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Abstract

Background: In livestock, residual variance has been studied because of the interest to improve uniformity of
production. Several studies have provided evidence that residual variance is partially under genetic control;
however, few investigations have elucidated genes that control it. The aim of this study was to identify genomic
regions associated with within-family residual variance of yearling weight (YW, N =423) in Nellore bulls with high
density SNP data, using different response variables. For this, solutions from double hierarchical generalized linear
models (DHGLM) were used to provide the response variables, as follows: a DGHLM assuming non-null genetic
correlation between mean and residual variance (r,,, ¥ 0) to obtain deregressed EBV for mean (dEBV,;,) and residual
variance (dEBV,); and a DHGLM assuming r,, =0 to obtain two alternative response variables for residual variance,
dEBV, o and log-transformed variance of estimated residuals (In_oé).

Results: The dEBV,, and dEBV,, were highly correlated, resulting in common regions associated with mean and
residual variance of YW. However, higher effects on variance than the mean showed that these regions had effects
on the variance beyond scale effects. More independent association results between mean and residual variance
were obtained when null r,, was assumed. While 13 and 4 single nucleotide polymorphisms (SNPs) showed a
strong association (Bayes Factor > 20) with dEBV, and In_oé, respectively, only suggestive signals were found for

dEBV, 0. All overlapping 1-Mb windows among top 20 between dEBV,, and dEBV, were previously associated with
growth traits. The potential candidate genes for uniformity are involved in metabolism, stress, inflammatory and
immune responses, mineralization, neuronal activity and bone formation.

Conclusions: It is necessary to use a strategy like assuming null r,,, to obtain genomic regions associated with
uniformity that are not associated with the mean. Genes involved not only in metabolism, but also stress,
inflammatory and immune responses, mineralization, neuronal activity and bone formation were the most
promising biological candidates for uniformity of YW. Although no clear evidence of using a specific response
variable was found, we recommend consider different response variables to study uniformity to increase evidence
on candidate regions and biological mechanisms behind it.
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Background

Uniformity is becoming increasingly important among
livestock species. In meat production systems, this is
more evident by the increasing adoption of economic in-
centives by slaughterhouses to stimulate farmers to de-
liver animals that meet specific carcass standards. If
uniformity is partly under genetic control, genetic selec-
tion could be used to improve uniformity of animals.
Genetic control of uniformity can be the result of how
genotypes respond differently towards unknown
micro-environmental factors [1, 2]. Such a phenomenon
is called genetic heterogeneity of residual variance or
genetic variance in micro-environmental sensitivity. Up
to now, several studies support the existence of a genetic
component on residual variance and draw attention for
its potential to improve uniformity through selection
(e.g. [3—-6]). Unraveling the genetic basis of heterogeneity
of residual variance through genome-wide association
studies (GWAS) will help to understand the biology be-
hind it and increase selection response by identifying
candidate genes affecting uniformity and including them
in genomic prediction.

Few GWAS for uniformity traits have been performed
in livestock and there is no consensus about the most
appropriate phenotype to be used in such studies.
Phenotypic standard deviation and coefficient of vari-
ation was used to address uniformity of egg weight in
chickens by Wolc et al. [7] and birth weight in pigs by
Wang et al. [8, 9]. Residual variance per individual from
double hierarchical generalized linear model (DHGLM;
obtained according to Ronnegérd et al. [10]) were used
as response variable by Mulder et al. [11] to identify gen-
omic regions related to residual variance of somatic cell
score in dairy cattle. Estimated breeding values (EBV)
from a DHGLM, using an extension developed by Felleki
et al. [12], were deregressed (dEBV) and used to identify
genomic regions associated with variability of litter size
in pigs by Sell-Kubiak et al. [13]. Such variety of pheno-
types used as response variables can be explained be-
cause uniformity can be measured in different ways
depending on trait and data structure. Statistical analysis
requires either the within-individual variance based on
repeated observation per animal or the within-family
variance based on large offspring groups per family. Fur-
thermore, the availability of genotypes influences the
choice for the response variable as well. The choice for
dEBV in the study by Sell-Kubiak et al. [13] was made
because of availability of genotypes on boars with many
phenotyped offspring and sows with genotypes and phe-
notypes for litter size. In the case of Mulder et al. [11],
genotypes were only available on cows with many
phenotypic observations on experimental farms.

In beef cattle, growth traits are often used as selection
criteria in breeding programs due to its economic
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impact in meat production. Several genes and genomic
regions influencing the mean of these traits have been
identified (e.g. [14—16]). In addition, the existence of a
genetic component on residual variance of growth traits
was previously observed [17-19]. However, no further
investigations have been carried out to study the genetic
mechanisms underlying uniformity of growth traits.
Thus, the aim of this study was to identify genomic re-
gions associated with within-family residual variance of
yearling weight (YW) in Nellore cattle through GWAS,
using different response variables, and candidate genes
to better understand the biology behind genetic control
of uniformity.

Results

Our aim was to identify genomic regions (1-Mb win-
dows among the top 20 that explained the largest pro-
portion of genetic variance shared between response
variables and 1-Mb windows with SNPs that showed a
strong association by BF) associated with within-family
residual variance of YW in Nellore cattle, using different
response variables in GWAS. For this, we used solutions
from DHGLM assuming: i) non-null genetic correlation
between mean and residual variance of YW (r.,, = 0) to
obtain deregressed EBV for mean (dEBV,,) and residual
variance (dEBV,); and ii) r,,, =0 to obtain dEBV, ,, and
log-transformed variance of estimated residuals (ln_cfé).

