. Furthermore, as we will show across studies,
regardless of how the race bias manifests itself in behavior,
the DDM isolates the bias to a common source: evidence
accumulation.

The DDM also identifies other potential effects of race
beyond the biasing of racial stereotypes. In this study,

participants appeared to have a starting point that was biased
towards not shooting Black targets and, at the same time, a
trend towards increasing the threshold separation for Black
targets. Both of these results point towards participants
working to counteract or control their prejudices. As these
effects were small, however, we examined their robustness
in the following studies.

Study 2: how does context impact the decision
process and the effect of race?

The goal of Study 2 was to examine how a shorter response
window impacts the decision process. Behaviorally, past
results have shown that, with a shorter response window,
the race bias appears in error rates. Based on Study 1, the
DDM should still isolate the effect of race to a change in the
rate of evidence accumulation, while the change in response
window should primarily impact the threshold participants
set. This study also allowed us to investigate the context
question: For half the subjects, the target appeared in a “dan-
gerous” neighborhood and for the other half, in the same
neutral context used in Study 1.

Behavioral analysis

Error rates

Figure 5 displays the error rates and response times in Study
2. The expected three-way interaction between object, race,
and context on error rates did not reach conventional sig-
nificance levels, F(1, 114) = 3.69, p = .06, η2p = .029,
BF10 = 0.022. Nevertheless, consistent with past studies,
there was an interaction between race and object in the neu-
tral condition F(1, 57) = 14.07, p < .001, η2p = .20,
BF10 = 5.46, but it dissipated in dangerous condition
F(1, 57) = 0.84, p = .36, η2p = .02, BF10 = 0.136. In
the neutral condition, participants were more likely to incor-
rectly not shoot an armed White target than an armed Black
target (misses), t (57) = −3.41, p < .001, BF10 = 23.09,
but more likely (though not significantly so) to shoot an
unarmed Black target than an unarmed White target (false
alarms), t (57) = 1.66, p = .10, BF01 = 1.89.

Response times

With conventional frequentist tests there was a three-way
interaction between object, race, and context (though the
effect was small and the Bayes factors imply no effect),
F(1, 114) = 5.38, p = .02, η2p = .05, BF10 = 0.024.
Participants were slower to correctly not shoot an unarmed
Black target than an unarmed White target in the neutral
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condition (t (57) = 2.42, p = 0.02, BF10 = 2.08), but not
in the dangerous condition.

Drift diffusion analysis

Figure 6 displays the group-level estimates of the relative
start point μβ , threshold separation μα , drift rate μδ , and
non-decision time μNDT . A complete analysis of the effect
of the manipulations on the process parameters is provided
in the Supplemental Material.

Relative start point

There was no credible race difference in the rela-
tive start point (M = −0.01 [−0.04, −0.01], d =
−0.16 [−0.55, 0.22]), nor was there any credible effects of
context or an interaction.

Threshold separation

There are two important observations from the threshold
separation estimates in Study 2. First, relative to Study 1,
participants had a lower threshold (Table 2). This difference
in thresholds is consistent with an a priori property of the
DDM, namely, that as time pressure increases the threshold
separation should decrease, thus trading accuracy for speed.
We return to this result in the composite analysis, where we

model all common conditions of the four studies simultane-
ously. Nevertheless, this result, as well as the starting point
bias towards the “Shoot” option, speaks to the validity of the
model to meaningfully measure properties of the decision
process.

Consistent with the trend we saw in Study 1, we found
that participants set higher thresholds for Black targets
in the neutral contexts (M = 0.06 [0.01, 0.12], d =
0.82 [0.11, 1.57]). However, in the dangerous con-
texts, there was no credible difference between Black
and White targets (M = −0.02 [−0.07, 0.02], d =
−0.32 [−0.95, 0.29]). As Fig. 6 shows, threshold separa-
tions in the dangerous condition fell largely between those
of Black and White targets, respectively, in the neutral
condition.

Drift rate

Turning to drift rate differences the rate of evidence accu-
mulation was higher for armed Black targets than for armed
White targets though the effect was smaller than in Study
1 (M = 0.34 [0.06, 0.62], d = 0.43 [0.08, 0.79]). Nev-
ertheless consistent with Study 1 a gun provided stronger
evidence toward the “Shoot” decision when held by a Black
target than when held by a White target. Also like Study
1 there was very little effect of race on the non-gun object
(M = 0.03 [−0.24, 0.31], d = −0.04 [−0.31, 0.38]).
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Fig. 6 Study 2 posterior means (dots) and 95% HDI (bars) for the group-level parameter estimates of the DDM in each condition

Context did not have a credible effect on the drift rates
for gun or non-gun objects, nor was there an interaction
between race and object for the gun or non-gun object.

Non-decision time

The group-level mean non-decision time estimates also
showed the same shift to smaller magnitudes for gun objects
(M = −27.3 [−35.3, −19.1], d = −0.65 [−0.84, −0.45]).
Again, there were also some apparent interactions between
race and context in the non-decision time estimates; how-
ever, these interactions did not replicate in subsequent
studies so we refrain from further interpretation.

Interim conclusion

The results of Study 2 show that, as in Study 1, partici-
pants were quicker to accumulate evidence towards shooting

Table 2 Summary statistics of the posterior estimates of the group
level mean threshold separation μα collapsed across conditions for
each study

Mean 95% HDI

Study 1 (850 ms) 1.36 [1.27, 1.46]

Study 2 (630 ms) 1.04 [0.98, 1.09]

Study 3 (750 ms) 1.10 [1.03, 1.17]

Study 4 (630 ms) 0.99 [0.95, 1.03]

when a Black target was armed than when a White target
was armed, and that this held in both neutral and dangerous
contexts. This result implies that participants use both the
object and the target—at least for armed targets—to decide
between “Shoot” and “Don’t Shoot,” and that this bias is
present regardless of the context.

