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Abstract

Background: Gastrin is an important gastrointestinal hormone produced primarily by G-cells in the antrum of the
stomach. It normally regulates gastric acid secretion and is implicated in a number of human disease states, but
how its function affects breast cancer (BC) development is not documented. The current study investigated the
suppressive effects of gastrin on BC and its underlying mechanisms.

Methods: Serum levels of gastrin were measured by enzyme-linked immunosorbent assay (ELISA) and correlation
between gastrin level and development of BC was analyzed by chi-square test. Inhibitory effects of gastrin on BC
were investigated by CCK-8 assay and nude mice models. Expressions of CCKBR/ERK/P65 in BC patients were
determined through immunohistochemistry (IHC) and Western blot. Survival analysis was performed using the
log-rank test.

Results: The results indicated that the serum level of gastrin in BC patients was lower compared with normal
control. Cellular and molecular experiments indicated that reduction of gastrin is associated with inactivation
of cholecystokinin B receptor (CCKBR)/ERK/P65 signaling in BC cells which is corresponding to molecular type
of estrogen receptor (ER) positive BC. Furthermore, we found that low expression of gastrin/CCKBR/ERK /P65

efficiently inhibited ER* BC than tamoxifen alone.
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was correlated to worse prognosis in BC patients. Gastrin or ERK/P65 activators inhibited ER™ BC through
CCKBR-mediated activation of ERK/P65. Moreover, combination treatment with gastrin and tamoxifen more

Conclusions: We concluded that low serum gastrin is related to increased risk of ER™ BC development. The
results also established that CCKBR/ERK/P65 signaling function is generally tumor suppressive in ER* BC, indicating
therapies should focus on restoring, not inhibiting, CCKBR/ERK/P65 pathway activity.

Background

Breast cancer (BC) is the most common form of female
cancer worldwide. Gene expression profiling has a con-
siderable impact on the current understanding of BC
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biology and has led to improved treatment outcomes
[1-3]. Studies have extensively characterized molecular
subtypes of BC, which are clinically subdivided as hor-
mone receptor-positive, human epidermal growth factor
receptor 2 (HER2)-positive, and triple-negative BC
(TNBC) [4-6]. These subtypes have significantly differ-
ent incidence, risk factors, prognoses, and treatment
sensitivities [7, 8]. During the past few decade years,
most great advances had been made in molecular biol-
ogy and clinical treatments by utilizing a combination of
surgical resection with radiotherapy, chemotherapy, and
targeted therapy to cure breast cancer. Although the
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comprehensive treatment involving the mammography
[9] and HER2 status [10] has a certain effect on screen-
ing and diagnosis, the recurrence and metastasis rates
for breast cancer patients remain high. The poor clinical
outcome of breast cancer was attributed to the metasta-
sis and invasion. Among the matrix metalloproteinases
(MMPs), a family of zinc endopeptidases with the role
on extracellular matrix protein degradation leading to
the metastasis of cancer cells, specifically, the serum ac-
tivities of MMP-2 and MMP-9 correlate with the inva-
sive potential of cancer [11].

Approximately 70% of BCs shows the ER-a expression
and endocrine responses, and hormonal therapy has
produced a considerable amount of positive outcomes in
ER" BC [8, 12-14]. Among the agents applied in clinical
cancer therapeutics, tamoxifen is one of the most suc-
cessful agents that target ER [15-17]. Nonetheless, a
large proportion of patients developed de novo or ac-
quired resistance over time, and annually estimated
deaths caused by BC are more than 450,000 worldwide
[18, 19]. The most plausible explanation for this statistic
shows the lack of a complete profile of BC heterogeneity.
Even though main clinical parameters and pathological
markers, such as ER, progesterone receptor (PR), and
HER?2, are not able to fully reflect the complexity of BC,
they are routinely used in the clinic to stratify patients
for prognostic predictions, treatment selection, and clin-
ical trials [15, 20, 21]. Thus, more precise predictive bio-
markers and optimal treatment strategies require the
further investigation.

Recently, a study demonstrated the alteration of mo-
lecular markers in BC after clinical treatment [22], which
suggested that molecular subtypes could be affected by
the factors that penetrated the tumor microenvironment
via blood circulation. Thus, genetic variations and the fac-
tors within the tumor microenvironment might coopera-
tively determine the molecular subtype.