The Pearson’s correlations between the different re-
sponse variables and the number of common 1-Mb win-
dows (among the top 20 that explained the largest
proportion of genetic variance in the association studies)
among them are shown in Table 1. As expected, dEBV,,
was highly correlated with dEBV,, 0.90, given the high
and positive ry, (0.76; [19]). As a result, eight out of the
top 20 windows were shared between dEBV, and
dEBV,: chromosome (Chr) 1 (92 Mb; Chrl 92), 3
(Chr3_42 and Chr3_45), 13 (Chr13_59), 14 (Chrl4_24 to
26) and 16 (Chrl6_21) (Table 2). The dEBV,, was also

Table 1 Number of common 1-Mb windows® (above diagonal)
and Pearson’s correlation (below diagonal) between response
variables

dEBV,, dEBY, dEBY, o In_o?
dEBVy, 8 0 0
dEBY, 090 (0.02) 1 1
dEBV,, o 0.19 (0.05) 053 (0.04) 2
In_o} ~001 (0.05) 008 (0.05) 024 (0.05)

2 Considering only the top 20 windows that explained the largest proportion
of genetic variance for each response variable; dEBV,,, and dEBV,: deregressed
EBV for mean and residual variance of yearling weight, respectively; dEBV, o
and Infozé: deregressed EBV for residual variance and log-transformed variance
of estimated residuals, respectively, both assuming null genetic correlation
between mean and residual variance. Standard errors are presented

between brackets
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Table 2 Common 1-Mb windows shared by deregressed EBV for mean (dEBV,,) and residual variance (dEBV,)

Windows® % Var® Candidate gene and/or QTL region® Reference®
dEBV,y dEBV,

Chr1_92 257 051 Chr1_70.2:94.6, Chr1_87.2:989 120, 21]

Chr3_42 2.89 154 Chr3_41 [15]

Chr3_45 1.00 1.65 Chr3_41 [15]

Chr13_59 1.07 0.60 Chr13_58, GNAS [15,101]

Chr14_24:26 376 3.07 RB1CC1, NPBWRT, PLAGT, PENK [14-16, 23-27]

Chri16_21 126 513 Chr16_84:34, Chr16_10.6:22.5, Chr16_19.4:40 [21,22]

In bold are the windows harboring strong associations (Bayes Factor > 20) for both response variables
? Represented by chromosome (Chr) and physical position (in Mb) (Chr_Mb and Chr_Mb:Mb)

b Proportion of genetic variance explained by each 1-Mb window

€ Ensembl Database UMD3.1 and QTLdb database (represented by Chr_Mb and Chr_Mb:Mb)
9 Previous studies reporting QTL regions and/or candidate genes related with growth traits that are next or within the windows found in this study

positively correlated with dEBV, ,, 0.19, but no overlap
was found among the top 20 windows.

The response variables for residual variance of YW
had low to moderate correlations with each other (Table
1). The largest correlation was observed between dEBV,
and dEBV, ,o (0.53), which shared one window among
the top 20, Chr12_5. On the other hand, the smallest
correlation was between dEBV, and lr1_cr%3 (0.08), which

also shared only one window among the top 20,
Chr22_52. The dEBV,, ,o and ln_(% showed a correlation

of 0.24 and had two common regions among the top 20:
Chr6_105 and Chr9_8.

Based on the GWAS results, 40, 13 and 4 single nu-
cleotide polymorphisms (SNPs) showed a strong associ-
ation (BF>20) with dEBV,,, dEBV, and In_ G% ,

respectively (Fig. 1 and Additional file 1). Box plots of
dEBV, and In_ Gé by genotype of the markers with

higher BF were presented to give an overview about the
signals that these SNPs are capturing (Fig. 2). In both
cases, the first homozygous genotype (0) was more uni-
form, with lower mean and lower dispersion of the cor-
responding response variable, compared to the other
genotypes, although AA was less frequent in relation to
AB and BB. Only a few suggestive association signals (2;
BF > 3) were found for dEBV, ,o. All these SNPs are lo-
cated within the top 20 1-Mb windows that explained
the largest proportion of genetic variance in each re-
sponse variable. The top 20 windows explained together
34.6, 32.6, 4.4 and 20.0% of the genetic variance of
dEBV,,, dEBV,, dEBV, ,, and ln_c% (data not shown).

The remaining part of genetic variance was explained by
the remaining windows, those not included in the top
20. The range of the proportion of variance explained by
individual windows and their sum suggest that uniform-
ity of YW behaves as a polygenic trait determined by
several genes, as well as its mean.

Within the common windows shared by dEBV,, and
dEBV,, genes and QTL regions were mapped (Table 2).

Several candidate genes for growth traits in beef cattle
were identified on chromosome 14 (RBICC1, NPBWRI,
PLAGI and PENK). Such findings highlight that most of
the effects captured by dEBV, can be due to the strong
I'mv and could be potentially scale effects [19].

In order to prove that these common regions can
really affect the variance beyond a simple scale effect, we
applied a similar procedure as described in Wolc et al.
[7]. For this, only the common SNP with the highest BF
in each window was considered. The absolute effect of
these SNPs on dEBV,, and dEBV, were divided by the
mean of YW and mean of 02, respectively. If SNP would
have an effect on mean and variance due to scaling, then
the standardized effects should be the same or higher on
mean. However, all SNPs showed a greater standardized
effect on dEBV, than dEBV,, indicating that these re-
gions affect the residual variance beyond a simple scale
effect. These results suggest that even with a high and
strong ry,, it is possible to find regions determining
mean growth and its variability simultaneously, while
the effects on the variance are larger than can be ex-
plained by a simple scale effect.