Study 2 found no credible effect of race on the relative
start point. However, we did find that in the neutral con-
dition (of this between-subjects manipulation) participants
set a credibly larger threshold separation, and thus exhibited
more caution for Black targets. This result is consistent with
the trend we observed in Study 1. In Study 2, this difference
dissipated in dangerous contexts. In fact, it appears that par-
ticipants responded to the dangerous condition by seeking
to collect a little more information before deciding to shoot,
regardless of target race.

Study 3: how does discriminability of the object
impact the decision process in the FPST?

In Study 3, we sought to replicate the basic effects of race
and context on the decision process. To further test the
effect of the response window on the threshold separation
α, we used a response window of 750 ms and predicted that
the threshold separation would fall between that of Study
1 (850 ms) and Study 2 (630 ms). Finally, to address our
discriminability question, we blurred the object shown to
participants in half of the trials by using photo manipulation

Psychon Bull Rev (2018) 25:1301–1330 1315



Non-Gun Gun Non-Gun Gun

E
rr

or
 R

at
e

0

.05

.10

.15

.20

Neutral Dangerous

Clear
White
Black

Non-Gun Gun Non-Gun Gun
0

.05

.10

.15

.20

Neutral Dangerous

Blurred

Non-Gun Gun Non-Gun Gun

R
es

po
ns

e 
T

im
e 

(m
s)

0  
500

550

600

650

Neutral Dangerous
Non-Gun Gun Non-Gun Gun

0  
500

550

600

650

Neutral Dangerous
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software to “smudge” it. As discussed earlier, changing the
discriminability of objects can provide information on the
evidence being extracted from the objects. In particular, it
can help reveal if the non-gun objects carry no information
pertinent to the shoot decision, as assumed by the typical
SDT analysis, or if the the non-gun objects convey informa-
tion as to the the shoot decision. If there is no information
then blurring the non-gun objects should have no effect on
the decision in these trials, but if there is some information
then blurring them should decrease false alarms.

Behavioral analysis

Error rates

Figure 7 displays the error rates and response times from
Study 3. Consistent with a race effect conventional p-values
indicated a two-way interaction between race and object in
the error rate, F(1, 37) = 8.14, p = .007, η2p = .180,
BF10 = 0.518. There was a greater proportion of incorrect
choices to shoot unarmed Black than unarmed White tar-
gets (.12 vs .10), t (37) = 2.698, p = .010, BF10 = 4.01.
However, there was not a significant difference in the pro-
portion of incorrect choices to not shoot armed Black vs.
armed White targets (.11 vs. .12). There was also an interac-
tion between race and object in response times, F(1, 37) =
5.55, p = .024, η2p = .131, BF10 = 0.032. Participants
were significantly slower to correctly not shoot unarmed
Black targets (627 ms) than unarmed White targets (616
ms), t (37) = 2.48, p = .013, BF10 = 2.56, but there was
not a significant difference in response times for correctly
shooting armed Black (565 ms) vs. armed White targets

(568 ms). Thus, in Study 3, we again found support for the
typical race effect on error rates and response times, though
the Bayes factors for these results suggest caution in inter-
preting them. Moreover, in a departure from the findings of
Correll et al. (2011) and to some degree Study 2, none of
these effects depended on context.
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Fig. 8 The effect of the manipulation of discrimination on error
rates and response times for correct choices from Study 3. Error bars
are 95% confidence intervals with the standard error estimated from
the mean squared error of the interaction term between race, object,
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The new manipulation in Study 3 was the discrimination
manipulation. Discrimination did not interact with the race
manipulation. However, Fig. 8 shows that it did affect the
processing of the object. In particular, there was an interac-
tion between the discriminability of the object and the type
of object, F(1, 37) = 18.84, p < .001, η2p = .337,BF10 =
87.99. When a non-gun object was blurred, there was a sig-
nificant decrease in the proportion of incorrect choices to
shoot unarmed targets (.12 for clear vs .10 for blurred con-
ditions), t (37) = −2.50, p = .016, BF10 = 2.67. Yet,
when the gun was blurred, there was a significant increase
in the proportion of incorrect choices to not shoot armed tar-
gets (.09 for clear vs. .13 for blurred), t (37) = 4.12, p <

.001, BF10 = 125.1. This simultaneous increase in incor-
rectly not shooting armed targets (misses) and decrease in
incorrectly shooting unarmed targets (false alarms) suggests
that both the gun and non-gun objects conveyed information
that swayed participants towards shooting.

This outcome is particularly problematic for signal detec-
tion analyses, which assume that the non-gun objects pro-
vide no signal for the shoot decision (i.e., they are just
noise). As a result, in terms of the manipulation of dis-
criminability, the SDT model isoloates the effect of the dis-
crimination manipulation of the criterion estimates, which
were larger when the objects were blurred than when they
were clear (M = 0.15 [0.08, 0.21], d = 2.05 [0.46, 4.53]).

There was no credible difference between blurred and non-
blurred objects in terms of sensitivity to shoot (M =
−.14 [−0.37, 0.10], d = −0.16 [−0.43, 0.12]) (see
Supplemental Material). The effect of discriminability on
the decision criterion highlights the difficulty that the SDT
model has in properly characterizing this property. This is
due to the fact that apparently non-gun objects provided
some signal for the shoot decision. As a result, blurring gun
and non-gun objects lessened the strength of the informa-
tion for shooting for both objects. Because the SDT model
assumes that the non-gun (i.e., noise) distribution is fixed on
zero, it reflects this change as a shift in criterion.11

Response times

Consistent with the error rates, the discrimination manipu-
lation also had an effect on the observed response times. In
particular, the effect of blur depended on the object type,
F(1, 37) = 10.72, p = 0.002, η2p = 0.225, BF10 = .125.
Participants were slower to correctly shoot an armed target
when the object was blurred (552 ms for clear vs. 581 ms
for blurred), t (37) = 6.14, p < .001, BF10 = 048. How-
ever, there was no significant difference in response times

11A SDT model that models different classes of stimuli rather than a
single class of stimuli would also likely capture this effect (see, e.g.,
Glanzer & Adams, 1985).
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when the target was unarmed (622 ms for clear vs. 601 ms
for blurred).