Gastrin was initially characterized as the major hormo-
nal regulator of gastric acid secretion [23-26]. Another
physiologic role of gastrin involves regulating prolifera-
tion of gastric mucosal cells, which leads to investiga-
tions into its effects on stimulation of tumor cell growth
[27-29]. However, its inhibitory effects have also been
observed on several types of cancers derived from the
colon, stomach, and pancreas [30-32]. These controver-
sial reports have suggested that gastrin might play a role
in organ- and/or molecular subtype-dependent manner.

CCKBR, a seven-transmembrane, G protein-coupled
receptor is highly expressed in the proximal stomach,
where the role on acid secretion is well documented.
Previous report had shown that CCKBR knockout
(CCK2R-/-) resulted in inactivation of MAPK pathway,
especially the ERK1/2 [33]. In health cell lines, CCKBR
and MOR heteromerization could also regulate the
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activity of ERK pathway [34]. Once the level of p-ERK
was elevated, p-ERK phosphorylated P65 which resulted
in P65 protein stability and the activation of downstream
genes and factors involved in different cellular process.
It is highly reasonable to speculate CCKBR/ERK/P65
cascade may play a role in breast cancer development.
In this paper, we analyzed the expression level of
CCKBR/ERK/P65 cascade and determined its effect on
ER positive BC.

Methods

Clinical cases

All 93 BC cases, female and age ranging from 20 to
70 years (mean=46.2 years), were collected from
Shanghai General Hospital (Shanghai, China) and
Zhuhai Hospital of Integrated Traditional Chinese and
Western Medicine (Zhuhai, China) in 2016 (detail in
Additional file 1: Table S2). All necessary BC patient in-
formation was available, including tumor characteristics
(grade, lymph node stage, and size). Not all BC patients
received chemo-radiotherapy before enrollment. Normal,
healthy female volunteers who received a physical exam-
ination at Shanghai General Hospital were used as con-
trols for gastrin measurement (N = 20). All patients gave
verbal informed consent before inclusion. Approval from
Ethics Committee of the Shanghai Jiao Tong University
School of Medicine was obtained after they reviewed the
study protocol and purpose.

DFS and OS

Patients were given a physical examination every
3 months for the first 2 years after surgery and were
subsequently examined every 6 months. Disease-free
survival (DFS) was calculated as the duration between
the date of surgery and the date of first evidence of local
recurrence, distant metastasis, or diagnosis of a second
primary tumor or cancer-associated mortality. Overall
survival (OS) was calculated as the time between the
date of surgery and the date of mortality from any cause.

Blood collection and measurement of serum gastrin.

A 5-ml fasting venous blood sample was collected from
20 control and 93 BC subjects in the morning. The
blood samples were immediately collected into endo-
toxin- and pyrogen-free test tubes, shaken thrice, and
left to coagulate for 30 min at room temperature. Blood
samples were centrifuged at 1000 x g for 10 min at 4 °C,
then the serum was transferred to Eppendorf tubes and
stored at —80 °C until analysis. Gastrin levels in the
serum were measured with a gastrin-17 ELISA kit (Sino
Biological Inc., Beijing, China) in the same aliquot ac-
cording to the manufacturer’s instructions while blinded
to the histopathological diagnosis.
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Mouse models

Female athymic BALB/C nude mice (4—6 weeks-old)
were purchased from the Shanghai Experimental Animal
Center at the Chinese Academy of Science (Shanghai,
China). BC-bearing mice were given estrogen subcutane-
ously 3 d before injecting MCF-7 cells (1 x 107) into the
bilateral mammary fat pad. These mice were then ran-
domly divided into control (N =6) and experimental (N
=6) groups when tumors became outwardly visible (ap-
proximately >10 mm?). Control and experimental groups
received PBS or gastrin treatment (2 mg/kg, twice/d), re-
spectively, by caudal vein injection for 12 d; tumor vol-
ume was measured every other day. At the end of the
study period, mice were sacrificed by carbon dioxide eu-
thanasia and tumors were removed, measured, weighed,
and prepared for Western blot analysis. Tumor volume
was calculated according to the formula: V (mm?) = (r x
length x width?) / 6. All animal studies were conducted
with the approval and guidance of Shanghai Jiao Tong
University Medical Animal Ethics Committees.

