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Abstract

Introduction –—Intraventricular hemorrhage (IVH) affects both premature infants and adults. In 

both demographics, it has high mortality and morbidity. There is no FDA approved therapy that 

improves neurological outcome in either population highlighting the need for additional focus on 

therapeutic targets and treatments emerging from preclinical studies.

Areas Covered –—IVH induces both initial injury linked to the physical effects of the blood 

(mass effect) and secondary injury linked to the brain response to the hemorrhage. Preclinical 

studies have identified multiple secondary injury mechanisms following IVH, and particularly the 

role of blood components (e.g. hemoglobin, iron, thrombin). This review, with an emphasis on 

pre-clinical IVH research, highlights therapeutic targets and treatments that may be of use in 

prevention, acute care, or repair of damage.

Expert Opinion –—An IVH is a potentially devastating event. Progress has been made in 

elucidating injury mechanisms, but this has still to translate to the clinic. Some pathways involved 

in injury also have beneficial effects (coagulation cascade/inflammation). A greater understanding 

of the downstream pathways involved in those pathways may allow therapeutic development. Iron 

chelation (deferoxamine) is in clinical trial for intracerebral hemorrhage and preclinical data 

suggest it may be a potential treatment for IVH.
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1. INTRODUCTION

Intraventricular hemorrhage (IVH) occurs when blood from a cerebral hemorrhage expands 

into the brain ventricular system. This can happen via a variety of mechanisms with both the 

elderly and preterm neonates being high-risk demographics. In adults, IVH occurs as an 

extension of intracerebral hemorrhage (ICH) in ~50% patients and it is an independent 
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predictor of worse outcome1. In preterm neonates, IVH typically occurs as a result of 

germinal matrix hemorrhage (GMH), a brain region abutting the lateral ventricles. This 

combined phenomenon is referred to as GMH-IVH and affects over a third of extreme pre-

term birth infants with mortality rates of over 50% in that population2. Those that survive 

often develop significant neurological sequelae such as cerebral palsy, developmental delay, 

deafness, and blindness. In particular, post-hemorrhagic hydrocephalus (PHH) is a common 

co-morbidity with IVH in neonatal populations and an independent predictor of poor 

prognosis3.

Currently, no treatment has demonstrated improved clinical outcome in either adult or 

neonatal IVH. Current treatments focus on methods of CSF drainage to limit PHH4, 5. While 

there is continued interest in the use of intraventricular thrombolytics to remove IVH, the 

recent large CLEAR III trial in adult IVH, failed to show a significant benefit on 

neurological outcome with tissue plasminogen activator (tPA), although mortality was 

reduced6. As yet, no neuroprotectant or any approach to improve brain recovery after IVH 

has shown clinical benefit.

Preclinical studies on IVH have, however, identified several potential therapeutic targets for 

reducing brain injury. This review examines the current state of research on IVH in both 

adults and neonates. Exploration of those findings may give important information for 

improving our ability to care for those with IVH.

2. IVH MODELING

2.1 Adult IVH models

A variety of models have been utilized to investigate adult IVH. Pang et al. injected pre-

clotted autologous blood directly into the lateral ventricles of dogs7. This model 

demonstrated ventricular enlargement simulating post-hemorrhagic hydrocephalus. Another 

porcine model was created to study post-hemorrhagic ventriculomegaly8. This model also 

employed direct injection of autologous blood into the ventricles, but co-injected thrombin 

to accelerate coagulation. Despite the relative successes of these two models at developing 

enlarged ventricles, the majority of current IVH animal models use small rodents such as 

rats or mice.

In rodents, the primary method of simulating hemorrhage is via autologous blood injection. 

Some models utilize direct intracerebroventricular (ICV) injection9 while others attempt to 

simulate combined ICH and IVH by injecting into peri-ventricular brain regions10. 

Ventricular injection provides a greater degree of control over the analysis by solely 

investigating the effects of intraventricular blood, but a parenchymal injection more fully 

replicates human IVH and induces greater damage10. In other studies, ICV injections of 

iron, lysed blood cells, hemoglobin, or thrombin have been used to study the effects of 

particular blood components11–15. One recent study utilized ICV injection of human 

cerebrospinal fluid (CSF) taken from patients with subarachnoid hemorrhage16. Such 

models each demonstrated enlarged ventricles and periventricular cell death and have 

subsequently identified distinct pathways for IVH-induced damage, which will be covered in 

later sections.
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A common model used in ICH studies is collagenase injection to induce blood vessel 

disruption. However, this model has not seen much use in the investigation of adult IVH, 

although it has been used in neonatal models, as discussed below.

For adult animals, there are few models of spontaneous ICH. These include the 

spontaneously hypertensive rat-stroke prone (SHRSP) and some hypertensive models in 

mice, as well as some murine models of cerebral amyloid angiopathy17, 18. Because of its 

primarily lobar location, it is not a major cause of IVH in patients19. In the hypertensive 

models, ICH occurrence is generally inconsistent as is the location of those hemorrhages. 

This greatly limits the utility of such models for ICH/IVH research. A lack of models of 

spontaneous ICH/IVH is particularly a major limitation for studies of IVH prevention.

2.2 Neonatal IVH models

As in adults, direct ICV injection of blood and blood components such as hemoglobin and 

iron into neonatal rodents has been used to model IVH14, 20. These models have allowed 

investigation of the role of blood components in the formation of PHH and in neuronal 

degeneration. Neonatal GMH-IVH has also been studied using periventricular injections of 

collagenase in postnatal day six rats21. Ventricular enlargement following blood extension 

into the ventricles was observed. Similarly, another study utilized collagenase injection 

directly into the germinal matrix22. That study did not investigate for morphological 

changes, but rather studied cognitive and sensorimotor function.