In the shared windows by dEBV, ,, and In_ 0% ,

Chr6_105 and Chr9_8, genes involved in metabolism
(NUDT9, SPARCLI and MAN2B2), mineralization
(DMPI and DSPP) and neuronal activity (PPP2R2C,
JAKMIP1 and ADGRB3) were considered potential can-
didates for uniformity (Table 3). No gene was identified
within Chrl2_5, shared by dEBV, and dEBV, ,,. How-
ever, several promising genes were found on Chr22_52
shared by dEBV, and ln_cr%; among them, genes related

to metabolism (e.g. DPYD, AK7, GMPPB, AMT and
GLUD]1), stress (IP6K2 and UCN2) and inflammatory
and immune responses (UBA7, RNFI23, MSTI and
RHOA) (Table 3).

For uniformity, promising genes related to metabol-
ism: ATP6VI1B2 (Chr8), LPL (Chr8), OSBPL8 (Chr5) and
GLI2 (Chr2); immune response: GLIPRI (Chr5), neur-
onal plasticity: LZTS1I (Chr8) and stress response:



lung et al. BMC Genomics (2018) 19:619

Page 4 of 13

&0
8 w s
w
» 30 . .
2 ' i
g = B - o
L & of 9 23. 2 . H Hav
o 1 * I h‘l"“ T "'F‘ I
1 2 3 4 s L] T 8 9 1" 12 12 " 15 16 17 18 19 20 21 22 23 24 25 26 71 28
Chromosome
dEBV,,
60
5 j
°
© 40
w
@ 30
2
@ 20
L 10 * - oy
o
1 2 3 4 s L] T L] 9 1" 12 13 " 15 16 ” 18 19 20 21 22 23 24 25 26 271 28 9
Chromosome
dEBV,
10
§ 8
8
i L]
w
£ 4
§ .
2 i s ™ » a > . 3 . o - . s
| i ke e b bl bl i e e e Ak W oM b
0 r T T & T 1T 7 1 T T T T T T T T T T T T T 1TT1T1T11
1 2 3 4 s L] T L] 9 1" 12 12 “ 15 16 17 18 19 20 21 22 23 24 25 26 27 8
Chromosome
dEBV, 1o
s
Q
0
w
w
o
>
o
24}
Chromosome
2
In_o;
Fig. 1 Manhattan plot for the mean (dEBV,,) and residual variance (dEBV,, dEBV,, (o, In_oé) of yearling weight. dEBV,,, and dEBV,: deregressed EBV
for mean and residual variance, respectively; dEBV,, ;o and Infoé: deregressed EBV for residual variance and log-transformed variance of estimated
residuals, respectively, both obtained from solutions of a DHGLM assuming null genetic correlation between mean and residual variance. The
horizontal blue and red lines represent Bayes Factor of 3 (suggestive) and 20 (strong), respectively

SLCI8A1 (Chr8), HIFIA (Chrl0), BBSI0O (Chr5) and
CLASPI (Chr2) were observed in the windows of the

SNPs that showed strong association with In_ G%

(Table 4). For dEBV,, most of the genes in the regions
harboring SNPs that showed strong association were re-
lated to metabolism: DPYD (Chr3), BTGI (Chr5), AK7
(Chr21), ADIRF (Chr28), GLUDI1 (Chr28), IP6KI,
GMPPB, APEH, AMT, USP4, USP19, IMPDH2, NDU-
FAF3, SLC25A20, PRKAR2A, UQCRCI, PFKFB4 and
SHISAS all located on Chr22 (Table 5). In addition,

genes involved in stress response: BDKRB2 and BDKRBI
(Chr21), and IP6K2 and UCN2 (Chr22); inflammatory
and immune responses: EEAI (Chr5), TCLIA and
TCLI1B (Chr21), UBA7, RNF123, MSTI and RHOA all
on Chrll; neuronal plasticity: PLPPR4 and PLPPRS5
(Chr3); and bone formation: BMPRIA (Chr28) were also
found (Table 5). In summary, most of the regions associ-
ated with residual variance of YW harbor interesting
candidate genes related to metabolism, stress, inflamma-
tory and immune responses, mineralization, neuronal
activity and bone formation.
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Discussion

In this study, we identified genomic regions associated with
within-family residual variance of YW in Nellore cattle by
using different response variables (dEBV,, dEBV, ,, and In_
0% ). Thirteen and four strong associations (BF >20) were
observed using dEBV, and ln_G%, respectively. Overlapping
windows among the top 20 that explained most of the gen-
etic variance were observed between dEBV, and the other
response variables including dEBV,,,. The dEBV, shared 8
out of the top 20 windows with dEBV,,,, one with dEBV;, ,o
and another one with ln_o%. Potential candidate genes re-
lated to metabolism (carbohydrate, energy, lipid, nucleotide
and amino acid), stress, inflammatory and immune re-
sponses, mineralization, neuronal activity and bone forma-
tion were found for ln_oé and dEBV,,.