Drift diffusion analysis

Figure 9 summarizes the posterior distributions of the group
estimates for the starting bias μβ , threshold separation μα ,
drift rate μδ , and non-decision time μNDT .

Relative start point

Consistent with the other analyses, while there was an initial
bias towards shooting, race did not have a credible effect on
the relative response bias.

Threshold separation

As predicted, threshold separation for Study 3 fell between
that of Study 1 and Study 2 (see Table 2). Similar to Studies
1 and 2, there was a trend to greater threshold separation
for Black than White targets (M = 0.03 [−0.00, 0.07], d =
0.32 [−0.03, 0.68]). In contrast to Study 2, the effect of race
on threshold separation did not depend on context (M =
−0.001 [−0.04, 0.04], d = −0.01 [−0.35, 0.35]).

Drift rate

In contrast to the other two studies, we did not find
a credible difference between the drift rates for White
and Black armed targets (i.e., the gun drift rate) (M =
0.06 [−0.18, 0.31], d = 0.07 [−0.22, 0.38]). Instead, in
Study 3, the race effect was on the non-gun objects, with
the drift rate for unarmed Black targets being weaker for
not shooting than that for unarmed White targets (M =
0.28 [0.04, 0.52], d = 0.34 [0.05, 0.64]).

Figure 9 also shows that the effect of context in
Study 3 was partially isolated to the drift rates associ-
ated with the gun objects. In particular, the drift rates for
armed targets were larger in dangerous contexts (M =
0.34 [0.10, 0.59], d = 0.42 [0.12, 0.72]), suggesting that
dangerous contexts in this study elicited greater sensi-
tivity to stimulus information when manipulated within
subjects.

As expected, drift rates were also impacted by the
manipulation of discriminability. Blurring the object led
to a decrease in drift rates for armed targets holding
a blurred gun relative to a non-blurred gun (M =
−0.51 [−0.76, −0.27], d = −0.62 [−0.93, −0.32]).
There was not a credible difference for unarmed targets,
although blurring non-gun objects did on average lead to
a decrease in drift rates for non-gun objects (i.e., drift
rates pointed more strongly towards “Don’t Shoot”) (M =
−0.13 [−0.38, 0.11], d = −0.16 [−0.46, 0.13]).

Non-decision time

Finally, there were two interpretable effects on non-
decision time. As in the earlier studies, non-decision times
were larger for non-gun than for gun objects (M =
26.9 [19.4, 34.3], d = −0.61 [−0.79, −0.44]). Non-
decision times in Study 3 were also larger in the dan-
gerous condition than in the neutral condition (M =
15.4 [7.7, 22.9], d = 0.35 [0.18, 0.53]). Paired with the
change in drift rates, one post hoc explanation for this effect
is that the within-subjects design may have led to different
encoding strategies between neutral and dangerous contexts,
resulting in different non-decision times and drift rates.
However, we did not find a consistent impact of context on
the decision process across our three studies, suggesting that
caution is warranted in interpreting this result.

Interim conclusion

Decision processes in Study 3 were similar to those
observed in the other studies, but some differences did
emerge. As in all previous analyses, we relative start points
were not larger for Black targets (i.e., start point hypoth-
esis). Threshold separations were, on average, larger for
Black targets, but as in the other studies the effect was not
large.

Race also impacted evidence accumulation. In contrast
to Studies 1 and 2, however, the effect was on non-gun
objects, with Black unarmed targets having drift rates that
were weaker towards not shooting than White unarmed tar-
gets. This type of race bias is particularly alarming as it
leads to more false alarms or shooting of unarmed Black
targets than unarmed White targets. The effect of race on
the drift rates for unarmed targets in Study 3 is symmetrical
with the effects of race on the drift rates for armed targets in
Studies 1 and 2. Either one is sufficient to produce the race
bias (i.e., an interaction between race and object) observed
in error rates or response times.

The discrimination manipulation cast light on the prop-
erties of the information gleaned from the scene. Blurring
the objects reduced the hit rate (shooting armed targets) and
the false alarm rate (shooting unarmed targets).12 Whereas
the SDT model isolates this effect of the blur to a bias in the
response, the DDM—through its ability to separately model
the quality of the evidence for gun and non-gun objects—
attributes it to a reduction in the strength of the information
towards shooting. Moreover, the drift rates from the DDM
suggest (as one might expect) that this information was
weak in the non-gun objects.

The context manipulation in Study 3 led to an increased
drift rate and increased non-decision times. As mentioned,

12Note that this parallels the results for White vs. Black targets.
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Fig. 10 Error rates and response times for correct choices from Study 4. Error bars are 95% confidence intervals with the standard error estimated
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one post-hoc interpretation is that the within-subjects design
may have led to different encoding strategies between neu-
tral and dangerous contexts. In contrast, Study 2, which
used a between-subjects manipulation of context, isolated
the context effect to the threshold separation. Because of
these conflicting results as well as the differences in the race
effect (which emerged for armed vs. unarmed targets), we
ran a final experiment with a larger sample size with the
goal of addressing these differences between studies.