Cell culture and reagents

All human BC cell lines (MCF-7, T-47D, and
MDA-MB-231) used in the study were purchased from
the Cell Bank of Shanghai Institute of Cell Biology at the
Chinese Academy of Science in 2016. The three cell
lines were authenticated in Ministry of public security
Evidence Identification Center by testing the DNA pro-
filing (STR) entrusted by Shanghai Institute of Cell Biol-
ogy in 2012 and 2013 respectively. The testing results
were consistent with the profiles reported in ATCC.
Mycoplasma detection was performed using MycA-
wayTM-—color one step Mycoplasma detection Kit
(Shanghai YEASEN Biotechnology Co., Ltd.) according
to the manufacturer’s instructions. Cells were routinely
cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Hyclone, USA) supplemented with 10% fetal
bovine serum (Hyclone, USA) and incubated in air with
5% CO, at 37 °C. In addition, the culture media for
MCEF-7 and T-47D were not supplemented with estra-
diol. Antibodies against ERK1/2 (monoclonal, 4695S,
137F5, CST, USA), phoshorylated ERK1/2 (p-ERK1/2)
(monoclonal, 4370S, D13.14.4E, CST, USA), P65 (mono-
clonal, 8242S, D14E12, CST, USA), phoshorylated P65
(p-P65) (monoclonal, 3033S, 93H1, CST, USA), CCKBR
(polyclonal, SC33221, Santa Cruz, USA), HER2 (mono-
clonal, GT210029, sp3, Gene Tech, Shanghai, China), ER
(monoclonal, GT210029, spl, Gene Tech, Shanghai,
China), and PR (monoclonal, GT210029, sp2, Gene
Tech, Shanghai, China) were used as primary antibodies
for Western blot or/or immunohistochemistry (IHC).
Gastrin was purchased from China Peptides (Shanghai,
China). Lipopolysaccharides (LPS), PD98059, betulinic
acid (BA), and parthenolide (PN) were purchased from

Page 3 of 14

Sigma Chemical Co. (St. Louis, Mo, USA). Cell prolifera-
tion assay was performed using Cell Counting Kit-8
(CCK-8; Dojindo, Japan).

Protein extraction

Protein was extracted from cells and tissues with RIPA
lysis buffer (50 mmol/l Tris-HCl [pH 7.5], 150 mmol/l
NaCl, 0.5% DOC, 1% NP-40, 0.1% sodium dodecyl sulfate,
1 mmol/l NaF, 1 mmol/l NazgVO,, and 1 mM PMSF [Cell
Signaling Technologies, Danvers, MA, USA]) purchased
from Yeasen Biotech before being centrifuged at 12,000 x
g for 20 min at 4 °C. The protein concentrations were de-
termined by a BCA kit (Thermo Fisher Scientific, USA).
Protein lysates were applied to Western blot.

Western blot

Equal amount of proteins were separated on 10% sodium
dodecyl sulfate —polyacrylamide gel electrophoresis and
then transferred onto polyvinylidene fluoride membranes
(Millipore, Billerica, MA, USA). Membranes were blocked
in 5% bovine serum albumin (Amresco, USA) with shak-
ing for 1 h at room temperature, and then washed in 1X
Tris-buffered saline-Tween-20 (TBST) buffer thrice for
5 min each. Membranes were incubated overnight at 4 °C
with anti-CCKBR (1:200), anti-ERK (1:1000), anti-p-ERK
(1:1000), anti-P65 (1:1000), and anti-p-P65 (1:1000) pri-
mary antibodies. Then, membranes were washed thrice
for 5 min each with 1X TBST and incubated with horse-
radish peroxidase-conjugated goat anti-rabbit or goat
anti-mouse IgG secondary antibodies (Cell Signaling
Technologies, Danvers, MA, USA) for 1 h at room
temperature. Membranes were washed thrice for 5 min
each with 1X TBST, and antigen-antibody complexes were
visualized with a chemiluminescent ECL detection system
(Pierce, Rockford, IL, USA). Blots were scanned and ana-
lyzed via Image ] software.

