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Abstract The field of regenerative medicine has experi-

enced considerable growth in recent years as the transla-

tion of pre-clinical biomaterials and cell- and gene-based

therapies begin to reach clinical application. Until recently,

the ability to monitor the serial responses to therapeutic

treatments has been limited to post-mortem tissue analyses.

With improvements in existing imaging modalities and the

emergence of hybrid imaging systems, it is now possible to

combine information related to structural remodeling with

associated molecular events using non-invasive imaging.

This review summarizes the established and emerging

imaging modalities that are available for in vivo monitor-

ing of clinical regenerative medicine therapies and dis-

cusses the strengths and limitations of each imaging

modality.
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Introduction

Regenerative medicine aims to replace, regenerate, or

restore function within damaged or diseased organs, tissue,

and cells through a variety of technologies and approaches

such as gene therapy, stem and progenitor cell therapy, and

tissue engineering [1]. Many physiological systems have

served as targets for regenerative therapies; however,

evaluation of the effectiveness of regenerative approaches

has traditionally been limited by the inability to serially

monitor implanted cells or biomaterials and physiological

responses to therapy. Specifically, the fate of gene- and

cell-based therapies, as well as the rate of scaffold degra-

dation and timing of associated molecular events, has been

challenging to track in vivo [2].

Recent advancements in functional and targeted imaging

agents as well as clinical imaging systems are beginning to

offer novel techniques for the assessment of serial responses to

various forms of regenerative therapies. Primary clinical

imaging tools consist of ultrasound, X-ray computed tomog-

raphy (CT), single photon emission tomography (SPECT),

positron emission tomography (PET), and magnetic reso-

nance (MR) imaging. Although each modality has advantages

and disadvantages (Table 1), the emergence of hybrid imag-

ing systems such as SPECT/CT, PET/CT, and PET/MR now

allows for the co-registration of high-sensitivity radiotracer-

based molecular imaging with higher-resolution anatomical

CT or MR imaging. These multimodality systems enable

application of anatomic information from CT or MR for co-

localization and absolute quantification of radiotracers with

correction of scatter and attenuation and partial volume errors

that complicate radiotracer-based imaging, decreasing imag-

ing artifacts from surrounding non-target soft tissues. More

specifically, the result of combining structural and functional

imaging modalities has improved quantification of uptake for
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targeted molecular radiotracers with improved localization to

specific sites of regenerative therapies [3]. Molecular imaging

has been used to evaluate physiological and pathological

processes in response to regenerative therapies, with common

clinical applications focused on various forms of cancer [4],

cardiovascular [5, 6] and metabolic [7••, 8, 9] disease, and

neurological trauma [10, 11].

In addition to established tools for non-invasive

assessment of physiological processes, recent imaging

work has focused on optimizing molecular probes that can

allow for in vivo serial tracking of transplanted cells for

clinical regenerative medicine. Current technology for

tracking transplanted cells in humans first requires cell

labeling via direct or indirect labeling. Direct labeling

consists of using molecular probes (nanoparticles or ra-

diotracers) that are actively/passively transported and

trapped within cells, whereas indirect labeling involves

transfection of cells using reporter gene constructs that are

integrated into the cellular genome by viral or non-viral

vectors. Both labeling strategies are capable of producing

an imaging signal that is detectable by modalities such

as SPECT, PET, and MR [12]. Reporter gene labeling

appears to be the ideal labeling technique for non-invasive

tracking of transplanted cell fate for a period of weeks,

months, or years; however, clinical trials to date have

primarily utilized direct labeling techniques to track cells,

which may be due to ongoing safety concerns related to

genomic manipulations and prolonged behavior of gene

products within patients [13]. Ultimately, the success of

clinical regenerative trials will be dependent on the

engraftment, survival, and integration of transplanted cells

into targeted tissue or organs. Ongoing problems remain

with regard to optimizing the site and timing of cell

delivery, and clinical trials utilizing non-invasive imaging

for tracking of cell fate have to date demonstrated poor

rates of cell retention, irrespective of the methodology

incorporated for cell delivery. Further development and

application of molecular imaging in clinical trials should

improve evaluation of cell fate in target tissue and lead to

quantitative tools for non-invasive tracking of transplanted

cells [12].