Study 4: using a larger sample size to isolate
the effects of race and context

Across Studies 1, 2, and 3, we consistently found that the
observed race bias was isolated to the drift rates of the
DDM, supporting the evidence accumulation hypothesis.
However, in Studies 1 and 2 the effect was on the gun
objects, whereas in Study 3 it was on the non-gun objects. In
addition, Studies 2 and 3 identified different effects of con-
text on the decision process, with Study 2 isolating the effect
of context to changes in threshold separations and Study 3
isolating the effect to non-decision time and drift rates. One
possible reason for this difference is that context was manip-
ulated between subjects in Study 2 but within subjects in
Study 3.

To try to better isolate the effects of race and context,
we conducted a fourth study with a much larger sample size
(N = 108), with each participant completing twice as many
trials per condition (n = 40). As in Study 2, we set the
response window to 630 ms. We therefore expected the race
effect to appear in the error rates at the behavioral level, and
the threshold separation to be similar in magnitude to Study
2. We manipulated race and context within subjects.13

Behavioral analysis

Error rates

Figure 10 shows the error rates and correct response times
from Study 4. The standard race effect was present in the
data, with a two-way interaction between race and object in
the error rate, F(1, 107) = 37.94, p < .001, η2p = .26,
BF10 = 36.77. There was a greater proportion of incor-
rect choices to shoot unarmed Black than unarmed White
targets (.31 vs .28), t (107) = 4.58, p =< .001, BF10 >

1000, and a lower proportion of incorrect choices to not

13To explore the possibility that distance from the screen was a con-
founding factor, we manipulated this variable within subjects. As it
proved to have no effect, however, we collapsed across this variable in
our analyses.
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shoot armed Black than armed White targets (.22 vs. 24),
t (107) = −4.17, p =< .001, BF10 > 1000.

Response times

There was not a significant interaction between race and
object in response times. Thus, in Study 4, consistent with
the literature and our own results with a response window
of 630 ms, we found evidence for the typical race effect on
error rates. Replicating the results of Study 3 and departing
from Study 2 and the findings of Correll et al. (2011), the
race bias did not depend on context, nor was there an overall
effect of context on response times.

Drift diffusion analysis

Figure 11 summarizes the posterior distributions of the
group estimates for the relative start point μβ , threshold
separation μα , drift rate μδ , and non-decision time μNDT .

Relative start point

As in the other studies, there was an initial bias towards
shooting, and race did not have a credible effect on the
relative start point (M = −0.01 [−0.02, 0.004], d =
−0.24 [−0.50, 0.02]). If anything, as in Study 1, there was
a trend for lower relative start points for Black targets.

Threshold separation

As predicted, the threshold separation parameter was in a
similar range as in Study 2 (Table 2). However, we found
no credible difference in threshold separation between
Black and White targets (M = 0.01 [−0.02, 0.04], d =
0.07 [−0.14, 0.27]). There was also no credible effect of
context on thresholds.

Drift rate

The bottom left panel of Fig. 11 shows that race impacted
the drift rates for both armed and unarmed targets. As
in Studies 1 and 2, the drift rate was greater in magni-
tude for armed Black targets than for armed White targets
(M = 0.24 [0.08, 0.39], d = 0.33 [0.10, 0.55]). More-
over, replicating Study 3, we also found that the drift rate
was greater in magnitude for unarmed Black targets than
for unarmed White targets (M = 0.22 [0.06, 0.38], d =
0.31 [0.09, 0.53]). This simultaneous effect of race on both
armed and unarmed targets is the strongest form of the
race bias and explains the complete cross-over interaction
observed in the error rates.

We should also note that, consistent with the larger
error rates in the dangerous context, especially for
non-gun objects, drift rates for non-gun objects were
smaller in magnitude (closer to 0) in dangerous contexts
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(M = 0.34 [0.18, 0.50], d = −0.48 [−0.26, 0.70]).
A similar trend was apparent for gun objects (M =
−0.15 [−0.31, 0.01], d = −0.20 [−0.43, 0.02]).

Non-decision time

Finally, as the bottom right panel of Fig. 11 shows, non-
decision times were larger for non-gun than for gun objects
(M = 13.2 [4.0, 22.3], d = −0.19 [−0.33, −0.06]).

Interim conclusion

Study 4 yielded three main results. First, it provided further
support for the evidence accumulation hypothesis, with the
race of the target impacting the drift rates of both armed
and unarmed targets. Thus, across all four studies, the DDM
shows that the race of the target enters the decision as
information that is accumulated over time.

Second, in contrast to the other studies, we did not find
increased response caution in response to Black targets. This
raises the question of how much empirical support there is
for an increase in threshold separation for Black targets. We
address this question next, using the Bayesian hierarchical
DDM to model the effect of race across all four studies.

Third, changing the background scenes from neutral to
dangerous scenes in Study 4 led to yet another effect,
namely, a decrease in the magnitudes of the drift rates.
That is, in each study in which context was manipulated,

we observed a different result. We believe these unreliable
effects of context speak against the interpretation of Cor-
rell et al. (2011) that the type of neighborhood serves as a
reliable cue in deciding to shoot.

Composite analysis of the race manipulation

As a final step in using the DDM to understand how race
impacts the decision process, we fit the hierarchical DDM
to the data from all four studies simultaneously.14 In doing
so, we used only the conditions of the FPST that were com-
mon across all four studies, namely, those in which targets
appeared in front of a neutral background holding a non-
blurred object. To maintain consistency, we used the same
model as in all the other studies, treating experiment as
another condition, so that each group-level mean process
parameter was allowed to vary between experiments as well
as between the race conditions. Thus, this analysis allowed
us to investigate how race influenced the process parame-
ters across all four studies. Moreover, because the response

14We use the term composite rather than meta-analysis as there is
a clear dependency on the designs of the studies. Nevertheless, we
believe there is value in synthesizing the data across these studies to
give a sense of the total empirical support for the effect of race on the
decision to shoot that can be had from these four studies.
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window changed between the experiments, we can examine
the effects of the response window not only on the threshold
separation, but also on the other parameters of the DDM.