Cell proliferation assay

CCK-8 assay was performed to evaluate cell prolifera-
tion. BC cell lines (MCF-7, T-47D, and MDA-MB-231)
were seeded onto 96-well plates at a density of 2 x 10°
cells/well, cultured, and treated with gastrin (10”7 M), li-
popolysaccharides (1 pg/ml), PD98059 (10 uM), betuli-
nic acid (10 pg/ml), or parthenolide (10 pg/ml) for 1, 3,
5, and 7 d, respectively. At the time points indicated
above, 90 pL. DMEM and 10 ul CCK-8 were added to
each well and incubated for an additional 50 min. Then,
the media supernatant was removed and the absorbance
at 450 nm was measured using a microplate reader
(Thermo Fisher Scientific, USA). Wells containing 10%
CCK-8 (90 ul DMEM and 10 pl CCK-8) were regarded
as blanks. The experiment was repeated three times,
with four repeated measures of each experimental value.
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For tamoxifen treatment, the experiments were per-
formed according to the previously published data [35].
Briefly, 2 x 10® cells were plated into 96-well plate and
culture for 24 h. Then, the cells were washed with 1x
PBS, the culture medium was changed with phenol red
free DMEM (Gibco, USA) containing 5% charcoal-
stripped steroid depleted FBS (Hyclone, USA). Aliquot
of gastrin and / or tamoxifen (2 uM) was added to the
medium after 24 h culture for 1, 3, 5, and 7 d, respect-
ively. At the time points indicated above, CCK-8 assay
was performed to evaluate cell proliferation. The

-
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experiment was repeated three times, with four repeated
measures of each experimental value.

IHC

BC and para-BC tissue samples from 50 patients were
embedded in paraffin and sliced into 4-pm-thick sec-
tions for IHC. After deparaffinization, the sections were
placed into a pressure cooker with 10 mM sodium cit-
rate buffer (pH 6.0) at high power for 3 min and then an
oven at 100 °C for 15 min, followed by treatment with
3% H,O, for 15 min at room temperature. Anti-HER2
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(1:200), anti-PR (1:400), anti-ER (1:400), Anti-CCKBR
(1:50), anti-p-P65 (1:250), and anti-p-ERK (1:250) pri-
mary antibodies were incubated on sections overnight at
4 °C. After being placed at room temperature for
30 min, sections were incubated with a secondary anti-
body for 15 min. DAB and hematoxylin stained images
were obtained on a LEICA microscope (CTR6000)
equipped with a digital camera (400X magnification).
The positive and negative controls were performed in
each IHC experiments simultaneously. The positive con-
trols were stained with the slices that were performed
with the same antibody in clinic previously while the
negative controls were used PBS instead of the primary
antibody in each IHC. In addition, IHCs were performed
manually. Three researchers who were blinded to patient
prognosis evaluated the slides independently, two of
them were pathologists. The criteria for “para BC” re-
gions of the slide were that we collected the tissues dis-
tance from cancer 3 cm, which do not include fat tissue.
The criteria for the cutoff between positive and negative
staining as follows: less than 10% of expression was con-
sidered to be “loss” (-), and more than 10% of expres-
sion was designated (+).

Transfection and small interfering RNA (siRNA) treatment

The siRNAs targeting CCKBR and negative control siR-
NAs were obtained from Shanghai Gene Pharma
(Shanghai, China). The siRNA transfection was per-
formed using Lipofectamine 3000 (Thermo Fisher Scien-
tific, USA) according to the manufacturer’s instructions.
Briefly, 2 x 10° cells plated in the 6-well plate were trans-
fected. The siRNAs (20 nM, 8 ul) were incubated in
OMEM (250 pl) for 5 min while Lipofectamine 3000 re-
agent (5 ul) was diluted into OMEM (250 pl) gently for
5 min either. Then the above two dilutions were mixed
and Incubated for 20 min at room temperature. Lastly
DNA-lipid complex was added to cells.

siRNAs sequence:
Sense: 5'- GAGCUGGCCAUUAGAAUCATT -3/,
Antisense: 5'- UGAUUCUAAUGGCCAGCUCTT -3'.
NC sequence:
Sense: 5'- UUCUCCGAACGUGUCACGUTT -3,
Antisense: 5'-ACGUGACACGUUCGGAGAATT -3'.