Common regions between dEBV,,, and dEBV,

All common regions shared by dEBV,, and dEBV, con-
tained previously found QTL, associated with birth,
yearling and carcass weight in other breeds [15, 20-22].
The region found on chromosome 14 (24 to 26 Mb) was
associated with growth, feed efficiency and carcass quality

traits in beef cattle and several candidate genes were re-
ported [14-16, 23-27]. According to these studies, pleio-
morphic adenoma gene 1 (PLAGI) seems to be the
major gene due to its role in regulating insulin-like
growth factors (IGF; [28]). However, some of these
genes, like RBl-inducible coiled-coil 1 (RBICCI),
neuropeptides B/W receptor 1 (NPBWRI) and proen-
kephalin (PENK), are also involved in processes that
can contribute to determine uniformity of growth
traits, like YW. RBICCI is involved in cell growth
and differentiation, senescence, apoptosis and autoph-
agy, and was one of the genes differentially expressed
in heat stressed chickens [29, 30]. NPBWRI modu-
lates feeding behavior and energy homeostasis and
PENK is responsible for producing enkephalins in re-
sponse to stress [31, 32]. Based on these findings and
the fact that these shared regions between dEBV,,
and dEBV, showed effects beyond scale effects, we
can conclude that the same gene can affect both,
mean and its variability.

Promising genes associated with In_o2, dEBV, and dEBV,
Genes involved in metabolism (ATP6V1B2, LPL, OSBPLS8
and GLI2), immune response (GLIPRI), neuronal plasticity

Table 3 Overlapped 1-Mb windows between response variables for uniformity (dEBV,, dEBV,, , and In_02é>

Windows®  Shared by % Variance Explained® (BF€) Candidate Genes®
dEBV, BV, Inof dEBV, dEBV, In_o?
Chr12_5 X X 1.69 (23.48) 0.19 (1.99) -
Chr22_52 X X 1.73 (33.97) 072 (1837) UBA7, IP6K1, GMPPB, RNF123, MST1, APEH, AMT, RHOA, USP4, USP19, IMPDH?2,
NDUFAF3, SLC25A20, PRKAR2A, IP6K2, UQCRCT, UCN2, PFKFB4, SHISAS
Chr6_105 X X 0.29 (2.94) 091 (12.74) NUDT9, SPARCL1, DSPP, DMP1, MAN2B2, PPP2R2C, JAKMIP1
Chro_8 X X 0.28 (3.05) 0.67 (13.08) ADGRB3

dEBV,: deregressed EBV for residual variance of yearling weight; dEBV, ,, and In_czé: deregressed EBV for residual variance and log-transformed variance of
estimated residuals, respectively, both assuming null genetic correlation between mean and residual variance

@ Represented by chromosome (Chr) and physical position (in Mb) (i.e. Chr_Mb)
® Proportion of genetic variance in each 1-Mb window

€ Single nucleotide polymorphism (SNP) with the highest Bayes Factor (BF) within each 1-Mb window
9 Ensembl Database UMD3.1. See the complete gene list in each window in Additional file 1
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Table 4 Significant SNPs® associated with log-variance of estimated residuals (In_ozé)

SNP Chr Position (Mb) BF MAF SNP effect Windows? % Var® Candidate Genes®
rs134778206 8 6746 24.51 040 0.00075 Chr8_68 234 LPL, SLC18A1, ATP6V1B2, LZTS1
rs133984762 10 74.34 2211 048 0.00068 Chr10_75 127 HIFTA

rs132792897 2 7342 21.75 0.50 —0.00066 Chr2_74 1.30 GLI2, CLASP1

rs135481650 5 538 20.32 049 —0.00061 Chr5_6 1.04 BBS10, OSBPL8

@ Single nucleotide polymorphisms (SNPs) that showed a strong association with In_ozé according Bayes Factor (BF > 20)

b Represented by chromosome (Chr) and physical position (in Mb) (i.e. Chr_Mb)
€ Proportion of genetic variance in each 1-Mb window

¢ Ensembl Database UMD3.1. See the complete gene list in each window in Additional file 1

(LZTS1) and stress response (SLC18A1, HIFIA and BBSI0
and CLASPI) were considered the most promising bio-
logical candidates for uniformity using ln_cé, For dEBV,,

genes related to metabolism (DPYD, BTGI, AK7, ADIREF,
GLUDI, IP6K1, GMPPB, APEH, AMT, USP4, USPIY,
IMPDH?2, NDUFAF3, SLC25A20, PRKAR2A, UQCRCI,
PFKFB4 and SHISAS), stress response (BDKRB2,
BDKRBI, IP6K2 and UCN?2), inflammatory and immune
responses (TCLIA, TCL1B, UBA7, RNF123, MSTI and
RHOA), neuronal plasticity (PLPPR4 and PLPPRS5) and
bone formation (BMPRIA) were identified as potential
candidates. Such findings support partially the hypothesis
that most likely the mean of a trait and its uniformity
share processes, like those related to metabolism. How-
ever, uniformity may be a trait which is even more com-
plex and may be controlled by several processes and
mechanisms beyond metabolism, in order to reach
homeostasis and maintain the body in balance.