For neonatal IVH there are also models of genetic and stress-induced IVH. One spontaneous 

GMH-IVH model is a transgenic mouse embryo model wherein vascular endothelial growth 

factor (VEGF) overexpression is induced specifically in the germinal matrix via the 

tetracycline regulatory system23. VEGF is involved in angiogenesis and its overexpression 

leads to an outgrowth of weak vasculature that is prone to rupture. This model reported 90% 

incidence of intracranial hemorrhage that extended into the ventricles, but also had low 

efficiency with 80% of embryos dying before birth. Despite this, such a model is 

encouraging and further efforts should be made into creating models of spontaneous IVH.

There are other genetic mutations that cause vascular disruption and neonatal or fetal ICH. 

Gould et al. reported a semi-dominant mutation in procollagen type IV alpha 1 that causes 

ICH and death within one day of birth24. Similarly, McCarty et al. found that mice null for 

αv integrin develop ICH in utero and die soon after birth25. Whether it is possible to induce 

IVH by manipulating such genes specifically in the periventricular zone merits investigation.

There are also models of stress-induced GMH-IVH. Ballabh and colleagues have developed 

a model where rabbit pups are delivered prematurely and then treated with glycerol to 

induce hyper-osmolality26. The majority of pups (~80%) develop IVH, and they also have 

periventricular cell death, axonal damage, neuroinflammation and behavioral deficits, and 

approximately half the animals develop PHH26. In newborn beagle puppies GMH-IVH can 

be induced by a number of stressors, hypercarbia, hypertension and hypotension with 

volume re-expansion27, 28. These GMH-IVH models have important clinical relevance, but 

there can be difficulties determining whether the cause of particular injuries is the GMH or 

the IVH (or the combination), which has therapeutic consequences.
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2.3 In vitro models

There are no in vitro models that fully replicate an IVH. However, standard cell culture 

techniques have been used to examine the impact of clot-derived factors (e.g. hemoglobin, 

iron, thrombin) on multiple types of brain cells (e.g. neurons, astrocytes, microglia, 

endothelial cells). Developments in inducible pluripotent stem cells (iPSCs) will now allow 

such experiments in patient-derived cells31. Similarly, the use of those cells to produce brain 

organoids may allow dissection of the effects of clot-derived factors on cell:cell interactions. 

Such organoids produce ventricle-like structures32.

3. PREVENTION

There are multiple potential strategies to reduce IVH occurrence or size. The first is to 

reduce the risk factors for IVH. In adults, the major risk factor for ICH (the underlying cause 

of IVH) is hypertension and there is evidence that increased access to anti-hypertensive 

medication may decrease ICH incidence1. As occurs in other vascular beds, hypertension 

causes cerebrovascular remodeling and altered function. This includes misaligned smooth 

muscle cells, reduced autoregulatory ability and blood-brain barrier leakage that may 

precede hemorrhage33. Targeting those changes33, as well as lowering blood pressure, may 

be a way of reducing adult ICH/IVH. A second, and growing, cause of ICH is anti-coagulant 

use. Warfarin use is associated with IVH risk, hematoma volume, and poor prognosis in 

adults suffering from ICH34. However, for anti-coagulant use there is a trade-off between 

increased hemorrhagic stroke risk and reduced ischemic stroke risk. Reduced platelet 

activity is also associated with more IVH in adult ICH patients35. A third major cause of 

ICH is cerebral amyloid angiopathy, but because of the generally lobar location, it is not a 

major cause of IVH19.

In neonates, the major risk factor for GMH-IVH is prematurity as the germinal matrix 

almost completely involutes at about gestational week 33 in humans. Preventing premature 

birth is a complicated area of research that has been reviewed elsewhere36, but the number of 

premature infants, and especially extremely premature infants, that are surviving after birth 

is increasing37. Cerebral blood flow fluctuations in neonates can add stress to the germinal 

matrix vasculature and are seen as a potential factor underlying neonatal IVH. Elimination 

of such fluctuation via intravenous pancuronium infusion has long been shown to reduce 

IVH incidence38. Current use of synchronized ventilator modes in neonatal care also reduces 

the amount of cerebral blood flow fluctuation39.

Another potential strategy to reduce IVH occurrence is to strengthen potentially fragile 

vessels40. Prenatal administration of glucocorticoids reduces the severity and frequency of 

IVH, as these can stabilize the germinal matrix vasculature41. However, glucocorticoids can 

have side effects by affecting brain development42. There is a growing understanding of the 

developmental regulation of brain angiogenesis and barriergenesis43. There has been a 

dissection of the roles of pericytes and astrocytes, and signaling pathways including platelet 

derived growth factor B, sonic hedgehog and angiopoietin in strengthening the links between 

brain endothelial cells43. Further studies are needed to determine whether modulating such 

pathways might be a way of reducing IVH without affecting brain development.

Garton et al. Page 4

Expert Opin Ther Targets. Author manuscript; available in PMC 2018 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A third potential approach is to limit the amount of bleeding from already ruptured vessels. 

In adult ICH, ~40% of patients undergo hematoma expansion within the first 24 hours44 and 

there has been considerable effort to try and reduce that expansion by using hemostatic 

agents or by acutely reducing blood pressure. None of these trials have shown a significant 

improvement in outcome although there is evidence of reduced hematoma expansion. The 

Factor VIIa in Acute Intracerebral Hemorrhage (FAST) trial showed reduced hematoma 

expansion over the first 24 hours45 and a secondary analysis of the Intensive Blood Pressure 

Reduction in Acute Cerebral Haemorrhage Trials (INTERACT 1 and 2) found that blood 

pressure reduction reduced ICH plus IVH hematoma expansion46.