Statistical analysis

Statistical analysis was performed using the SPSS v. 21.
A chi-square test was used to assess associations be-
tween categorical data. A Student’s ¢-test was used for
continuous variables using GraphPad Prism v. 6.0. All
results are presented as means + standard error of the
means. A P < 0.05 was considered significant for all stat-
istical tests.
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Results

Low gastrin/CCKBR/ERK/P65 level was associated with
poor prognosis of ER" BC subtype

In order to explore the role of gastrin in BC, we first
measured the serum level of gastrin in 93 BC patients
and 20 control subjects. The results showed that gastrin
levels were significantly reduced in the majority of BC
patients compared to normal controls (Fig. 1A). Import-
antly, low gastrin level was correlated to clinicopatholog-
ical characters involving ER subtype and tumor size
(Table 1). Particularly, serum gastrin level in ER* BC pa-
tients was further decreased indicating a correlation be-
tween gastrin and this special subtype of BC. Given that
CCKBR served as the receptor of gastrin, it was also de-
termined in BC patients through IHC, and the results
showed CCKBR expression was also markedly reduced
in this subtype of BC (Fig. 1B), which was increased in
MCE-7 cells treated with gastrin (Fig. 1C). According to
previous reports that ERK could be activated by down-
stream CCKBR signal, p-ERK was stimulated in
gastrin-treated BC cells as well as p-P65 which was
phosphorylated by p-ERK (Fig. 1C). Consistently, p-ERK
and p-P65 were decreased in ER* BC subtypes compared
to adjacent normal tissues (Fig. 1D). Furthermore, the
association of four gene expressions with relapse free
survival (RFS) was performed using the KM Plotter

Table 1 Association between gastrin levels and
clinicopathological variables of 93 breast cancer cases

Clinicopathological N Gastrin levels X P Value
parameters (pg/ml)
<149° 2149
All 93 75 18
Age(year) 0.155  0.694
<45 40 33 7
245 53 42 11
Grade(WHO) 2538 0281
I 1 8 3
Il 70 59 11
Il 12 8 4
Histopathological type 14530  0.000*
ER* 69 62 7
ER™ 2413 [
Tumor size (cm) 11627  0.001*
<2 16 8 8
22 77 67 10
Local lymph node metastasis 0000 0986
yes 36 29 7
no 57 46 11

“Number of cases in each group
The mean value of serum gastrin level of normal persons
*Statistically significant (P < 0.05)
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Online Tool (http://www.kmplot.com) and the results
suggested that the expression level of gastrin/CCKBR/
ERK/P65 was found to be correlated with better RFS
in BC (Fig. 1E).

To further confirm the association of CCKBR/ERK/
P65 and ER positive BC, the levels of CCKBR, p-ERK
and p-P65 in fresh tumor and corresponding adjacent
normal BC tissues (N =5) were determined by western
blot and IHC (ER, PR and HER2 status was determined
in Additional file 2: Figure S1). The results indicated that
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expressions of CCKBR, p-ERK and p-P65 were all de-
creased in these examples of ER" subtype, but not in
ER™ or TNBC BC subtype (Fig. 2A and B). Of note, ex-
pression of ERK/P65 was activated in TNBC and ER™
BC with or without reduction of CCKBR, suggesting
ERK/P65 might be under the regulation of other signal-
ing pathways in these two molecular subtypes of BC
(Fig. 2). These results were confirmed by experiments in
MCEF-7 (ERY), T-47D (ER"), and MDA-MB-231 (ER")
BC cell lines. Moreover, expression of p-ERK/p-P65 was
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decreased in MCF-7 and T-47D versus MDA-MB-231
cells (Fig. 2C-E).