Among the metabolism-related genes for In_ O‘é ,

ATPase, H+ transporting, V1 subunit B2 (ATP6V1B2)
encodes a component of the vacuolar ATPase
(V-ATPase), which is activated according to the energy
level, like during glucose starvation [33]. Previously, the
ATP6V1B2 gene was found to be associated with feed ef-
ficiency traits in beef cattle [34]. Lipoprotein lipase
(LPL) and oxysterol binding protein-like 8 (OSBPLS)
genes are involved in lipid metabolism. LPL is respon-
sible for hydrolysis of circulating triglycerides and very
low-density lipoprotein [35]. Associations between LPL
and growth and carcass quality traits were also reported
previously [36—39]. OSBPL8 modulates lipid homeostasis
through sterol regulatory element binding proteins
(SREBPs; [40]). In addition, glioma-associated oncogene
family zinc finger 2 (GLI2) gene is a transcription factor
of the Hedgehog (Hh) signaling pathway, which is in-
volved in muscle development mainly during embryonic

Table 5 Significant SNPs® associated with deregressed EBV for residual variance (dEBV,)

SNP Chr Position BF MAF  SNP Windows® %  Candidate Genes®
(Mb) effect Var®

rs133244984 3 4530 6124 032 000221 Chr3_46 867 DPYD

rs137051934 16 20.84 5729 040 000190 Chr16_21 513 -

rs135408640 3 4529 3574 041 000117 Chr3_46 867 DPYD

rs42014753 22 51.60 3397 037 000112 Chr22_52 1.73 UBA7, IP6K1, GMPPB, RNF123, MST1, APEH, AMT, RHOA, USP4, USP19,
IMPDH2, NDUFAF3, SLC25A20, PRKAR2A, IP6K2, UQCRCT, UCN2, PFKFB4,
SHISAS

rs110480161 5 2201 3344 045 000110 Chr5_23 238 BITGI

rs136349671 3 4437 3298 039 000106 Chr3_45 165 PLPPR4, PLPPRS

1s137143404 3 4154 2760 050 -0.00087 Chr3_42 154 -

rs135488380 3 4534 2395 034 000079 Chr3_46 867 DPYD

rs137135953 28 4134 2388 037 000074 Chr28_42 084 BMPR1A, ADIRF, GLUD1

rs133451489 12 446 2348 039 -000072 Chr12_5 169 -

rs109757968 21 6241 2046 033 000065 Chr21_63 067 TCL1B, TCL1A, BDKRB2, BDKRB1, AK7

rs136908466 5  22.06 2028 043 -0.00063 Chr5_23 238 BTG

1s137014141 14 1447 20.16 035 000062 Chr14_15 085 -

@ Single nucleotide polymorphisms (SNPs) that showed a strong association with Infoé according Bayes Factor (BF > 20)

b Represented by chromosome (Chr) and physical position (in Mb) (i.e. Chr_Mb)
€ Proportion of genetic variance in each 1-Mb window

9 Ensembl Database UMD3.1. See the complete gene list in each window in Additional file 1
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development, but also in adult tissue homeostasis and
repair [41, 42].

For dEBV,, most of the genes are involved in meta-
bolic pathways or related processes to it, such as metab-
olism of carbohydrate, energy and lipid, nucleotide and
amino acid (GMPPB, UQCRC1, PFKFB4, AMT, GLUDI,
AK7, IMPDH2, NDUFAF3, DPYD, SLC25A20, PRKAR2A
and IP6K1). Genes regulating muscle cell proliferation,
differentiation and myogenesis (BTGI [43], USP4 and
USP19 [44, 45], and SHISAS), adipogenic differentiation
(ADIRF [46]) and proteolysis (APEH) also showed meta-
bolic functions that potentially can contribute to uni-
formity of YW.

Genes involved in the energy and protein metabolism
may play an important role to keep body homeostasis
against environmental perturbations. Usually, metabolic
responses to these stressors involve catabolic processes
such as energy mobilization and protein degradation [47,
48]. In such situations, genes related to metabolism are
required to recover homeostasis and consequently part
of the energy is diverted from growth which can poten-
tially affect performance and therefore explain the po-
tential trade-off between energy for growth and energy
for homeostasis.

Genes related to stress response were also found using
ln_(% (SLC18A1, HIF1A, BBS10 and CLASPI) and dEBV,

(BDKRB2, BDKRBI, IP6K2 and UCN?2). Stress is a re-
sponse to new environmental conditions, like nutrition,
housing or any stimuli, that threatens homeostasis. There-
fore, stress genes may have a direct effect on uniformity,
such that animals that are worse in dealing with environ-
mental perturbations tend to be less uniform (e.g. [49]).

Vesicular monoamine transporter 1 (SLCI8AI) and
urocortin 2 (UCN2) genes are involved in the
hypothalamic-pituitary-adrenal (HPA) axis. SLCI8A1 acts
in the final stage of the HPA-axis, transporting catechol-
amines like dopamine, noradrenaline and adrenaline. Cat-
echolamines are released as a physiological stress response
[50]. UCN2 is a member of the corticotropin-releasing
hormone (CRH) family, which is a key mediator of the
stress response by activating the HPA axis [51, 52].

The hypoxia-inducible factor 1-alpha (HIF1A) gene en-
codes a transcription factor that is induced by hypoxia,
promoting angiogenesis, cell proliferation/survival and
glucose/iron metabolism [53]. Angiogenesis is the
process of new vessel formation, which is related to heat
stress. Recently, HIFIA was highly expressed in the ru-
minal epithelium of highly-efficient animals [54], which
can be explained by its functions, mainly angiogenesis
and glucose metabolism. It indicates that animals can
differ in relation to absorption and energy generation,
changing individual growth performance.
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The Bardet-Biedl Syndrome 10 (BBS10) gene, a mem-
ber of heat shock protein (HSP) family, encodes a
chaperonin-like protein [55]. The HSP family plays a
crucial role in response to several stressful conditions in
addition to heat stress [56], and it is not the first time
that a member of this family is related to uniformity.
Previously, Hsp90 was considered a candidate gene for
developmental stability of morphological traits in Dros-
ophila melanogaster and Arabidopsis thaliana (e.g. [57—
60]) and variability of litter size in pigs [13]. It supports
the evidence that the function of chaperones is extended
to several organisms, making these HSP protein genes
promising candidates for uniformity.