Figure 12 displays the group-level parameter estimates of
the DDM averaged across all four studies as a function of
the race of the target. A stylized summary of how the race of
the target impacted the decision process is given in Fig. 13.
This composite analysis shows that, consistent with the
point scheme of the FPST, there was an initial bias towards
shooting, but no effect of race on the relative start point
(M = −0.003 [−0.02, 0.02], d = −0.01 [−0.31, 0.30]). In
terms of thresholds, across all four studies there was a cred-
ible increase in the threshold separation for Black targets
(M = 0.04 [0.01, 0.08], d = 0.31 [0.05, 0.58]).

Across the studies, the race of the target impacted the
evidence that participants accumulated. In the composite
analysis, this race effect is primarily driven by the gun
objects, with the drift rates being greater in magnitude for
armed Black targets than for armed White targets (M =
0.19 [0.01, 0.39], d = 0.25 [0.01, 0.51]). The drift rates
for unarmed Black targets were also larger than those for
unarmed White targets, but the effect was smaller (M =
0.13 [−0.05, 0.32], d = 0.17 [−0.08, 0.42]). Neither of
these differences depended on the size of the response win-
dow (or study) (see Supplemental Material). In comparison,
using SDT to examine this combined dataset would suggest
that the effect of race on the response criterion did depend
on the response window (M = 0.08 [0.01, 0.14], d =

0.43 [0.07, 0.79]) (see Supplemental Material). We believe
that this interaction between race and response window
clearly illustrates the weakness of SDT as a model of the
decision to shoot during the FPST.

The race of the targets did not affect the non-decision
times. However, non-decision times were larger for non-
guns than for guns (M = 27.1 [29.2, 34.7], d =
0.47 [−0.61, −0.34]).

The composite analysis also allowed us to examine
how the response window impacted decision processes.
As the response window increased across studies, thresh-
old separation increased by on average 0.22([0.19, 0.26];
d = 1.64 [1.35, 1.94]) (Table 2). Some studies have
shown that changes in time pressure, like the changes
in the response window implemented in our studies, do
not solely impact the threshold separation (i.e., time pres-
sure may not have a selective influence on the thresh-
old separation). Rather, decreases in time pressure have
also been associated with stronger drift rates (Rae, Heath-
cote, Donkin, Averell, & Brown, 2014) as well as with
an increase in non-decision time (Voss et al., 2004).
We also found both of these effects. As response win-
dows increased, drift rates for guns increased by on
average 0.94([0.75, 1.13]; d = 1.23 [0.98, 1.50]), drift
rates for non-gun objects decreased (i.e., grew stronger)
by −0.90([−1.09, −0.71]; d = −1.18 [−1.44, −0.93]),
and non-decision times increased by on average 53.2
([45.3, 61.0]; d = −0.47 [−0.61, −0.34]).

δGun, Black= 2.33

δGun, White= 2.14

δNo Gun, Black= -2.26

δNo Gun, White= -2.40

β = .56
NDTGun = 360 ms

NDTNo Gun = 388 ms αWhite=1.11 αBlack=1.15

Shoot

Don’t Shoot
Fig. 13 Illustration of the effect of race on the drift diffusion parameters. Note that we show the drift rates for non-gun objects for Black and
White targets although the difference between these two parameters did not exclude 0 with a 95 %HDI
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General discussion

In this article, we developed and tested a formal frame-
work for modeling the decision to shoot in the FPST as
a dynamic stochastic process. The modeling framework
assumes that the decision unfolds as a drift diffusion process
and accounts for both choice and response time distribu-
tions simultaneously. This stands in contrast to existing
approaches, both with the FPST and more generally in
the area of social cognition, which typically provides no
way of understanding choices and response times within
the same formal model. A second feature of the model is
that it is embedded within a Bayesian hierarchical frame-
work, which, as we have shown, makes it possible not only
to model choices and response times, but also to charac-
terize and measure the effect of different factors on the
decision process at both the group and individual level
within experimental designs widely used in social psychol-
ogy. Importantly we see this work as providing a crucial
foundation to start to better understand the decision to shoot.
From this foundation we can establish methods to better
characterize race bias and understand how the decision to
shoot is made. In order to take these important steps one
must establish a formal modeling framework of the pro-
cesses underlying the decision to shoot. This is what we
have sought to do here. Next, we review the implications of
our findings with respect to the process parameters of the
DDM and use those implications to map out the next steps in
this approach. We also address the limitations of our sample,
task, and approach, in modeling the decision to shoot.

The effect of race on drift rates

The DDM provides an interesting and novel process account
of the role of race in decisions to shoot during the FPST.
This dynamic account is perhaps more complicated than
that provided by SDT. However, it also appears to be
more complete and integrative. Across all four studies, we
found that the strength of the evidence participants accumu-
lated in deciding between the “Shoot” and “Don’t Shoot”
option depended on the race of the target (the Evidence
Hypothesis). In Studies 1 and 2, when the target was armed
(i.e., holding a gun), the rate of evidence accumulation
towards the “Shoot” option was much faster for Black tar-
gets than for White targets. Thus, participants made fewer
errors for armed Black targets and were faster to correctly
choose to shoot Black targets. In Study 3, when the target
was unarmed (i.e., holding a non-gun), the rate of evi-
dence accumulation towards the “Don’t Shoot” option was
weaker (or less negative) for Black targets, leading to more
errors in incorrectly shooting unarmed Black targets and to
participants being slower to correctly not shoot Black tar-
gets. In Study 4, race effects were observed for both gun

and non-gun objects. As mentioned earlier, these differences
in the race effect being isolated to gun, non-gun, or both
objects, are consistent with the mixed results from previous
studies, which have reported the race by object interac-
tion at the behavioral level to be the result of a difference
in unarmed targets (Plant & Peruche, 2005), armed targets
(Study 2 in Correll et al., 2002), or both (Correll et al.,
2011). An advantage of the DDM is that we can more pre-
cisely isolate the driver of these results to the accumulation
of evidence. Across the studies, our results tend to suggest
the race effect is more pronounced for gun objects, perhaps
reflecting the nature of the stereotype expectancy that drives
the behavioral bias (i.e., that Blacks are expected to have
guns, not that Whites are expected to have non-guns).