Gastrin inhibits growth of ER* BC through CCKBR-
mediated upregulation of p-ERK/p-P65

To explore the role of gastrin in BC, MCF-7, T-47D, and
MDA-MB-231 cells were treated with gastrin for 7 days,
and the CCK-8 assay was performed at each time point.
The results showed that gastrin inhibited growth of
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MCE-7 and T-47D cells, but not MDA-MB-231 cells
(Fig. 3A). To test whether gastrin plays a
CCKBR-dependent role, CCKBR was knockdown by the
targeted siRNAs (S1, most efficient) in MCF-7 and
T-47D cells co-treated with gastrin. As shown in Fig.
3B and C, S1 significantly inhibited expression of
CCKBR and gastrin—mediated inhibition on prolifera-
tion of BC cells was greatly weakened in these BC
cells. In addition, the inhibitory effect of gastrin on
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Fig. 3 CCKBR mediated suppressive effects of gastrin on ER™ BC cells. a ER" MCF-7, as well as T-47D and ER™ MDA-MB-231 BC cells were treated
with gastrin (1077 M) for 7 d. CCK-8 assay results demonstrated that gastrin inhibited proliferation of MCF-7 (a) and T-47D (b), but not MDA-MB-
231 (o) cells. (b-¢) Knockdown of CCKBR by CCKBR-targeted siRNA blocked the effects of gastrin on ER" BC cells. (a) Expression of CCKBR in MCF-7
and T-47D cells transfected with CCKBR-targeted siRNA for 48 h. (b) Gray density analysis demonstrated about two-thirds of CCKBR were downregulated in
MCF-7 and T-47D cells (*P < 0.01). () CCK-8 assay results demonstrated that knockdown of CCKBR blocked the inhibitory effects of gastrin on MCF-7 and T-
47D cells (*P < 0.05). d MCF-7 BC tumors grew much slower in animals treated with gastrin. (a) Growth curves of MCF-7 tumors in control and
experimental mice (*P < 0.01). (b) The panel shows tumors removed from mice 12-d post-gastrin treatment (control, N =6; gastrin treatment,
N=6). (c) Weight of tumors removed from mice 12-d post-gastrin treatment (control, N = 6; gastrin treatment, N = 6; *P < 0.05)
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ER" BC was further confirmed in mice bearing
MCE-7 tumors (Fig. 3D).

To define the role of gastrin in BC through
CCKBR-mediated regulation of p-ERK/p-P65, expression
of p-ERK/p-P65 in BC cell lines and mice bearing tu-
mors was detected by Western blot. As show in Fig. 4,
gastrin treatment led to up-regulation of CCKBR/
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p-ERK/p-P65 along with growth inhibition of MCE-7
and T-47D cells (Fig. 3A).

ERK/P65 regulated the proliferation of ER* BC

To test whether ERK/P65 activator also inhibits growth
of ER"/CCKBR/ERK/P65~ BC cells, MFC-7 and
T-47D cells were treated with the activators and the
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(See figure on previous page.)

Fig. 5 Effects of inhibitors/activators of ERK/P65 on ER" BC cells. (a, b, e, and f) MCF-7 and T-47D cells treated with ERK inhibitor PD98059 (10 M) or
lipopolysaccharide (1 pg/ml) as an activator for 7 d were harvested at each time point indicated and subjected to CCK-8 assay (right) and Western blot
(left) [*P < 0.05]. (¢, d, g, and h) MCF-7 and T-47D cells treated with P65 inhibitor parthenolide (10 pg/ml) or betulinic acid (10 pug/ml) as an activator for
7 d were harvested at each time point indicated and subjected to CCK-8 assay (right) and Western blot (left) [*P < 0.05]

inhibitors of ERK/P65, respectively. As shown in Fig. 5,
the ERK/P65 inhibitors significantly inhibited expression
of p-ERK/p-P65 without growth inhibition of either cell
line (Fig. 5 A, E, C, and G). While the ERK/P65 activa-
tors activated the two proteins, they also inhibited prolif-
eration of cells (Fig. 5B, F, D, and H).

Gastrin and tamoxifen synergistically affect BC
suppression

Tamoxifen is currently used for the treatment of ER" BC.
It is also approved by the US Food and Drug Administra-
tion for the prevention of BC in women at high risk for
developing the disease. However, the underlying mechan-
ism is still not fully understood. If the inactivation of
CCKBR/ERK/P65 is a key event in BC development, then
tamoxifen must affect expression of CCKBR/p-ERK/p-P65
in BC cells. To test this, MCF-7 and T-47D cells were sep-
arately treated with tamoxifen or gastrin alone or in com-
bination. The results showed that both agents remarkably
inhibited growth of the both BC cell lines (Fig. 6). Notably,
combination treatment produced a synergistic inhibitory
effect (Fig. 6A and B). As with gastrin treatment, tamoxi-
fen also increased expression of CCKBR/p-ERK/p-P65 in
both BC cell lines, and it is likely that tamoxifen and gas-
trin play a cooperative role in down-regulation of
CCKBR/p-ERK/p-P65 (Fig. 6C and D).