Another gene related to HSP family is the inositol hex-
akisphosphate kinase 2 (IP6K2), a metabolism
related-gene that also plays a role in apoptosis [61].
However, its catalytic activity is regulated by HSP90 gene
[62], which suggests that cellular response can also be
expected due to environmental stimuli.

Cytoplasmic linker associated protein 1 (CLASPI) and
bradykinin receptor Bl and B2 (BDKRBI and BDKRB2)
genes are involved in regulation of wound healing and
blood pressure regulation, mechanisms that can be used
to deal with environmental stressors. Previously, Coble
et al. [63] found BDKRBI among up-regulated genes
during heat stress in chickens.

Some genes involved in inflammatory and immune re-
sponses, GLIPRI, EEAI, TCLIA, TCLIB, UBA7, RNF123,
MST1 and RHOA, were also found. GLIPRI, UBA?7,
RNF123 and EEAI participate in several immune
system-related pathways. T-cell leukemia/lymphoma 1A
and 1B (TCL1A and TCLI1B) genes are involved in T-
and B-cell development [64]. The macrophage stimulat-
ing 1 (MSTI) gene regulates macrophage activity during
inflammation [65, 66]. Ras homolog family member A
(RHOA) is a small GTPases of the Rho family, which
regulates several cellular processes including actin cyto-
skeleton reorganization and inflammation [67, 68].

Four other potential candidate genes for uniformity
were identified. Leucine zipper putative tumor suppres-
sor 1 (LZTS1), phospholipid phosphatase related 4 and 5
(PLPPR4 and PLPPRS) are involved in neuronal plasticity
[69, 70], and bone morphogenetic protein receptor type
1A (BMPRI1A) playing an important role in bone forma-
tion, which was recently found associated with body size
in sheep [71]. Neuronal plasticity is the ability of the
nervous system to adapt to environmental changes,
which denotes another potential class of genes determin-
ing uniformity.

In the common regions between ln_oé and dEBV, ,,
genes related to metabolism (NUDT9, SPARCLI and
MAN2B2) and mineralization of tissues like bones and
teeth (DMP1 and DSPP [72]), are likely to be linked
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to uniformity on Chr6_105. It is not unusual to find
common genes related to stature, height and body
weight in beef cattle (e.g. [14, 73-75]). Such findings
highlight the strong relationship between height and
weight, partially explained by common regulatory
mechanisms.

Additionally, both common regions (Chr6_105 and
9_8) contain genes with neuronal functions: PPP2R2C,
JAKMIP1 and ADGRB3. Protein phosphatase 2, regula-
tory subunit B, gamma (PPP2R2C) and adhesion G
protein-coupled receptor B3 (ADGRB3) were previously
related to learning and memory (synaptic plasticity) and
synaptogenesis in mice [76, 77]. Janus kinase and
microtubule-interacting protein 1 (JAKMIPI) was associ-
ated with social behavior in mice through its function on
neuronal translation and was related to T cell-mediated
cytotoxicity [78, 79]. These results together with dEBV,
and ln_cs% provide evidence that the nervous system is

also modulated according to environmental perturba-
tions. Previously, studies reporting such neuronal plasti-
city in response to changes in nutrition and temperature
were observed in Drosophila [80-82]. Therefore, to-
gether with other tissues, the nervous system seems to
be a potential modulator of the mechanisms underlying
uniformity.

Response variables

The high correlation between dEBV,, and dEBV, re-
sulted in 8 common regions affecting simultaneously
mean and residual variance. Such findings are in line
with Wolc et al. [7] who found correlations ranging from
0.54 to 0.74 and a region explaining a large proportion
of the genetic variance of the mean and standard devi-
ation (SD) of egg weight at different ages. The authors
noted that it was not a simple scale effect, because the
effect of the QTL on mean egg weight (measured be-
tween 26 and 28 weeks of age) was about 4% of the
mean egg weight and on SD egg weight at the same age
was about 5% of the mean SD. More recently,
Sell-Kubiak et al. [13] also reported a high genetic cor-
relation, 0.49, between litter size and its variation, but
no overlapped regions were found.

The dEBV, not only captured common effects with
the mean of YW but also its residual variance by sharing
regions (among top 20 by variance explained) with
dEBV, o and In_ O'Z, Chr12_5 and Chr22_52, respect-
ively. These results suggest that the mean and uniform-
ity of YW are partially under different genetic control.
Though some of the genes found on chromosome 22
and most of those in common between dEBV, and
dEBV, are involved in metabolism (e.g. PLAGI, DPYD,
AK7, GMPPB, AMT and GLUDI), a process most prob-
ably related to both, mean and uniformity.
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The weak correlations among dEBV,,, and the response
variables that assumed null r,,, emphasize the role of
the latter to find genomic regions that are specifically
affecting residual variance and not the mean of YW.
Generally, data transformation is used as the main tool
to reduce mean-variance relationship in studies on uni-
formity (e.g. [83—85]). This is the first study on uniform-
ity reporting null r,, as a strategy to deal with scale
effects and showing the differences in terms of associ-
ated regions when comparing to GWAS using dEBV,
when non-null r,,, was assumed.