The following sections review the most established and

emerging clinical imaging modalities that have been used

to target gene- and cell-based therapies and describe their

past, present, and potential applications in regenerative

medicine clinical trials. Additionally, relative advantages,

limitations, and potential safety issues are discussed for

each imaging approach.

Radiotracer Imaging

SPECT and PET are the primary nuclear imaging modal-

ities that can be used for radiotracer-based evaluation of a

variety of molecular processes, such as angiogenesis,

inflammation, and metabolism [14]. Both SPECT and PET

provide three-dimensional functional images through the

detection of gamma rays that are emitted from isotopes

having varying half-lives and energies and have been

effectively used for targeted imaging. Although SPECT

and PET provide the highest sensitivity out of the whole

body clinical modalities for molecular imaging, both

Table 1 Benefits and limitations of clinical imaging modalities

Modality Sensitivity Penetration

depth

Spatial

resolution

Advantages Disadvantages

Ultrasound Moderate Low 1 mm Widely available; inexpensive; no

ionizing radiation; real-time imaging

Limited molecular probes; small field of view;

operator dependent

MR Moderate No limit \1–3 mm3 No ionizing radiation; high spatial

resolution

Susceptibility to motion artifacts; limited

molecular probes; not compatible for

patients with metallic implants or renal

insufficiency; long imaging times

SPECT High No limit *5–8 mm3 High sensitivity; multiple radiotracers

available for molecular imaging;

ability to serially monitor long half-

life isotopes

Exposure to ionizing radiation; attenuation

from low-energy photons

PET High No limit *3–5 mm3 High sensitivity; established methods

for attenuation correction; accurate

and precise quantification

Exposure to ionizing radiation; need for on-

site cyclotron or generator; advanced

radiochemistry

CT Limited No limit \1 mm3 High spatial resolution can be combined

with other modalities (PET/SPECT)

Exposure to ionizing radiation; patient

sensitivity to iodinated contrast agents

OCT High Low 10–20 lm High-resolution intravascular imaging;

superior plaque imaging

Catheterization required; poor penetration

depth

Modified from Naumova et al. [2]
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possess low spatial resolution, and the use of isotopes

exposes patients to ionizing radiation. Due to the limited

spatial resolution of nuclear modalities, high-sensitivity

SPECT and PET images are commonly paired with CT or

MR images for co-localization with high-resolution ana-

tomical information. To date, the inability of SPECT and

PET to evaluate constructs at high resolution has limited

their application in tissue-engineering clinical trials; how-

ever, recent pre-clinical work has demonstrated the

potential of hybrid SPECT/CT imaging for detecting

scaffold remodeling in tissue-engineered vascular grafts

through targeted imaging of matrix metalloproteinase

activity [15].

Nuclear approaches have been the most frequently uti-

lized modalities in evaluating the biodistribution of trans-

planted cells due to their high sensitivity for non-invasive

detection of radiolabeled cells (*104–106 cells/voxel)

[12]. However, one main limitation of applying SPECT

and PET for regenerative trials is the short half-lives of

standard isotopes used for clinical imaging, which cur-

rently limits the ability to perform long-term tracking of

radiolabeled cell fate. Direct labeling of cells has primarily

been applied in clinical trials using common SPECT iso-

topes such as technetium-99 m (99mTc; 6 h half-life) or

indium-111 (111In; 67 h half-life), and the PET isotope

Fluorine-18 (18F; *110 min half-life)-labeled deoxyglu-

cose, with the majority of these SPECT and PET studies

focused on tracking effective delivery to and localization of

radiolabeled cells in the myocardium of patients following

myocardial infarction [5, 6, 16, 17, 18••]. Problems that

still exist when applying cell therapy in patients with

myocardial infarction are selection and optimization of cell

delivery technique (i.e., intracoronary or intramyocardial

injection), the ability to non-invasively evaluate retention

of transplanted cells, and the death and ultimate phagocy-

tosis of transplanted cells [2]. To date, clinical trials using

various cell labeling strategies for SPECT and PET imag-

ing have demonstrated relatively low cell retention in the

myocardium of patients (ranging from *1 to 25 % of

injected cell dose), regardless of delivery technique [12].