This understanding of how race impacts the decision pro-
cess differs from that offered by SDT, which has focused
on the decision criterion. As we have shown across the four
studies, the DDM account provides a much more consistent
and parsimonious explanation for the data. There are two
different explanations of this shift in drift rates for Black
vs. White targets. One explanation is that the difference in
drift rates means that—instead of collecting evidence solely
in terms of the presence of a gun—participants process both
the object and the race of the target in determining whether
or not to shoot. Thus, not only does this result resonate with
past accounts suggesting that stereotypes enter the deci-
sion process via information processing (Payne, 2005, 2006;
Plant et al., 2005), it is also consistent with accounts sug-
gesting that participants base their decision on the perceived
threat of the target (Correll et al., 2002, 2011).

A second explanation is analogous to signal detection
theory. In this case, the object gives rise some underlying
information in terms of threat or the match to a prototypical
gun. The information is compared to a criterion transform-
ing it into evidence for shooting or not and then the evidence
is accumulated (Ratcliff & McKoon, 2008). According to
this mechanism, a lower drift criterion is used for Black
targets than White targets so that a larger range of the
information extracted from the scene is transformed into
evidence supporting “Shoot.” Our data and models cannot
distinguish between these two different explanations. Nev-
ertheless, in both cases the result is the same in that the
effect of race is isolated to the evidence accumulation process.

Finally, it is worth mentioning that the DDM we used
does not explicitly assume an order in which aspects of the
scene are processed. However, the lack of a race effect on
response bias suggests that, at least in our data, the race of
the target may not have been consistently processed first.
Yet there certainly are situations in which participants first
process the race of the person and then the object (or vice
versa). Indeed these or similar studies have been conducted
(see for example Payne, 2001). The DDM can be expanded
to account for these different processing orders by making
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the drift rate a function of the aspect being attended to (e.g.,
object, race of the target). Such an expanded view has the
potential to reveal a rich set of choice and response time
patterns (Diederich & Busemeyer, 2015).

The effect of race on threshold separation

The DDM also reveals a second pathway by which race
impacts the decision to shoot in the FPST, namely, via
the effect on threshold separation. In particular, in some
conditions we found that participants set larger threshold
separations for Black targets than for White targets and thus
required more evidence before making a decision on Black
targets. Insofar as the threshold indexes an underlying psy-
chological process, this may be an attempt to strategically
counteract a race bias, perhaps reflecting a motivation to
control prejudice (Plant & Devine, 1998). All else being
equal, an increase in threshold separation for Black targets
would result in more accurate performance in these trials.
Indeed, in Study 1 as well as other previous studies (Ma,
Correll, Wittenbrink, Bar-Anan, Sriram, & Nosek, 2013;
Sadler et al., 2012; Sim et al., 2013) (see also Plant et al.,
2005, for a similar result in the process-dissociation model),
sensitivity in terms of d ′ was larger for Black targets than
for White targets (see Supplemental Material).

In terms of reducing the observed race bias in errors,
this change in threshold can be partially effective in that it
can reduce the difference in the rates of Black and White
unarmed targets being incorrectly shot. However, this strat-
egy does not come without costs: it also leads to a larger
difference in errors for armed targets, with even fewer
“Don’t Shoot” decisions for armed Black (vs. White) targets
and increased response times for Black targets. Moreover, as
should be clear, this strategy does not change the race bias
that is present in the actual accumulation of evidence (i.e.,
the drift rates).

We believe the opposing forces of the race effect
observed in threshold separation and drift rate illustrate the
advantage of DDM to reveal the complex effect of race on
the decision to shoot. The change in threshold separation
may provide a new perspective on the control processes that
participants use to counteract race biases. Control processes
have typically been discussed in the context of dual-process
models, where two qualitatively different systems pro-
duce different responses to the task at hand (Bargh, 1999;
Chaiken & Trope, 1999; Evans & Frankish, 2009; Sher-
man, Gawronski, & Trope, 2014; Sloman, 1996): The fast,
more automatic, unintentional system produces the response
based on the stereotypic association, whereas the slower,
more controlled, intentional system produces the response
based on the relevant information. The DDM and the thresh-
old separation parameter show how processes typically
considered to be under conscious control may influence

response times at speeds of responding typically thought to
capture automatic processes. This approach offers an impor-
tant answer to why and how the amount of time participants
have to make a decision impacts the observed decision by
showing why changes in the response window impact error
rates. Finally, the role of controlling the threshold separa-
tion also opens up new questions. For instance, recent work
has begun to identify the neural circuitry involved in setting
levels of response caution (i.e., threshold separation) during
low-level perceptual decision tasks (Forstmann, Anwan-
der, Schäfer, Neumann, Brown, Wagenmakers, & Turner,
2010; van Maanen, Brown, Eichele, Wagenmakers, Ho, Ser-
ences, & Forstmann, 2011), raising the intriguing question
of whether and how these processes play a role in more
socially charged decisions.