A fourth potential strategy is to identify whether there are specific genetic vulnerabilities for 

IVH that might be amenable to therapeutic intervention. The majority of such efforts have 

focused on coagulation or fibrinolytic genes, with special focus on the Factor V Leiden 

(Arg506Gln) and prothrombin (G20210A) mutations47. These mutations have been 

associated with increased risk of GMH-IVH in preterm birth infants48–50. Additionally, 

certain haplotypes of the gene encoding vascular endothelial growth factor A are correlated 

to increased incidence of IVH in preterm infants51. However, as of yet, few if any pre-

clinical studies have been reported that manipulate these genes, so no causal relationship has 

been demonstrated.

For adult IVH, in particular, preclinical work on prevention with any of these strategies is 

hampered by the relative paucity of spontaneous ICH models. There has been work on 

examining the impact of different anticoagulants on ICH after collagenase injection52. 

Experiments examining the impact of such anticoagulants on combined ICH/IVH models 

are warranted although there are concerns that the collagenase models may differ from 

human hemorrhage (bacterial protein and underlying mechanism of vessel disruption;53).

4. IVH-INDUCED BRAIN INJURY

After ICH/IVH there is both a primary injury, caused by the physical presence of the blood 

within the brain, and secondary injury caused by the effects of neurotoxic compounds 

released from the hematoma and the brain response to blood (e.g. inflammation). The time 

windows for these injury processes differ and most preclinical research has focused in 

secondary injury.

4.1 Physical effect of IVH

Three physical effects of an intraventricular hematoma are the displacement of neural tissue 

(mass effect), increased intracranial pressure (ICP) and blocking of the CSF flow pathway. 

The immediate physical impact of an IVH will involve stretching of the wall of the 

ventricles and periventricular structures. The importance of such stretch in IVH-induced 

brain injury has not been well studied preclinically. It is known that there can be extensive 

loss of the ependymal cells that line the ventricle walls after IVH54, but the relative 

importance of physical stretch versus clot-derived factors is still unclear. Thus, for example, 

it is known that ICV injection of iron can cause ependymal damage12 without having a mass 

effect.
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In adults, the volume of the intracranial space is fixed, so the presence of blood increases 

ICP unless there is a compensatory fluid movement (e.g. CSF displacement). The CLEAR 

III trial reported intracranial pressures of >30 mmHg in 30% of patients with ICH/IVH who 

didn’t require a CSF shunt and ~44% of patients who did55. High intracranial pressure may 

impact cerebral blood flow and cause brain herniation. In neonates, there is some skull 

flexibility that may limit the increases in ICP caused by increased intracranial volume. The 

role of transient global ischemia on brain injury after IVH has received little attention in 

preclinical models.

Another effect of an IVH is that it can block the CSF drainage pathway, at least 

transiently9, 56, either within the ventricular system or at the CSF outflow sites. This may 

lead to, or contribute to, PHH. It should be noted that as well as a physical block by the 

blood clots, there may be other alterations to the CSF pathways contributing to PHH (e.g. 

outflow site fibrosis). Very recent evidence also indicates that CSF secretion rate is increased 

after experimental IVH via Toll-Like receptor (TLR)-4 activation. That causes activation of 

Ste20-type stress kinase (SPAK) which phosphorylates and activates Na/K/Cl cotransporter 

(NKCC)-1 at the apical surface of the choroid plexus epithelium57. CSF hypersecretion may 

help clear potentially harmful clot-derived factors from the brain, but it may also contribute 

to PHH particularly if CSF absorption is impaired. Thus, targeting the TLR4, SPAK, 

NKCC1 pathway may be a method of reduced PHH57.

4.2 Mass effect

Reducing the mass effect after IVH requires clearing the hematoma from the ventricles. 

Identifying methods of clearing IVH has been a goal in many preclinical and clinical 

studies5, 6, 58. This has generally been performed by ICV injection of a thrombolytic such as 

tPA or urokinase to lyse the hematoma. Whether fibrinolytics improve outcome is still 

uncertain. A meta-analysis of intraventricular fibrinolytic therapy in adults found that tissue 

plasminogen activator (tPA) administration reduced ventricular dilation and mortality, and 

improved functional outcomes in adults59. One recent meta-analysis observed that using 

fibrinolytics in conjunction with external ventricular drainage provided the best 

improvement in mortality rates60. However, another meta-analysis reported that while 

fibrinolytic treatment did reduce mortality, the data failed to reach significance58. The very 

recent CLEAR III trial compared outcomes ICV tPA versus placebo in patients with an 

EVD. It found that tPA significantly reduced IVH volume and mortality but it did not 

improve the number of patients with good functional outcome (as assessed by modified 

Rankin score_ , the primary endpoint of the tiral6.

In premature infants, there have been multiple studies of ICV fibrinolytics (tPA, urokinase, 

streptokinase) to reduce the need of shunt placement after PHH5. While there have been 

some studies that have suggested a benefit, others have not and have shown increased 

secondary IVH. Thus, currently, the clinical recommendation is not to use fibrinolytics in 

children with PHH5.

In relation to IVH clearance studies, it is important to note two points. First, that this 

approach may have effects on both primary (mass effect) and secondary injury (removing 

the clot as a source of neurotoxic factors). Secondly, there is the question of timing. Giving a 
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thrombolytic in a patient with an intracranial bleed might result in new bleeding. Thus, the 

CLEAR III trial delayed tPA administration until the clot was stable on CT scan to limit this 

possibility. This meant that the average time from ictus to randomization between tPA and 

saline groups was 52 hours6 which may reduce the effect on the initial primary injury.