Knowing the importance of considering potential scale
effects and confounding between mean and residual
variance, the next step is to discuss the suitability of the
different response variables to be used in a GWAS for
uniformity. Based on our results, we recommend consid-
ering the following aspects regarding the response vari-
able and data structure. Firstly, we need to take into
account the nature of the trait because small genetic
variance and low heritabilities are often found for uni-
formity. Previously we estimated a heritability for re-
sidual variance of YW even smaller (0.007; [19]) than
has been reported for similar traits in other livestock
populations [86]. Probably this also may have contrib-
uted to the small (or none) number of SNPs that
reached the significance threshold (BF >20) when we
analyzed the response variables for residual variance. In
this context, irrespective of the response variable, a
larger sample size is required to increase the power of
GWAS [87].

Secondly, we used two different procedures to obtain
response variables to perform GWAS for uniformity.
The first one was the deregressed EBV; deregression,
which removes both the contribution of parents and the
shrinkage present in the EBV. On the other hand, the
second one resulted in a measure, ln_G%, with less ad-

justments compared to deregression. However, some
non-genetic effects, such as the contemporary group
(CG) effect on the variance may have affected the
within-family variance estimate In_ O‘é , while they are

accounted for when we used dEBV since non-genetic ef-
fects, were fitted in the DHGLM in the residual variance
part of the model. In addition, the assumptions of null
and non-null r,,, were assumed to measure the influence
of the mean and/or potential scale effects on the residual
variance. Therefore, analyzing each response variable, we
can conclude that: i) dEBV, was greatly affected by the
mean; ii) dEBV, ,, had low accuracy by assuming null
I'my, Which requires a large amount of phenotypic infor-
mation and/or genotyped sires; and iii) ln_G%3 was less
related to the mean and less regressed compared to

dEBV, but it may include some non-genetic effects, like
CG. It is clear that all three approaches have advantages
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and disadvantages. Given the fact that In_ 0%

is likely
more independent to the mean than dEBV,, there may
be in this case a small preference for this response vari-
able as it behaved also better in the Markov chain Monte
Carlo (MCMC). Furthermore, considering different re-
sponse variables can be beneficial, windows that appear
in multiple approaches may have a higher credibility and
may help in understanding the role of genes affecting
the mean, the residual variance or both and whether
genes controlling the variance beyond scale effects.

Conclusions

Using solutions from a DHGLM that assumed null gen-

etic correlation between mean and residual variance was

a suitable strategy to identify genomic regions affecting

uniformity less dependent on the mean. Thirteen and
2

four SNPs were associated with dEBV, ,, and In_ oy

respectively, and additional common regions were
observed among the responses variables. In all these re-
gions, promising biological candidate genes for uniform-
ity of YW were related not only with metabolic genes,
but also stress, inflammatory and immune responses,
mineralization, neuronal activity and bone formation.
No strong evidence was found in favor of using a spe-
cific response variable for GWAS, while using different
response variables was beneficial from the biological
point of view, since more evidence on candidate regions
can be found.

Methods

The phenotypic data used in this study are described in
Iung et al. [19]. Here, genotypic information from 423
influential Nellore sires from the Alliance Nellore data-
base with a large number of evaluated progeny were
available. The number of progeny per sire considered
for the study ranged from 50 to 10,180, with an average
of 411 (see distribution of progeny per sire in
Additional file 2). In total, 194,628 vyearling weight
measurements from the progeny were used to estimate
the response variables used in the GWAS.

Response variables in the association studies

All responses variables used solutions or residuals from
DHGLM fitted in our previous study [19]. The DHGLM
is an iterative approach that estimates simultaneously
genetic parameters for the mean and residual variance.
In our previous study a sire DHGLM was used as

oo [31-[5 2] [0]<[% 2][2)+[c):

where y and ¢ are vectors of response variables for the
mean and residual variance models (denoted with the
subscript v), respectively, b and b, are vectors of fixed
effects and covariates (contemporary group, linear and
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quadratic effects of animal age, nested within sex), s and
sy are vectors of random sire genetic effects, e and e,
are vectors of random residual effects, X, X,, Z and Z,
are corresponding incidence matrices. This approach
was chosen because of its better predictability compared
to a two-step approach, as previously stated by Iung et
al. [19]. Mean of YW was evaluated through dEBV,,
obtained following the deregression procedure proposed
by Garrick et al. [88] and using EBV of the mean from
DHGLM [12]. For the residual variance of YW, different
response variables were analyzed: i) dEBV,: deregressed
EBV of the residual variance from a DHGLM assuming
non-null genetic correlation between mean and residual
variance (ryy #0); ii) dEBV, ,o: deregressed EBV of the
residual variance from a DHGLM assuming ry,, - 0; and
iii) In_aé, log-transformed variance of estimated resid-

uals for each sire family, using residuals from the mean
model of a DHGLM also assuming r,, - 0. The
log-transformation was used to reduce mean-variance
relationship and correct for non-normality of the re-
sidual variances. Fitting the DHGLM assuming null ry,,
was intended to reduce the impact of the mean of YW
may have on the EBV in the residual variance part of the
model, given the strong estimate of r,, on YW previ-
ously reported for this population [19]. For instance, the
EBV, and EBV,, would be even higher correlated than
the ry,, because of using the information on mean YW
for both sets of EBV. When using null r,,,, it is expected
to have a higher possibility to find regions only affecting
the residual variance. Descriptive statistics of each
response variable are presented in Table 6 and the distri-
bution of them in Additional file 2.