We should mention that often in sequential sampling
models it is convention to fix the threshold separation to be
constant between trials. We did not do this for two reasons.
First, it is also commonly assumed that the response crite-
rion in SDT would not be adjusted systematically from trial
to trial. However, that is exactly what is reported as occur-
ring when SDT is fit to the data from the FPST (Correll
et al., 2002, 2007b, 2011). Given these findings, we felt it
would be important to examine how aspects of the response
process may change from trial to trial when a dynamic per-
spective of the decision process is taken. Second, just as we
learned that time pressure may not have a singular effect on
the decision process (Rae et al., 2014; Voss et al., 2004),
it also seems pertinent to examine the effect of between-
trial manipulations on other aspects of the decision process.
As we have outlined, we think this opens up new questions
both about motivation and about how people control their
threshold.

The (lack of an) effect of race on the start point

The DDM also helps identify what is not responsible for
the race bias in the FPST. In our data, the bias is not due
to participants being “trigger happy” in the presence of
Black targets. At least in the current design of the FPST,
this is clear from the lack of difference in the relative start-
ing points for Black and White targets. This result also
speaks against the hypothesis that the stereotypical race
response is the first response to arrive and bias the decision
maker in the decision process (Payne, 2001, 2006; Payne
& Bishara, 2009). Instead, the stereotypical association at
least for novice young adults appears to shape the evidence
accumulated online, as the difference in drift rates indi-
cates. It is worth noting that different task designs might
be more or less conducive to obtaining starting biases. For
instance, a bias in the relative starting point may be more
likely if the participant knows the race of the target on the
upcoming trial in advance, as is typically the case when a
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police officer responds to a call. This point highlights the
critical role of the design of the FPST for making infer-
ences about the behavior of real-world decision makers, and
the need for researchers to more closely match the decision
landscape of laboratory decisions with that of real-world sit-
uations (James, Vila, & Daratha, 2013; James, Klinger, &
Vila, 2014).

The effect of context on the decision process

We also used three of our studies to probe how changes in
context impacted the effect of race and the decision process
in general. Correll et al. (2011) reported that the contexts or
neighborhoods moderated the effect of race on the decision
process, with participants setting lower criteria for danger-
ous neighborhoods regardless of the race of the target. This
result was interpreted as showing that cues such as the
level of danger of a neighborhood may create a predisposi-
tion to shoot in the FPST that apparently can wipe out the
effect of race. Our results with the DDM offer a different
account. First, the context never credibly impacted the effect
of race on the drift rates. Second, changes in context had
different effects across studies, impacting the threshold sep-
aration (Study 2), increasing drift rates towards the correct
responses (Study 3), or increasing drift rates towards shoot-
ing for non-gun objects (Study 4). Taken together, these
effects speak against a moderating role of context on the
effect of race—and any consistent effect of context on the
decision process in general. We suggest that part of the diffi-
culty here is that the context, by definition, is not focal to the
task and thus lends itself to different interpretations depend-
ing on how it is manipulated and what other variables are
varied around it. In comparison, our analyses indicate that
the effect of race on the decision process is quite consistent.

Other applications of the DDM to the FPST

We are not the first to suggest that the DDM or a related
sequential sampling model may provide a viable alter-
native to explaining data from the FPST (Correll et al.,
2015) or similar tasks (Klauer & Voss, 2008). Correll et al.
(2015) also found that race impacts the strength of the
evidence accumulated in the FPST, with participants accu-
mulating stronger evidence towards shooting Black targets
thanWhite targets. Yet this article goes substantially beyond
those results in several ways. One is that due to the structure
of the data, we developed and tested a Bayesian hierarchi-
cal model for the DDM, as opposed to fitting the model
at the individual level using maximum likelihood. As we
discussed earlier, this framework allows for more accurate
estimates of the parameters at the individual and group level.
It might also rectify a finding from Correll et al. (2015) that
does not seem quite right: Although the point structure of

the FPST encourages a bias to shoot Correll et al. (2015)
reported an overall starting bias of less than .5, indicating
that participants showed a tendency to not shoot. Yet a pri-
ori the starting bias should be greater than .5. Our analyses
showed the predicted positive starting bias toward shooting
across all four studies.15

As should be clear, the Bayesian hierarchical model also
allowed us to ask questions about the effect of race that
are more difficult to address using approaches that only fit
the model at the individual level. For instance, we found
some evidence that participants sometimes set larger thresh-
old separations for Black than for White targets. Correll
et al. (2015), presumably due to limited number of observa-
tions per subject, had to fix the threshold separation to be
equal between race conditions a priori. Another way we go
beyond past studies is that we were able to examine how
other factors, such as response window, context, and dis-
criminability, impact the decision process during the FPST.
Rather surprisingly, these factors had little to no impact on
the effect of race on the drift rates, reinforcing past results
that speak to the power of racial stereotypes (Bargh, 1999).

Many studies in recent years have claimed to demon-
strate flexibility and malleability of stereotype activation
due to context changes (see, e.g., Blair, 2002; Blair, Ma,
& Lenton, 2001; Casper, Rothermund, & Wentura, 2010;
Castelli & Tomelleri, 2008; Sinclair, Lowery, Hardin, &
Colangelo, 2005; Wittenbrink et al., 2001). However, there
has also been criticism of these conclusions (e.g., Bargh,
1999). It is important to note that, in all studies, stereo-
type activation is assessed by comparing average response
times across various conditions. The key assumption is that
slower responses to, say, certain stereotype words reflect
weaker activation of those stereotype terms. However, the
modeling approach advocated in this article suggests a dif-
ferent possibility: Rather than stereotypes or their activation
changing, changes in some other decision parameter could
lead to slower response times, even while the stereotype and
its activation remains constant (as indicated by the drift rates).