There have been few preclinical studies examining the effects of fibrinolytics on IVH8, 61. 

Such studies may be useful for direct comparison of tPA and urokinase. It has been proposed 

that urokinase lacks some of the pro-inflammatory properties of tPA making it a potentially 

preferable choice58. In addition, preclinical models may be used to study combination 

therapies (e.g. a fibrinolytic and a neuroprotectant).

4.3 Imbalance in CSF secretion and absorption

The choroid plexuses are responsible for the majority of CSF secretion62, 63 and reducing 

that secretion is a target for IVH therapy and particularly for ameliorating PHH. The choroid 

plexus is a secretory epithelium where the epithelial cells are linked by tight junctions and 

contain a wide array of ion transporters as well as water channels (primarily aquaporin 1, 

AQP1). The epithelium is involved in vectoral ion transport that can drive water transport62. 

Clinically, a combination of acetazolamide (a carbonic anhydrase inhibitor) and furosemide 

(a Na/Cl cotransport inhibitor) has been evaluated as a method of reducing CSF secretion 

but it doesn’t reduce the need for shunt placement in preterm infants with PHH and actually 

increased neurological morbidity5. Currently, therefore, CSF is regulated in PHH patients 

via one of several CSF drainage methods5.

Our greater understanding of ion and water transport across the choroid plexus is, however, 

suggesting some new therapeutic targets including the tight junction protein claudin-2 and 

the water channel AQP1. Unlike the claudin-5 present in the tight junctions of the blood-

brain barrier, the claudin-2 present in choroid plexus epithelial cells is ion and water 

permeable62 and may represent a paracellular route for fluid movement. AQP1 is important 

in choroid plexus fluid secretion64 and aquaporin inhibitors are beginning to be developed65.

It should be noted that surprisingly little is known about how the choroid plexuses are 

impacted by IVH66. Such changes may impact fluid secretion (e.g. aquaporin expression67) 

and alter therapeutic targets.

4.4 Blood-Components and Brain Injury

A significant volume of recent research on IVH has indicated that secondary damage caused 

by blood components is responsible for much of the observed injury. After a hemorrhage, 

erythrocytes can lyse and release their potentially toxic contents into the ventricular system. 

Moreover, other blood components such as elements of the coagulation cascade and immune 

cells can independently induce brain damage. There are likely similarities in injury 

mechanisms between adult and neonatal IVH. However, it should be noted that for ischemic 

stroke, there are age-dependent differences in the impact of microglia and 

neuroinflammation68. Given the amount of pre-clinical research that has aimed at 

elucidating blood-component-based mechanisms of injury, several therapeutic targets have 

been identified. The following section will describe the mechanisms of blood -derived 

toxicity.
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4.4.1 Erythrocyte Lysis, Hemoglobin and its Degradation Products—Early 

after IVH, erythrocytes can start to lyse. ICV injection of lysed erythrocytes causes brain 

injury indicating that there are neurotoxic compound(s) within the red blood cell12. This also 

suggests that erythrocyte lysis may be a therapeutic target in IVH. The mechanism of such 

lysis after IVH has not been well established. It may reflect gradual energy depletion in the 

erythrocyte, but it may also result from complement activation and insertion of membrane 

attack complex in the cell membrane. The extent to which erythrocytes lyse before they can 

undergo phagocytosis by microglia/macrophages may have an important impact on brain 

injury.

One erythrocyte component released into the ventricular system is hemoglobin. Free 

hemoglobin in extracellular spaces has been shown to exhibit cytotoxic effects and increase 

the inflammatory response69; consequently, the role of hemoglobin in post-hemorrhagic 

damage has been extensively investigated (Fig. 1). ICV injection of hemoglobin results in 

inflammatory responses characterized by increased levels of the pro-inflammatory cytokine 

tumor necrosis factor-α (TNF-α) in the CSF, as well as by periventricular brain 

damage70, 71. The ependymal cells that line the cerebral ventricles are injured by IVH and 

iron resulting in areas of denudation12, 54. This may facilitate the movement of hemoglobin 

deeper into the periventricular brain. The periventricular region includes the sub-ventricular 

zone, a site of neurogenesis in neonates and mature adults. The presence of ventricular 

hemoglobin can also affect more distal brain region. There is significant c-Jun N-terminal 

kinase (JNK)-linked neurodegeneration in the hippocampus within three days of an ICV 

injection of hemoglobin20. The mechanism of distal damage has not been fully elucidated. 

Possibilities include diffusion of hemoglobin to the hippocampus, inflammatory injury, or 

damage of nearby axons that belong to distant soma.

Hemoglobin is capable of inducing PHH as well as cellular degeneration. In neonatal rat 

models of IVH, ICV injections of hemoglobin result in significant ventriculomegaly 

compared to injections with artificial CSF14. Again, the mechanism of this injury is not fully 

known. It is possible, however, that the pathway includes the choroid plexus, which is not 

only the primary site of CSF production, but which is also a crucial component of the blood-

CSF barrier70. Karimy et al. found the IVH induced CSF hypersecretion via activation of 

TLR4 on the choroid plexus epithelium and stimulation of NKCC1 activity57. 