Genotypes

Genotypic information from 423 Nellore bulls was used,
being 415 genotyped with the Illumina® BovineHD chip
(HD) and 8 with Illumina BovineSNP50 BeadChip
(Ilumina Inc., San Diego, CA, USA) and then imputed
to HD (777 k) using Flmpute software [89]. In the
quality control of genotypes, SNPs located on the sex
chromosomes, with minor allele frequency (MAF) lower
than 0.02, p-value for Hardy-Weinberg equilibrium test
(HWE) less than10"> and highly correlated SNPs
(r? > 0.99) within a window of 100 consecutive SNPs were
removed, so that 333,877 SNPs remained for analysis. All
genotyped bulls had a call rate higher than 0.90, passing
the quality control.

GWAS

The SNP effects were estimated using Bayes C method
[90], a mixture model which assumes that there is a
smaller fraction of SNPs (1-m) with large effects and a
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Table 6 Descriptive statistics for mean and residual variance of
yearling weight

Phenotypes N Mean (SD) Minimum Maximum
Mean
dEBV,,, 423 6.084 (15.109) -67.120 45.790
Uniformity
dEBV, 423 0.07274 (0.248) -0.920 0.775
dEBV, o 423 2.55E-05 (0.442) -1.403 1494
In_o% 423 6313 (0.273) 5.505 7.295

— e
dEBV,, and dEBV,: deregressed EBV for mean and residual variance of yearling
weight, respectively; dEBV, .o and Infozé: deregressed EBV for residual variance
and log-transformed variance of estimated residuals, respectively, both
assuming null genetic correlation between mean and residual variance
N number of observations, SD standard deviation

large proportion (i) with zero or near zero effects on
the trait, as follows:

N
y:1p+ZZiai6i+e

i=1

where y is the vector of response variables (dEBV,,
dEBV,, dEBV, ,o and ln_c%), u is the overall mean, 1 is a
vector of ones, z; is the vector of genotypes of the ani-
mals for the i™ SNP, a; is the allele substitution effect of
the i SNP, §; is an indicator variable set to 1 if the i
SNP has an non-zero effect on the trait and to 0 other-
wise, e is the vector of random residual effects and N is
the number of SNPs. It was assumed a; ~ N(0, 02) and e
~ N(0, Ro?), where o? is the variance of SNP effects, o>
is the residual variance and R is a diagonal matrix whose
elements account for heterogeneous residual variance
across observations. When dEBV was the response vari-
able, the diagonal elements of R were derived following
Garrick et al. [88], whereas when In_ G% was the re-

sponse, such elements were equal to the reciprocal of
the number of progeny of each sire. The R-accounted
for differences in sampling variance due to different
numbers of progeny per sire, even observing low corre-
lations between the number of progeny per sire and each
response variable (0.021 to 0.145). In addition, scaled
inverse chi-squared prior distributions with v degrees of
freedom and scale parameter S were assumed for o> and
03. In our study, m was fixed at 0.999, which means that
0.1% of the SNPs fitted in the model, i.e. about 334, have
an effect on the trait. Such a criterion was assumed
aiming to obtain stronger signals of candidate QTL and
also due to the limiting number of genotypes.

The analyses were performed using the GS3 software
[91]. Chains of 550,000 and 250,000 iterations, after
discarding the first 150,000 and 50,000 as burn-in, were
generated for analyses pertaining to the three response
variables for residual variance and mean of YW,
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respectively, saving samples every 50 iterations in both
cases. Convergence was assessed through Geweke test
[92] using CODA R package [93].

The significance of each association was evaluated
through the Bayes Factor (BF):

()
1-
BF = ~—PL

(=)
where p and m are the posterior and prior probability of
a SNP being included in the model, i.e. having a non-
zero effect, respectively. Suggestive and strong evidences
were assigned to SNPs with BF greater than 3 and 20,
respectively [94, 95]. In addition, the proportion of gen-
etic variance explained by SNPs within non-overlapping
1-Mb windows were calculated. A window size of 1-Mb
was chosen since SNPs within this distance present
moderate to high (> 0.2) pairwise linkage disequilibrium
(LD; measured by r’) (see Additional file 3). In total,
SNPs were allocated to 2522 windows, with an average
(SD) of 132 (42) SNPs. The top 20 windows that
explained the largest proportion of genetic variance were
compared between responses variables.

Functional annotation

The shared 1-Mb windows (among the top 20 that
explained the largest proportion of genetic variance)
between response variables and windows with SNPs that
showed a strong association (BF >20) were screened to
identify potential candidate genes using Ensembl
Genome Browser (http://www.ensembl.org), UMD3.1
bovine genome assembly [96]. Previously reported QTL
regions overlapping such windows were identified from
Cattle QTLdb [97]. Functional enrichment based on
Gene Ontology (GO) terms and pathway analysis using
Blast2GO PRO and Reactome [98, 99], respectively, was
performed on these regions in order to help us to deter-
mine potential candidate genes for uniformity. Only the
promising candidate genes, according to their function,
pathway or related biological process, were discussed
here (the complete gene list and annotations are shown
in Additional file 1). The LD maps within each 1-Mb
window discussed here were obtained using the R package
LDheatmap [100] (Additional file 3).

Additional files

Additional file 1: Complete list of the genes located within 1-Mb
windows harboring SNPs with strong association by trait. Gene Ontology
(GO) terms and pathways of each gene were obtained using Blast2GO
and Reactome. (XLSX 99 kb)

Additional file 2: Distribution of number of progeny per sire and
responses variables. (DOCX 242 kb)
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Additional file 3: Manhattan plot and linkage disequilibrium (LD) map
in each 1-Mb window discussed in our study. (PDF 419 kb)
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