More generally, past uses of the DDM in the social
literature have tended to treat it as a vehicle for reveal-
ing something important about a specific task—e.g., the
FPST—and as a method interchangeable with other methods
(e.g., SDT, eye-tracking methods). Besides demonstrating
that the DDM is not simply interchangeable with SDT, we
have shown that it can tell us something about social cog-
nitive processes in general and that—through its ability to
account for data often considered consistent with a dual pro-
cess with a single sequential sampling process—the DDM

15Our Bayesian hierarchical DDM also provided a means to model
the missing data caused by the non-recording of responses that fell
outside the response window. It is unclear whether and how Correll
et al. (2015) accounted for this censoring problem, which will also bias
parameter estimates.
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is important in its own right. Hence, we attempt a more gen-
eral statement about cognitive process and models than has
been accomplished in the past.

Implications for the decision to use deadly force
by police officers

A major motivation for this research was to begin to under-
stand the split-second decision that police officers have to
make on whether or not to use deadly force, and how the
race of the target might impact that decision. There are many
limitations with our studies that impede our ability to make
strong statements to how this decision plays out in the field
in dangerous situations. Obviously the participants were
never in danger and the scene was on the computer monitor.
Another limitation is the decision itself. The decision in the
FPST is not the same decision that police officers face in the
field. In the FPST, participants are only supposed to shoot if
the target is holding a gun. In the field, police officers must
continuously assess the level of threat and the presense of a
gun is only one factor. Moreover, in the FPST, participants
have to explicitly choose between “Shoot” or “Don’t Shoot.”
The real shoot decision arguably lacks an explicit “Don’t
Shoot” option. Does this mean a qualitatively different deci-
sion process is used? The answer at this point is unknown.
However, the single choice option of “Shoot” is parallel to
what experimental psychologists call a Go/No-Go proce-
dure (Donders, 1969/1868) (see also Logan & Cowan, 1984;
Verbruggen & Logan, 2008). During this procedure partic-
ipants are given two options and participants must respond
to one of the choices (“Go” or “Shoot”) but must with-
hold a response to the other alternative (“No-Go” or “Don’t
Shoot”). This response can also be modeled with a drift-
diffusion process with only a single boundary, what is called
a shifted Wald distribution (Wald, 1947). In model compar-
isons, however, a better model of the Go/No-Go procedure
is sometimes the two-boundary model (Gomez, Perea, &
Ratcliff, 2007).

Another limitation is that our samples were all under-
graduate students and not police officers. This raises the
question whether the same effects be observed on police
officers’ decisions to shoot? We believe that the DDM may
be able to capture the complex pattern of results observed in
police officers. Although trained officers often show similar
response time biases, they typically do not show biases in
error rates, shooting unarmed Black and White individuals
at roughly similar rates, and sometimes showing reversals
of the typical race effect (Correll et al., 2007b; James et al.,
2013, 2014; Plant & Peruche, 2005; Sim et al., 2013). Based
on the response time data, we would expect to see different
drift rates for Black and for White targets. The lack of a race
effect on error rates in this population is likely due to police

officers showing higher drift rates on average, meaning they
have greater processing efficiency in extracting the relevant
information from the scene. This increase would make their
biases in error rates less pronounced. The advantage of the
Bayesian hierarchical DDM is that it provides a means to
measure and test for these biases at the process level, even
if they are not apparent at the behavioral level. Our current
work with young adult participants establishes the viability
of the DDM to go forward with this important next step.

The use of the DDM to understand race biases can extend
beyond simply characterizing race biases. By identifying
how the race of the target impacts the process, different
training approaches can be identified. Our results suggest
that the race bias apparent in the FPST is due to participants
processing the object and the race of the target holding the
object interdependently. Thus, although one might expect
that advising people to slow down and collect more infor-
mation would counteract biases, the DDM indicates that it
will not wipe out the race bias. This is because the race bias
is located in the information accumulated over time. All else
equal, collecting more information for all targets will reduce
bias in errors. However, this collect-more-information strat-
egy will not address the race bias itself which is in the
evidence accumulation. This is a problem because in real-
world circumstances, waiting long enough to avoid errors
is often not an option. One solution, which was sometimes
taken by our participants, is to increase the threshold sepa-
ration for Black targets, thus offsetting the bias for shooting
unarmed targets. However, even here, the bias will still be
in the evidence and this asymmetric increase in threshold
for Black targets will not address the bias in the errors for
armed targets. Another solution may be to offset the bias
in evidence accumulation via changes in the initial start
point, such as by changing incentives or expectations to
bias individuals away from shooting Black targets. A final
possibility is to change how individuals process the evi-
dence itself—perhaps by training them to focus only on
relevant aspects of the situation, namely, the object that the
target is holding. These are all possible solutions that our
model identifies as a means to counteract this problem of
allowing race to influence the decision to shoot. We must
reiterate that these predictions are derived from results with
young adults completing a much simplified version of the
task. Before these training procedures are investigated fur-
ther the next important step is to investigate how our results
generalize to police officers in more realistic environments.

Conclusion

Police officers sometimes have to make critical decisions
on whether or not to use deadly force under uncertainty and
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time pressure. A rich set of empirical results accumulated
using the FPST show that racial stereotypes systematically
bias the decision to shoot. Past theoretical accounts have
attributed this effect to the role of automatic stereotype
processes or to a response bias. However, neither of these
accounts give a satisfactory explanations of all the choice
and response time data obtained using the FPST. We have
shown that the DDM gives a parsimonious, single process
account of the decision to shoot in the FPST. More impor-
tantly, it shows how different components of the process
interact: we found that racial stereotypes biased the infor-
mation used to make the decision, while at the same time
participants appeared to counteract the bias by collecting
more evidence for Black than White targets. We believe
that this ability of the DDM to quantitatively characterize
multiple aspects of the decision process—controlled and
automatic—represents a significant advance in the study of
social cognitive processes.
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