Methemoglobin and heme, a hemoglobin degradation product, can activate TLR4 72. In 

addition, ICV injection of hemoglobin can induce significant structural damage to the 

choroid plexus, paired with increased levels of cellular activation, oxidative stress, and 

inflammatory responses73. Moreover, ventricular hemoglobin can alter aquaporin expression 

in the choroid plexus67. Aquaporins are proteins that facilitate the passage of water through 

cell membranes and they are important in CSF production and circulation64. AQP alterations 

have been linked to the induction of hydrocephalus74. In a preterm rabbit pup model, IVH 

resulted in choroid plexus AQP1 and AQP5 protein levels67. In unrelated studies, it has been 

shown that AQP5 overexpression can result in increased RAS-related cell proliferation75. If 

such cell proliferation should occur in the choroid plexus, it may result in increased CSF 

production and consequential buildup of intracranial pressure. Thus, there is a need for 

greater understanding of the role of choroid plexus AQPs in PHH.
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The mechanism underlying hemoglobin-induced damage is likely tied to its degradation. 

Within the ventricular system, hemoglobin naturally dissociates into αβ dimers which may 

be bound by haptoglobin molecules derived from the hematoma. Haptoglobin is a plasma 

protein with very affinity for hemoglobin76 that plays a key role in clearing intravascular 

hemoglobin. While the brain may start to produce haptoglobin after a cerebral 

hemorrhage77, normal adult CSF levels of haptoglobin are very low, meaning that there may 

be insufficient haptoglobin, at least initially, to fully scavenge free hemoglobin after 

hemolysis78. Moreover, plasma haptoglobin levels in neonates are also extremely low; this 

results in an inability to quickly bind free hemoglobin, resulting in the higher morbidity rates 

of neonatal hemorrhage79.

Once securely bound, the haptoglobin-hemoglobin complexes undergo receptor-mediated 

endocytosis via CD163, a protein expressed in monocytes and macrophages, and recently 

identified in neurons20, 80. After endocytosis, haptoglobin and hemoglobin dissociate, and 

heme is released, which is subsequently degraded by the heme oxygenase (HO) to form 

biliverdin, carbon monoxide, and ferrous iron81. In certain cell types in the brain, this iron is 

quickly sequestered by ferritin. However, in cell types lacking ferritin, such as neurons, this 

Fe2+ can participate in oxidative Fenton reactions. In that reaction, ferrous iron reacts with 

hydrogen peroxide to produce dangerous radical oxygen species:

Fe2 + + H2O2 Fe3 + + OH⋅ + OH−

The resulting ferric iron is free to be reduced back to Fe2+ by cellular reducing agents. Once 

in the ferrous form, the reaction can begin again with a new equivalent of hydrogen 

peroxide, thus continuously generating reactive oxygen species.

Due to its role in the endocytosis of hemoglobin into cells like neurons that lack the 

appropriate iron sequestration systems, CD163 has been suggested to be a target for 

reducing neuronal injury after IVH82. However, microglial and macrophage CD163 has been 

shown to be beneficial for clearing hemoglobin from the extracellular space and thereby 

decreasing injury after cerebral hemorrhage83. This creates a therapeutic dilemma: any 

treatment that attempts to address neuronal expression of CD163 must be careful to avoid 

decreasing CD163 levels on microglia/macrophages.

The ability of iron from hemoglobin to participate in radical reactions has made iron a focus 

of pre-clinical studies investigating hemoglobin during IVH. ICV injection of lysed red 

blood cells induces both heme oxygenase-1 expression in brain, an enzyme that degrades 

heme and releases iron, and ferritin, the primary iron sequestration protein in brain12. 

Convincing evidence of the role of intra-hemoglobin iron came from Strahle et al. who 

demonstrated that injection of protoporphyrin IX (essentially an iron-less heme compound) 

does not induce hydrocephalus while iron and hemoglobin both did14, implicating iron as 

the key component of the heme moiety in the mechanism behind PHH. Moreover, it is 

possible that this iron may be released into the CSF via iron export proteins such as 

ferroportin. In a clinical study of infants with PHH, 75% had free iron present in their CSF, 

while no control subjects had such iron84. Significant evidence supports the notion that the 
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accumulation of iron following IVH results in ventricular dilation and brain damage10. 

Moreover, it has been shown to correlate with brain edema, neuronal cell death in the basal 

ganglia, and motor function deficits85. It has also been suggested that iron induces 

hydrocephalus by activating the Wnt signaling pathway after IVH, which is closely 

implicated in subarachnoid fibrosis in chronic hydrocephalus86. This finding warrants 

further investigation.

Deferoxamine (DFX) is a ferric ion chelator that is used clinically for systemic iron overload 

and that shows promise as a treatment for cerebral hemorrhage87, 88. In intracranial 

hemorrhage, DFX has beneficial effects on iron-induced edema89, neuronal death90, 

hippocampal degeneration20, and inflammation89, 91, 92. A phase II clinical trial is ongoing 

for ICH (Intracerebral Hemorrhage Deferoxamine Trial - iDEF Trial; NCT02175225). In 

models specific to IVH, DFX has been shown to reduce the amount of cell death and 

neuronal degeneration in peri-ventricular areas10, 11, 20.

One effect of DFX is to ameliorate PHH10, 93. DFX co-injection reduces ventricular 

enlargement following ICV injection of lysed erythrocytes12, hemoglobin, and iron injection 

in both adults and neonates14. While it is most likely DFX acts via iron chelation, it is 

possible that it can also affect important signaling pathways94. The Wnt signaling pathway 

plays a role in the coagulation cascade, and may be involved in the formation of obstructive 

non-communicating hydrocephalus following IVH. DFX has been shown to counteract Wnt 

activity following IVH86.