However, Vrtovec et al. [18••] found higher cell retention

at 18 h following cell transplantation using transendocar-

dial compared to intracoronary delivery of CD34? cells

labeled with 99mTc, which was also associated with greater

improvements in left ventricular function at 6 months fol-

lowing treatment. To date, there is not one specific delivery

technique or direct cell labeling strategy that has proven to

be superior in clinical trials, and the ability to perform

long-term tracking of transplanted cells with SPECT and

PET remains elusive.

A potential solution to long-term cell tracking may exist

in the development of novel reporter genes, which allow

for SPECT or PET imaging of viable transfected cells that

retain radiotracers following intravenous injection and can

thus be imaged at various time points after initial cell

transplant. The first clinical trial to incorporate reporter

gene technology was performed in a patient with glio-

blastoma and used the PET reporter 18F-9-[4-fluoro-3-

(hydroxymethyl)butyl]guanine (18F-FHBG) to non-inva-

sively image genetically modified cytolytic CD8? T cells

that expressed the interleukin 13 zetakine gene and herpes

simplex virus thymidine kinase type 1 (HSV1-tk).

Expression of interleukin 13 zetakine allowed for trans-

planted T cells to target receptor proteins of tumor cells

while HSV1-tk phosphorylated 18F-FHBG, therefore per-

mitting non-invasive assessment of localized radiotracer

uptake in tumor cells within the brain [19]. Another gene-

based approach that has been applied in pre-clinical models

that have potential for clinical translation is the sodium

iodide symporter (NIS) [20, 21••]. Viable transplanted cells

transfected with NIS can be detected non-invasively using

SPECT imaging of iodide-123 (123I, 13 h half-life) or
99mTc, as both isotopes are taken up by NIS and retained

following intravenous or intra-arterial administration.

Pre-clinical application of NIS in a porcine model of

myocardial infarction has already demonstrated the ability

to visualize viable cells for up to 15 weeks following

myocardial transplantation [21••]. Additionally, SPECT
99mTc-tetrofosmin imaging and NOGA electromechanical

mapping have been combined with SPECT imaging of
123I-labeled NIS-transfected cells to guide delivery and

evaluate localization of cell transplantation in infarct bor-

der zones of the porcine heart (Fig. 1) [22]. Future clinical

translation of NIS-based approaches is encouraging, as

NIS is a human protein that should not stimulate an

immunogenic response. Furthermore, this approach could

be extended to PET imaging of NIS in the pre-clinical or

clinical setting with the use of PET isotopes 124I (4.2 day

half-life) and 94mTc (52.5 min half-life), respectively.

In addition to tracking of transplanted cells in the setting

of myocardial infarction, nuclear imaging approaches have

also been applied to evaluate early cell retention in the

human brain [23••, 24] and liver [8, 9]. Specifically, scin-

tigraphy of 99mTc-labeled bone marrow mononuclear cells

has allowed for imaging of cell retention in the brain of

stroke patients at 2 and 24 h following injection and

demonstrated similar levels of cell retention using intra-

arterial or intravenous cell delivery [23••]. PET imaging of
18F-DOPA has been used to evaluate maturation of fetal

neurons in patients with Parkinson’s disease, and the PET

agent raclopride, which is a dopamine D2 receptor-binding

agent, has been used to quantitatively evaluate neuro-

chemical tone in Parkinson’s patients [25, 26]. Addition-

ally, PET imaging of raclopride has proven to be an

effective technique for evaluating endogenous dopamine in

cell transplants up to 15 years post-transplantation [27••].

Curr Pathobiol Rep (2015) 3:27–36 29

123



Application of PET imaging for evaluating 18F-FDG-

labeled islets transplanted in the liver of diabetic patients

has also demonstrated the safety and potential of this

approach for evaluation of cell engraftment [8, 9].