Discussion

The present study showed for the first time that low
serum levels of gastrin closely correlate with BC devel-
opment via ER*/CCKBR /p-ERK/p-P65". Importantly,
gastrin was indicated to protect the breast gland and
inhibit growth of BC via CCKBR-mediated activation
of ERK/P65 signaling. The results demonstrated that
gastrin and its receptor CCKBR could prevent car-
cinogenesis within the breast gland, and a low level
of gastrin was a risk factor for BC development, espe-
cially in ER" BC.

Overexpression of CCKBR described in several types
of cancers led to the development of CCKBR-targeted
therapeutic agents. However, there has been still no suc-
cessful clinical trials reported [36, 37]. Recently, it was
reported that CCKBR expressed in almost all kinds of
cancers, and none of the cancer samples showed the
higher CCKBR expression than that in the paired
non-cancer samples [37]. Our current results indicated
the decreased CCKBR expression in ER" BC (Fig. 2A
and B), deficient expression in ER™ BC (Fig. 2A and B),

and no difference of expression in ER™ BC (Fig. 2A and
B). Consistent expression of CCKBR, p-ERK and p-P65
were also up-regulated by gastrin which indicated a link
between the gastrin/CCKBR/ERK/P65 pathway and ER*
BC subtype. Thus, inactivation of ERK/P65 in BC was re-
lated to low serum levels of gastrin and down-regulated
expression of CCKBR.

ERK, a member of the RAS/RAF/MEK/ERK pathway,
was established as a major participant in the regulation
of cell growth and differentiation. ERK1/2 forms a cen-
tral component in the MAPK/ERK cascade and was im-
properly activated in several types of cancers [38—40].
However, other than lapatinib that was applied to treat
HER2*/ERK* BC [41-43], there have been few reports
of successful ERK1/2 inhibitors for BC suppression. It
suggests that ERK1/2 inhibition is invalid for most of BC
patients. The functions of ERK1/2 in BC appear to be
complex due to several cellular responses and their
interaction with different pathways, including key genes
in BC (ER and HER2) [44—46].

Our results indicated that ERK was inactivated in most
of BC, consistent with ER expression. Similar results
were reported by Ahmad et al., who assessed ERK ex-
pression by IHC in a large series of BC samples and
found that ERK1/2 were associated with a good progno-
sis, and their expression was mainly related to ER [46].
The current results demonstrated that BC had a
CCKBR/p-ERK/p-P65-negative molecular subtype which
corresponded to ERY, indicating that clinical trials tar-
geting ERK1/2 could have been based on incorrect as-
sumptions due to the complexity of ERK context. It is
not inactivation of ERK1/2, but rather their activation
suppresses BC growth. Thus, we propose that the ther-
apies of CCKBR/p-ERK/p-P65-negative BC should target
the signaling to restore ERK/P65 activity rather than to
inhibit it.

Once activated, further phosphorylation of ERK1/2
can activate transcription factors, including P65, a com-
ponent of the NF-«kB family [47, 48]. We found that the
activity of P65 in BC tissues was consistent with that of
ERK1/2; thus, ER" BC showed low/absent activity of
P65, while it was detectable in ER"/ERK" BC cells. An-
other consistent report presented that ER and P65 were
generally thought to repress the activities by each other,
and activation of P65 in BC was common and typically
associated with the loss of ER, which might be mediated
by HER2 overexpression [46, 49]. We also found that
both tamoxifen and gastrin inhibited the growth of ER"
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Fig. 6 Effect of gastrin and tamoxifen treatment on growth of ER* MCF-7 and T-47D cells. (a-b) MCF-7 and T-47D cells treated with gastrin (107 M),
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(B) CCK-8 assay of T-47D cells (*P <0.05). ¢ Activation of CCKBR/ERK/P65 signaling in MCF-7 cells treated with tamoxifen (a), gastrin (b),
or a combination of both agents (c). d Activation of CCKBR/ERK/P65 signaling in T-47D cells treated with tamoxifen (a), gastrin (b), or a
combination of both agents (c)
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BC via up-regulating CCKBR and p-ERK/p-P65. More-
over, these two agents played the cooperative roles in
BC cell suppression.