Minocycline is another commonly-studied pre-clinical treatment for intracranial hemorrhage 

due to its ability to chelate iron and inhibit microglia. Like DFX, minocycline has been 

repeatedly demonstrated to diminish damage in a variety of intracranial hemorrhage 

models95, 96. In cell cultures, it has been shown to reduce iron-induced cortical neuron 

degeneration with greater efficiency than DFX97. Guo et al. that demonstrated the efficacy of 

minocycline at diminishing iron accumulation in an experimental GMH-IVH model, 

resulting in decreased brain edema, hydrocephalus, and brain damage85. The mechanism of 

its action was likely iron-based in nature, as it additionally reduced ferritin upregulation 

following the hemorrhage, but they may also be beneficial effects on microglia activation. 

Minocycline should be more rigorously evaluated as a potential treatment for iron-induced 

injury following IVH.

4.4.2 Coagulation Components—Plasma, as well as erythrocyte, components play a 

role in IVH-induced brain injury. Significant among these are the elements of the 

coagulation cascade including prothrombin/thrombin (Factor IIa). Thrombin is produced 

following the cleavage of prothrombin, a process upregulated during hemorrhage. Thrombin 

functions primarily by cleaving fibrinogen into insoluble fibrin to prevent bleeding. 

However, following ICH and IVH, other thrombin functions can lead to detrimental 

outcomes98 (Fig. 2). For example, recently, Klebe et al.99 found that a thrombin antagonist, 

dabigatran, reduced hydrocephalus and behavioral deficits in a rat GMH model.

Some of the functions of thrombin involve protease-activated receptors (PARs). PAR-1, a G-

protein-coupled receptor, is directly activated by the serine protease activity of thrombin. 
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Following its activation, PAR-1 can trigger multiple biological cascades98. Increased 

thrombin production during IVH results in PAR-1 activation which can damage the 

ependymal wall and lead to the induction of hydrocephalus13. The Src family of kinases are 

activated by the thrombin-PAR-1 system and are responsible for the phosphorylation 

(activation) of metalloproteinases, such as matrix metalloproteinase-9, which are known to 

be a significant cause of damage in other types of intracranial hemorrhage, although their 

specific roles in IVH and clot clearance are yet to be investigated100.

Some treatments identified by studies investigating thrombin and PAR-1 following IVH 

include SCH79797, a PAR-1 antagonist101. This antagonist has been shown to significantly 

reduce ependymal wall damage following experimental IVH13. Inhibition of Src family 

kinases (and potential subsequent metalloproteinase activation) with PP2 blocks brain edema 

and blood brain barrier disruption100. In subarachnoid hemorrhage animal models, 

thrombin-induced inflammation has been linked to transforming growth factor β (TGF 

β)102. Normally associated with platelets in the blood, TGF β can be released into CSF 

following platelet extravasation during IVH; it has suggested that TGF β could play some 

role in the creation of obstructive hydrocephalus103. Recent studies of kaolin-induced 

hydrocephalus indicate that decorin, an antagonist of TGF β, can reverse ventriculomegaly 

and white matter injury104, 105. However, further research into this topic will be necessary in 

order to fully elucidate the mechanism by which TGF β is involved in hydrocephalus 

following IVH.

Another part of the coagulation cascade that may play a part in IVH-induced brain injury is 

fibrinogen (Factor I). While the conversion of fibrinogen to fibrin by thrombin is essential 

for hemostasis, those clots can obstruct the passage of CSF. In addition, even un-cleaved 

fibrinogen may have negative effects once released into the ventricles. Evidence indicates 

that extravascular fibrinogen can induce powerful inflammatory response, activating 

microglial via the CD11b/CD18 receptor106, and it may also play a role in subsequent brain 

injury.

Therapeutically, the targeting elements of the coagulation cascade in IVH poses significant 

problems. While they may contribute to brain injury, they also play a vital role in 

hemostasis. It may be possible to ameliorate this difficulty by targeting downstream 

mediators; e.g. targeting thrombin-mediated PAR-1 receptor activation while not affecting 

fibrinogen cleavage, or targeting fibrinogen-mediated microglial activation.

4.4.3 Other blood components—Most attention has focused on the role of 

hemoglobin/iron, prothrombin/thrombin and fibrinogen/fibrin as clot-derived factors that 

may cause brain injury. However, it should be noted that other erythrocyte, plasma and 

platelet derived factors may impact surrounding brain tissue and this merits further 

investigation. Thus, for example, carbonic anhydrase from erythrocytes has been implicated 

in inducing brain injury after ICH107. Similarly, recent evidence has shown that 

lysophosphatidic acid, present in serum, can induce hydrocephalus and impair ependymal 

integrity108. Lysophosphatidic acid is produced by activated platelets109 and the role of 

platelets in IVH-induced brain injury has received very little attention.
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4.5 Neuroinflammation

Many of the clot-derived factors described above have pro-inflammatory properties (e.g. 

thrombin, fibrinogen, hemoglobin). After IVH there is an upregulation of pro-inflammatory 

cytokines, microglial activation and leukocyte infiltration into brain110, 111. Microglia are the 

resident brain immune cells that upon activation can have a range of phenotypes. Broadly, 

these include polarization into a “M1” phenotype that is generally pro-inflammatory, or 

“M2” phenotype that is associated with the resolution of inflammation112. Following IVH, 

microglia with both M1 and M2 polarization accumulate in the periventricular regions 

beginning ~48 hours post-hemorrhage111. Excessive microglial activation after injury to the 

immature brain has been linked to impairment and even development of cerebral 

palsy113, 114. The inflammatory response after IVH also involves the infiltration of 

circulating leukocytes into brain111. Following IVH, very-low-birth-weight infants exhibit 

increased total leukocyte counts115. Inhibiting microglia activation/polarization and blocking 

leukocyte infiltration into brain are potential therapeutic targets in IVH. It should be noted, 

however, that neuroinflammation has an important role in brain repair as well as inducing 

brain injury and that the effects of inflammatory cells in brain injury may vary with age68

5. PRE-CLINICAL FINDINGS ON DAMAGE REPAIR

While the majority of pre-clinical studies have focused on blocking or reducing IVH-

induced brain damage, some studies have investigated the possibility of enhancing brain 

repair. These include examining enhancing neurogenesis, stem cell therapy and reversal of 

hyaluronan buildup.