Ongoing development of SPECT and PET imaging

approaches for long-term tracking of labeled cells should

greatly enhance the application of nuclear modalities in

regenerative clinical trials. In addition to tracking of cell fate,

nuclear approaches may also permit evaluation of physio-

logical consequences of cell engraftment, such as monitoring

of the angiogenic response to therapy, which has recently

been applied in the setting of myocardial infarction [28].

Further development of hybrid imaging approaches such as

PET-MR, which provide high resolution and low radiation

characteristics, should continue to expand the application of

nuclear imaging technology.

CT Imaging

CT imaging has been a primary non-invasive diagnostic

technique since initial development and application in the

1960s and 1970s. Three-dimensional CT images are created

using X-rays that are emitted from a source, transmitted

Fig. 1 Fusion of in vivo multimodality imaging in a porcine model of

myocardial infarction following intramyocardial transplantation of

human-induced pluripotent stem cells (hiPSCs) transfected with NIS.

a SPECT imaging of 99mTc-tetrofosmin fused with coronary CT

angiography (CTA) allowed for visualization of perfusion defect and

coronary anatomy in the anterior wall of the left ventricle. b Fusion of

coronary CTA and SPECT imaging of NIS-transfected cells labeled

with 123I demonstrated focal 123I hot spots localized to the sites of cell

injection. c Fusion of CTA, SPECT 99mTc-tetrofosmin, and SPECT
123I permitted visualization of perfusion defect (identified as red/pink)

and NIS-transfected cells (identified as white areas) located near the

infarct border zones. d NOGA voltage mapping and linear local

shortening (LLS) plots of the left ventricle revealed impaired

electrical activity within region of myocardial infarction, which was

used to guide transplantation of transfected and control cells that are

identified as e dark red spots on a volume rendering of LLS. f Volume

rendering of quadruple fusion of CTA, SPECT 99mTc-tetrofosmin,

SPECT 123I, and NOGA demonstrated localization of intramyocardial

cell injections to infarct border zones, with control cell injection sites

not associated with focal uptake of 123I. Reprinted with permission of

[22] (Color figure online)
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through a patient, and detected by a detector array [29]. CT

imaging possesses excellent penetration depth and spatial

resolution, as well as high contrast for visualizing certain

anatomical structure, particularly bone [30], making CT a

useful imaging tool for evaluating structural and morpho-

logical changes in tissue-engineered constructs implanted in

patients that have contraindications for MR. However,

X-ray sources emit ionizing radiation that can damage

DNA, and iodinated contrast agents for CT imaging can be

toxic for patients with impaired renal function. Although

CT is useful for bone and vascular imaging, this technique

is limited by suboptimal contrast within soft tissue. To date,

CT is usually applied in the evaluation of regenerative

medicine through pairing with targeted molecular imaging

approaches such as SPECT and PET.

Although CT is not currently used as a stand-alone

imaging modality for molecular imaging, targeted contrast

agents are currently in development for clinical translation

[29]. Standard CT contrast agents approved for clinical use

are composed of iodinated small molecules or barium sus-

pensions that possess a short half-life in blood. The charac-

teristics of CT contrast agents make them ideally suited for

cardiac and vascular imaging; however, recent research has

been focused on the development of nanoparticles that pos-

sess longer blood pool circulation time, which may offer the

ability to track transplanted cells in vivo and target-specific

molecular processes. Nanoparticles containing various types

of coating material, such as polymer, lipid, protein, and silica

have been investigated pre-clinically to increase blood half-

life and modulate solubility in blood and tissue [31–34] with

coatings that can be specifically tailored to include different

targeting moieties [29, 35, 36]. Additionally, nanoparticles

can be formulated to contain materials capable of generating

high levels of contrast that would otherwise not be attainable

with small molecules such as iodine [37, 38]. CT technology

for tracking of transplanted cells in vivo continues to expe-

rience challenges due to poor sensitivity of CT and compli-

cations associated with contrast loading of transplanted cells;

however, pre-clinical efforts are continuing to evolve and

show potential for clinical application [39–41].