Activation of NF-kB, as well as ER/NF-«B crosstalk, is sig-
nificantly associated with aggressive disease and poor pa-
tient outcome in women with ER positive breast cancer
[50-52]. However, it is not fully understood whether NF-kB
is a driver or a consequence of aggressive ER positive dis-
ease. In this study, the reduced p-P65 expression was de-
tected in the patients with ER* BC. Further, we also found
P65 phosphorylation was activated by gastrin stimulation in
ER positive BC cell lines. The similar results were also de-
scribed that NF-kB could work cooperatively with ER to in-
hibit the proliferation of ER positive BC cells [53, 54].
Despite a considerable body of evidence supporting the role
for the NF-«kB pathway in aggressive ER" breast tumors, the
precise mechanism also need to be further investigated.

In the current study, we firstly explored the association
between serum level of gastrin and ER positive breast can-
cer which was never documented before. Second, gastrin
inhibited the proliferation of ER positive BC through acti-
vating ERK/P65 cascades by binding to its receptor
CCKBR. Regarding to the inhibitory role of gastrin on ER
positive BC, the combinational effect of gastrin and tam-
oxifen was also determined on ER positive BC and dis-
cussed in the last. Thus, our results indicated that gastrin
might have a promising potent on ER positive BC treat-
ment. The results in the present study offered new in-
sights into the molecular mechanisms of the conjunction
effects of gastrin and tamoxifen on BC treatment. In par-
ticular, it was found that gastrin had the potential in the
treatment of ER"/CCKBR™/p-ERK /p-P65~ BC.

Conclusions

We concluded that low serum gastrin is related to in-
creased risk of ER" BC development. The results also
established that CCKBR/ERK/P65 signaling function is
generally tumor suppressive in ER* BC, indicating ther-
apies should focus on restoring, not inhibiting, CCKBR/
ERK/P65 pathway activity.

Additional files

Additional file 1: Table S2. Clinical information of 93 BC patients.
Abbreviations: BC, breast cancer; GB, gastric biopsy; F, female; +,
lymphatic metastasis present; —, no lymphatic metastasis present; Y/N
(GB column), examined/not examined; Y/N (stomach illness without GB
column), those with/without stomach illness who did not undergo GB;
IDC, invasive ductal cancer; DCIS, ductal cancer in situ; WHO, World
Health Organization. (DOCX 36 kb)

Additional file 2: Figure S1. Expression of ER, PR, HER2 in 5 primary BC
samples. Three primary BC samples were clinically defined as ER/PR"/
HER2™ by IHC. Two primary BC samples were clinically defined as TNBC
and ER/PR™/HER2" by IHC. Case1:HER2 ER*PR" Case2:HER2 ER"PR*
Case3:HER2 ER*PR™ Case4:HER2 ER PR (TNBC) Case5: HER2'ER PR Scale
bar: 50 um. (TIF 3702 kb)
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Abbreviations

- no lymphatic metastasis present; +: lymphatic metastasis present;

BA: betulinic acid; BC: breast cancer; CCK-8: cell counting kit-8;

CCKBR: Cholecystokinin B receptor; DCIS: ductal cancer in situ;

ELISA: enzyme-linked immunosorbent assay; ER: estrogen receptor;

ERK: extracellular regulated protein kinases; F: female; GB: gastric biopsy;
HER2: human epidermal growth factor receptor 2; IDC: invasive ductal
cancer; IHC: immunohistochemistry; LPS: lipopolysaccharides;

PN: parthenolide; PR: progesterone receptor; TNBC: triple-negative breast
cancer; WHO: World Health Organization; Y/N (GB column): examined/not
examined; Y/N (stomach illness without GB column): those with/without
stomach illness who did not undergo GB
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