In neonates, IVH is generally caused by hemorrhage in the germinal matrix, a region that is 

a source of new neurons and glial cells in the developing brain. Attempts to repair this 

region, and thereby reduce developmental impairment, have included using recombinant 

erythropoietin (rEPO), which not only stimulates red blood cell production but also displays 

neuroprotective capabilities116. rEPO administration can enhance neuro- and 

oligodendrogenesis in neonates with white matter injury117. The efficacy of rEPO at 

improving the long-term cognitive outcomes of infants suffering from IVH is currently 

under study118. Unfortunately, an earlier large prospective clinical trial studying rEPO 

treatment in pre-term birth infants demonstrated that while rEPO is safe to use, it does not 

decrease IVH incidence or mortality rates119. Nevertheless, further investigation into rEPO 

as a treatment for IVH-induced damage is warranted.

An alternative approach is to use stem cell therapy. Currently, the main goal of such therapy 

is to modulate the immune response following IVH. The production of new neurons that can 

survive and integrate is a long-term goal. Mesenchymal stem cells (MSC) have powerful 

immune-modulating abilities after stroke120, 121. Intraventricular transplantation of MSCs 

derived from the umbilical cord has been shown to prevent the development of brain injury 

and hydrocephalus following IVH122. The mechanism of this prevention and repair is likely 

due to the treatments ability to impact inflammatory cytokine production. However, 

additional studies have highlighted the neurotropic factors secreted by MSCs which promote 

astrogliosis and myelination123. The optimal route of delivery of MSCs after IVH appears to 

be intravenously rather than directly into the ventricles of the brain124; despite the greater 
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efficiency of ICV delivery, there was no improvement in treatment efficacy over intravenous 

delivery. MSC use after IVH has been thoroughly reviewed elsewhere125.

Following IVH, a buildup of hyaluronan in white matter lesions has been linked to inhibition 

of oligodendrocyte precursor cell maturation and myelination. Hyaluronan is a 

glycosaminoglycan polymer that inhibits remyelination126. Vinukonda et al. identified the 

possibility of treating this buildup of hyaluronan with hyaluronidase127. They found that 

hyaluronidase treatment in a rabbit IVH model reduced inflammation, increased 

oligodendrocyte precursor cell maturation, and restored myelination in the white matter 

lesions. While no other studies have focused on the possibility of repairing IVH-induced 

damage via hyaluronidase, it is a promising new lead that warrants further investigation.

6. CONCLUSION

Intraventricular blood can be a devastating complication of cerebral hemorrhage in preterm 

infants to adults. As yet, there is no therapy that reduces IVH-induced neurological deficits. 

However, preclinical data has identified multiple potential mechanisms for reducing such 

damage and enhancing brain repair. It is essential that more research be devoted to 

addressing whether those therapeutic avenues merit being pursued into clinical trial.

7. EXPERT OPINION

Intraventricular blood can have devastating effects in both preterm infants and in adults. As 

in all stroke, prevention would be the best therapeutic option. While there are preclinical 

GMH/IVH models that can be used to study prevention in neonates, a paucity of adult 

spontaneous ICH/IVH models limits research and such models are sorely needed. One 

approach to limit GMH/IVH is to enhance vessel stability. There have been great strides 

made in understanding barriergenesis in the CNS and this may provide new therapeutic 

targets. A potential concern with this approach is that those pathways may have side effects 

on brain development either via the vasculature (e.g. angiogenesis) or on other types of brain 

cell. Detailed dissection of the signaling pathways may provide more focused therapies.

IVH induces both primary (physical, mass effect) and secondary injury. Much of the primary 

injury may occur acutely after the IVH making it more difficult to treat. Fibrinolytic trials 

are, in part, designed to reduce the hematoma size and reduce the mass effect. Because of 

safety concerns, the initiation of fibrinolysis is delayed and while this may reduce further 

mass effects (e.g. on CSF drainage) it may be too late to prevent initial damage. Reducing 

the time for initiating fibrinolysis, by combining systemic hemostatic therapy with ICV 

fibrinolysis, may be of benefit.

There is growing data that clot-derived factors have an important role in IVH-induced 

secondary injury. Such factors include hemoglobin, iron, thrombin and fibrinogen/fibrin, 

although there should be greater examination of the role other potential factors. Some of 

these clot-derived factors have multiple actions in IVH that might hamper them being 

targeted therapeutically (e.g. the role of thrombin in hemostasis as well as injury). There 

needs to be a dissection of downstream pathways activated by clot-derived factors to help 

identify better therapeutic targets.
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Targeting hemoglobin- and iron-induced toxicity is attractive. There is a current phase II 

clinical trial for deferoxamine in ICH (iDEF Trial; NCT02175225). If the clinical experience 

with deferoxamine in ICH trial is successful, the experience with that treatment may be 

extended to other forms of cerebral hemorrhage including IVH. It should be noted that 

expanding deferoxamine to preterm IVH will require especial attention to potential side 

effects. For example, iron deficiency is associated with a variety of neurological problems 

and iron is required for oligodendrocyte maturation128. It is possible that limiting the 

duration of deferoxamine exposure and/or using different routes of administration (e.g. 

intracerebroventricular or intranasal) may limit some side effects.