Spectral CT is a new imaging approach that may assist

in clinical translation of targeted CT imaging of regener-

ative medicine therapies through the differentiation of

various contrast agents or materials simultaneously by

recognition of the X-ray energy associated with each

respective material. Multiple imaging channels can be set

to match the K-edges of materials in targeted tissues of

interest and generate color-coded images [42]. Spectral CT

has been used to distinguish materials such as gold, iodine,

bismuth, ytterbium, gadolinium, and calcified tissue [29].

Pre-clinical application has demonstrated the ability to

simultaneous characterize vessel stenosis, calcification,

and macrophage content within atherosclerotic plaque,

suggesting that spectral CT may be useful for evaluating

tissue-engineered vascular grafts and bioabsorbable stents

[43]. Currently, CT imaging represents a complementary

tool for molecular imaging approaches; however, as CT

technologies continue to develop, new opportunities for

targeted CT imaging of regenerative therapies may be

recognized.

MR Imaging

MR has been a widely applied modality in the clinical

setting due to numerous advantages, such as excellent

penetration depth, high soft tissue contrast, and safety. MR

uses strong magnetic fields (1.5-10 Tesla) that are capable

of polarizing hydrogen nuclei within water molecules in a

variety of tissues. Through the process of sending and

receiving radio frequency pulse sequences, MR generates

high-resolution images that are sensitive for evaluating

anatomy, function, and pathology without the use of ion-

izing radiation [2].

In the evaluation of tissue-engineering applications, MR

is an attractive imaging modality due to the ability to serially

evaluate morphological changes in engineered constructs.

To date, MR has been used in clinical trials to monitor ste-

nosis and graft failure in tissue-engineered pulmonary valves

[44] as well as neovascularization within bovine bone matrix

implanted in a sinus lift procedure [45]. Further application

of MR sequences, such as phase contrast imaging for the

evaluation of luminal flow and wall shear stress character-

istics, could lead to further progress in the evaluation of

tissue-engineered heart valves and vascular grafts [46].

One unique characteristic of MR that continues to appeal

to researchers involved in translational regenerative medi-

cine is the ability to non-invasively track transplanted cells

using superparamagnetic iron oxide nanoparticles (SPI-

ONs). Evaluation of successful cell engraftment and

migration can be detected through visualization of

decreased signal intensity generated from SPION-labeled

cells. The benefits associated with nanoparticle-based MR

cell tracking include relatively easy cell labeling, high-res-

olution imaging of cell migration and homing of injected

cells, and cell labeling persistence [12]. To date, SPIONs

have been incorporated in a variety of regenerative clinical

trials focused on various organ systems, such as the brain

[10], spinal cord [11], and liver [7••, 47]. In cell therapy for

patients with traumatic brain injury, SPION labeling tech-

niques have been successful at tracking cell migration for

21 days and generating a detectable MR signal of cell

engraftment for up to 7 weeks [10]. MR imaging has also

been applied in patients with diabetes to track migration of

SPION-labeled pancreatic islets transplanted into the liver

and demonstrated a stable MR signal from labeled islets for
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up to 24 weeks, which was associated with considerable

improvements in insulin dependence following transplant

[7••, 47]. In addition to tracking of transplanted cells in brain

and liver tissue, MR imaging has also exhibited the capacity

to serially monitor SPION-labeled CD34? cells in patients

with spinal cord injury for 35 days following transplant [11]

as well as evaluate cell migration of SPION-labeled den-

dritic cells transplanted into lymph nodes of melanoma

patients [4]. Although SPION-based labeling strategies have

proven to be an effective strategy for tracking transplanted

cells in clinical trials, MR imaging of SPIONs is not without

limitations. The prolonged presence of certain SPIONs may

result in macrophages consuming SPIONs following the

death of transplanted cells, which could lead to reduced

reliability of long-term tracking of cell engraftment with

MR [48]. Recently, Yilmaz et al. [49] exploited the role of

macrophages in the inflammatory process using SPION-

based MR imaging of ferucarbotran as a tool for tracking

inflammation and visualizing the peri-infarct zone in

patients with acute myocardial infarction. Although no

clinical trials to date have attempted to track labeled stem

cells in the heart with MR, clinical translation of MR tools

such as cardiac diffusion tensor imaging (DTI) tractography,

which allows for visualization of myofiber alignment fol-

lowing cell transplantation in the heart, may offer novel

methods for evaluating the effect of cell therapies following

myocardial infarction [50].

In addition to nanoparticle-labeled cell imaging, MR has

the potential for evaluating the functional outcomes asso-

ciated with cell transplantation in various organs. Brain

plasticity, cell differentiation, and re-myelination can be

assessed using functional MR [51], MR spectroscopy [52,

53], and diffusion MR imaging [54]. Cardiac diffusion

tensor imaging has demonstrated reproducibility for eval-

uating myocyte orientation in patients with hypertrophic

cardiomyopathy [55]. Additionally, contrast-enhanced MR

imaging with gadolinium has been used to identify a

decrease in infarct size and an increase in tissue viability in

the myocardium following stem cell therapy in heart failure

[56••] and post-myocardial infarction patients [57, 58].

Although MR offers a high-resolution, high-contrast

imaging modality for tracking of transplanted cells and

evaluation of structure and function, SPECT and PET remain

the primary imaging modalities for targeted molecular

imaging due to the low sensitivity and lack of molecular

probes available for MR. Ongoing developments in PET/MR

systems should provide future opportunities for tracking

transplanted cells and associated molecular events through

improved co-localization of high-resolution MR imaging

with high-sensitivity molecular imaging. In addition to the

development of novel hybrid imaging systems incorporating

MR, clinical trials are already utilizing MR as a tool for

guiding targeted cell delivery [59–61]. Continued progress

in the field of MR should lead to improved safety and quality

control of cell transplantation for future regenerative trials.

Ultrasound

Ultrasound is a commonly used non-invasive imaging

modality that is capable of generating real-time images of

structure, function, and blood flow for various organ systems

through the use of reflections and echoes of an oscillating

sound wave on tissues [2]. Because of the relatively low cost

and easy portability of ultrasound systems, clinicians are

able to acquire high spatial and temporal resolution bedside

images. Although ultrasound has been a widely accepted

clinical imaging tool for many years, ultrasound-based

techniques for performing targeted imaging have experi-

enced slow progress. One molecular ultrasound strategy that

has been developed that has potential for clinical regener-

ative medicine applications is contrast-enhanced imaging.

Contrast agents that have been created for clinical ultra-

sound imaging primarily consist of gas-filled, lipid-shelled

microbubbles. Due to the relatively large size of micro-

bubbles (1–4 lm diameter), they are trapped within the

intravascular space and are capable of imaging the micro-

vasculature, thus restricting their use to disease processes

that are associated with vascular endothelial cells, such as

angiogenesis, inflammation, and thrombus formation [62].

Microbubbles have potential for targeted imaging via

coating with polymers or proteins and can also serve as

chemotherapeutic agents by being packaged with various

pharmaceuticals [63]. Along with microbubbles, gas-filled

(perfluorocarbon) nanoparticles have been developed for

ultrasound, demonstrating favorable ultrasound-specific

imaging characteristics and the ability to target cell-bound

proteins [64]. Although ultrasound is capable of performing

high-resolution imaging at high frequencies, the limited

depth penetration of frequency waves has thus far prevented

the clinical application of contrast-enhanced molecular

ultrasound for in vivo tracking of transplanted cells [2].

However, ongoing research is focused on developing tar-

geted contrast agents for clinical translation [65–67].

While molecular ultrasound has not proven to be an

effective tool for tracking transplanted cells, ultrasound has

demonstrated potential for evaluating bioabsorbable tissue-

engineered vascular grafts in clinical trials [68, 69].