Multiple of the clot-derived factors have a role in inflammation and inflammation itself may 

be a therapeutic target. As with thrombin, however, inflammation may have beneficial (e.g. 

in repair) as well as detrimental actions, effects which vary with time after hemorrhage. This 

makes it a difficult target. There is an enormous amount of preclinical information on the 

role of inflammation in brain injury after cerebral ischemia that has led to multiple clinical 

trials without success. While there are multiple potential reasons, the complex role of 

inflammation in brain repair as well as brain injury may be a contributing factor.

A new unexpected role of inflammation in IVH is in regulating CSF secretion57. Activation 

of choroid plexus epithelial TLR4, probably by hemoglobin or heme, activates a signal 

transduction pathway that stimulates NKCC1 activity and CSF secretion, contributing to 

PHH. That pathway needs to be examined in patients, but it may be inhibitable at several 

different steps57.

As well as targeting the actions of clot-derived factors, there is also the possibility of 

reducing their release from the hematoma. The resolution of the hematoma after IVH isn’t 

well studied, but altering the fate of the hematoma, phagocytosis versus erythrolysis, may 

have important consequences for brain injury by determining whether hemoglobin/iron is 

released extracellularly or within microglia/macrophages. In ICH, there is evidence that 

phagocytosis can be enhanced by peroxisome proliferator-activated receptor (PPAR)-γ 
agonists 129 or manipulating eat-me/don’t eat me signals on erythrocytes 130. Alternatively, 

it may be possible to slow erythrolysis by targeting the complement cascade. Thus, the 

hematoma as well as neural tissue may be a therapeutic target, an understudied area.

There is the possibility of a combination therapy for reducing IVH-induced brain injury. 

There is evidence in adults that fibrinolytic therapy reduces IVH-induced mortality although 

it didn’t improve overall neurological outcome 6. Fibrinolytic therapy does not fully remove 

the hematoma and perhaps the combination of that therapy with one targeting clot-mediated 

brain injury or one targeting brain repair might have greater efficacy.

Progress is being made in identifying therapeutic targets for IVH. As with other forms of 

stroke, the big hurdle is translating that knowledge to the clinic.
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IVH intraventricular hemorrhage
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HIGHLIGHTS

• Intraventricular hemorrhage can be a devastating consequence of intracerebral 

hemorrhage, in adults, and germinal matrix hemorrhage, in premature infants.

• There are a number of potential strategies to try and limit the occurrence and 

size of IVH including targeting cerebrovascular remodeling and stability.

• Intraventricular hemorrhage results in a physical disruption that is a target of 

hematoma evacuation and efforts to accelerate hematoma resolution 

pharmacologically.

• Intraventricular hemorrhage also causes secondary injury via the release of 

factors from the hematoma that induce damage, neuroinflammation and cause 

CSF hypersecretion.

• Such factors include hemoglobin, iron and thrombin. These factors (or their 

downstream mediators) may be therapeutic targets for reducing IVH-induced 

brain injury.

• Improving brain recovery after IVH is also a therapeutic target, e.g. via stem 

cells.
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Figure 1. 
Schematic showing effects of IVH related to erythrocyte lysis and hemoglobin release 

within the ventricular system. IVH causes ependymal damage and this may facilitate the 

penetration of hemoglobin from CSF into brain parenchyma. Hemoglobin may then be taken 

up into microglia/ macrophages via the CD163 receptor, particularly when hemoglobin is 

complexed to haptoglobin. Alternately, heme released from hemoglobin may be taken up by 

microglial cells via the CD91 receptor. Inside microglia, hemoglobin/heme is degraded by 

heme oxygenase-1 (HO-1) to iron, carbon monoxide and biliverdin. HO-1 is inducible and it 
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is markedly upregulated after cerebral hemorrhage. In microglia, iron produced by HO-1 can 

be chelated by ferritin reducing iron-mediated damage. Recent evidence indicates that 

neurons can also express CD163 and hemoglobin uptake into those cells may be more toxic 

due to a lack of ferritin. Neurons express a constitutive form of heme oxygenase, HO-2. 

Hemoglobin in CSF can also cause damage to the choroid plexus and this may impact CSF 

homeostasis, result in infiltration of leukocytes and potentially contribute to hydrocephalus, 

an understudied area.
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Figure 2. 
After vessel rupture, prothrombin and fibrinogen enter the brain and there is activation of the 

coagulation cascade and the final cleavage of fibrinogen to fibrin by thrombin. The main role 

of the coagulation cascade is to stop bleeding (hemostasis). However, thrombin and 

fibrinogen have other actions within brain, some of which may contribute to injury after 

IVH. Thrombin can activate microglia, induce astrogliosis and cause BBB disruption. In 

addition, thrombin has neuronal effects. These can be beneficial at low concentrations but 

harmful at high concentrations. Some of the effects of thrombin are via protease activated 

receptor-1 (PAR-1). Fibrinogen also causes microglial activation, via the CD11b/CD8 

(Mac-1) receptor. While there is mounting evidence of the role of the coagulation cascade in 

hemorrhagic brain injury, targeting that cascade therapeutically is complicated by the 

essential role of that cascade in hemostasis. Targeting downstream mediators of injury may 

be an approach.
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