Mechanical stability, graft patency, blood flow, wall degra-

dation, and aneurysm risk are various parameters that have

been evaluated with serial ultrasound in autologous [68] and

allogenic [69] tissue-engineered vascular grafts. The recent

development of intravascular ultrasound (IVUS), which is a

miniaturized ultrasound transducer attached to the tip of an

arterial catheter, now allows for intravascular imaging of

vessel and lumen dimensions, as well as plaque evolution
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and morphology. Currently, IVUS is being applied in

patients to evaluate serial changes in atherosclerotic devel-

opment in bioresorbable scaffolds used for coronary revas-

cularization [70] and has been incorporated in clinical trials

to assist with the deployment of drug-eluting coronary stents

[71•]. Additionally, application of other ultrasound tech-

nologies, such as intracardiac echocardiography (ICE), may

improve the guidance of targeted cell delivery in the myo-

cardium of patients following myocardial infarction in future

clinical trials [72].

Ultrasound systems continue to evolve and be integrated

with various imaging techniques such as near-infrared

spectroscopy and photoacoustic imaging, which should

ultimately enhance the future application of ultrasound in

the evaluation of tissue-engineered vascular grafts and

bioabsorbable and drug-eluting stents [63, 73]. Ongoing

development of targeted contrast agents and nanoparticles

for molecular ultrasound may facilitate the clinical trans-

lation of ultrasound as a tool for non-invasive assessment

of regenerative medicine therapies.

Optical Coherence Tomography

In addition to IVUS, optical coherence tomography (OCT) is

another imaging modality that is becoming increasingly used

for intravascular imaging in the clinical setting. OCT gener-

ates images from the emission and reflection of near-infrared

light and possesses the highest spatial resolution of all existing

imaging modalities, with approximately tenfold greater res-

olution than ultrasound-based techniques (10–15 lm axial

and 20–25 lm lateral). Although OCT possesses superior

spatial resolution, this imaging modality is limited by poor

penetration depth through blood and tissue (1–3 mm) [73].

Initial time domain OCT (TD-OCT) systems offered limited

capability for intravascular imaging due to scatter and atten-

uation of OCT light by red blood cells. To avoid issues with

image signal, early TD-OCT clinical imaging required a

balloon occlusion of the vessel of interest combined with a

transparent flushing medium for acquisition of intravascular

images. Frequency-domain OCT and optical frequency-

domain technology have since been developed, which now

allows for focused, rapid imaging of long arterial segments

without the need for balloon occlusions, thus eliminating the

risk for myocardial ischemia or vessel wall damage [74–76].

Due to the greater spatial resolution of OCT when compared to

IVUS, OCT may improve guidance and evaluation of vascular

stent deployment. Specifically, the ability of OCT to identify

under- or over-expansion of deployed stents, intrastent tissue

protrusion, stent edge dissection, and intrastent thrombus may

enhance the safety and guidance of interventional procedures

in the future. To date, clinical trials have incorporated OCT to

evaluate edge dissection following stent deployment [77] and

compared OCT- to angiography-guided percutaneous coro-

nary intervention [78•], demonstrating the safety and feasi-

bility of using OCT imaging for procedures in interventional

cardiology. Continued application of OCT will be required to

fully elucidate if this technology is associated with improved

clinical outcomes and is superior to IVUS for guidance and

evaluation of stent and vascular graft implantation. Ongoing

development of devices for regenerative medicine, such as

bioabsorbable stents and tissue-engineered vascular grafts,

should provide new opportunities for clinical application of

intravascular imaging with OCT.

Conclusions

To date, clinical imaging modalities provide a variety of

methods for evaluation of regenerative medicine therapies;

however, no singular technique exists that offers a perfect

all-in-one approach for tracking high-resolution anatomical

and high-sensitivity molecular information following

transplantation of tissue-engineered constructs or cell- and

gene-based therapies. Limitations and questions still

remain with regard to the safety and efficacy of delivery

methods and optimization of imaging approaches before

non-invasive serial tracking of regenerative therapies is

optimized for clinical trials. Although many questions

remain unanswered, non-invasive imaging should facilitate

the future evaluation and clinical translation of novel

regenerative medicine therapies.
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