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Abstract

Introduction: Biomarker computation using deep-learning often relies on a two-step process, 

where the deep learning algorithm segments the region of interest and then the biomarker is 

measured. We propose an alternative paradigm, where the biomarker is estimated directly using a 

regression network. We showcase this image-to-biomarker paradigm using two biomarkers: the 

estimation of bone mineral density (BMD) and the estimation of lung percentage of emphysema 

from CT scans.

Materials and methods: We use a large database of 9,925 CT scans to train, validate and test 

the network for which reference standard BMD and percentage emphysema have been already 

computed. First, the 3D dataset is reduced to a set of canonical 2D slices where the organ of 

interest is visible (either spine for BMD or lungs for emphysema). This data reduction is 

performed using an automatic object detector. Second, The regression neural network is composed 

of three convolutional layers, followed by a fully connected and an output layer. The network is 

optimized using a momentum optimizer with an exponential decay rate, using the root mean 

squared error as cost function.

Results: The Pearson correlation coefficients obtained against the reference standards are r = 

0.940 (p < 0.00001) and r = 0.976 (p < 0.00001) for BMD and percentage emphysema 

respectively.

Conclusions: The deep-learning regression architecture can learn biomarkers from images 

directly, without indicating the structures of interest. This approach simplifies the development of 

biomarker extraction algorithms. The proposed data reduction based on object detectors conveys 

enough information to compute the biomarkers of interest.
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1. INTRODUCTION

Deep learning has been used extensively in medical image analysis,1 replacing all previously 

known classifiers in applications that include those related to computer-aided detection,2,3 

image segmentation4,5 and registration,6 in modalities ranging from calcium scoring in CT 

images7 to the analysis of histopathology slides8 or even diagnosis9,10 and prognosis.11

We propose deep learning biomarker estimation method based on a regression network 

where we input to algorithm images containing the structure where the biomarker is 

computed and output directly the biomarker value. The two chosen biomarkers to showcase 

the proposed regression architecture are bone mineral density (BMD) and emphysema, 

which are relevant to the medical community.

Osteoporosis is a common disease characterized by the loss of bone tissue, resulting in 

fractures that impact substantially health care costs, morbidity and mortality. Osteoporosis 

impact especially in regions with aging populations, such as Europe,12 and the United 

States, with more than 10.2 estimated subjects.13 Osteoporotic fractures due to low bone 

mineral density (BMD) have been increasing in the last decades.14 Early detection of 

osteoporosis may prevent such fractures and lower the burden of this disease,13 since cost-

effective therapeutic possibilities exist.15 However, low BMD remains undiagnosed in the 

general population.16 BMD estimated thoracic CT scans have been shown to correlate 

significantly with BMD estimated on lumbar vertebrae,17 and has been suggested as a 

screening tool for smokers.18 To our knowledge, no study has yet evaluated the performance 

of a deep learning method for BMD estimation.

Emphysema is a lung disease that gradually damages the alveoli, impeding their proper 

functioning and reducing the lung capacity of the subject.19 Emphysema is one of the 

leading causes of chronic obstructive pulmonary disease (COPD), which is responsible for 

significant costs to health systems and is now the third leading cause of death.20 Emphysema 

has been traditionally quantified as the percentage of lung volume below a given threshold. 

This method has shown to correlate well with histopathology21 and has become the de-facto 

standard for emphysema quantification that is currently adopted as end-points in clinical 

trials.22

In this paper, we automate the measurement of BMD and emphysema in Chest CT scans 

using the deep convolutional neural network of Fig. 1. Such network inputs axial, coronal 

and sagittal reformatted images and outputs the biomarkers directly, without a prior 

segmentation or identification structures of interest. We use a large cohort consisting of 

10,000 CT scans from the COPDGene study23 to train, validate and test the proposed 

method.

2. METHODS

2.1 Database

The COPDGene multi-center observational study has acquired CT scans of non-hispanic 

Caucasian and African American individuals with a history of at least 10 pack-years of 
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smoking.23 Images were acquired with a multi-detector CT scanner with at least 16 detector 

channels. 9925 images of different subjects were used for this study. Each volumetric image 

is reconstructed with sub-millimeter slice thickness. 7,925 cases of the database are used for 

training the network, 1,000 cases are used for validation of the training and the selection of 

the network’s meta-parameters and the final 1,000 cases of the dataset are used for testing, 

and used only once. We report the results of those 1,000 testing cases.

The reference standard for BMD is generated using the semi-automated N-Vivo software 

(Image Analysis Inc., Columbia, KY). Manual quality control was performed to exclude 

fractured vertebrae. The lung parenchyma was segmented in 3D, and the percentage of lung 

voxels below a given threshold were reported as being emphysema and computed using the 

Chest Imaging Platform (chestimagingplatform.org).

2.2 Image pre-processing

Each volumetric image is processed with an object detector trained to detect relevant 

structures for the biomarker that is going to be predicted. The object detector is described 

in24 and adapted for the relevant structures. For BMD estimation, we detect the position of 

the spine in coronal and sagittal planes and generate a composite image similar to those of 

the top row of Fig. 2. For the estimation of the percentage of emphysema we select an axial 

slice where the whole heart is visible, two sagittal slices at the level of the right and left hila 

and a coronal slice at the level of the ascending aorta, making composite images of those 

four views, as shown in the bottom row of Fig. 2. This image pre-processing is necessary 

due memory and processing power constraints of current GPUs. Each image is clamped to 

the range [−1024, 1500] prior to re-scaling to the range [0, 1].

2.3 Deep Learning Architecture and Training Strategy

We use the deep learning network of Fig. 1 to estimate the biomarkers from the images 

mentioned above. The neural network consists of three convolutional layers followed by 

rectified linear activations and max-pooling operations and two fully-connected layers with 

also rectified linear activations, except the output layer. Filter size is set to 5 pixels. We place 

dropout layers prior to each fully connected layer to prevent overfitting. We set their dropout 

percentage to 50%. The network is optimized using a momentum optimizer with a learning 

rate that decays exponentially with the number of iterations. The cost function optimized is 

the root mean squared error. The parameters of the optimizer are chosen using the validation 

cases. We train for 10 epochs. The code is implemented using the TensorFlow library.25

2.4 Statistical Analysis

We estimate the linearity of the output of the network to the reference standard using the 

Pearson correlation coeffcient. To compare agreement among methods, we use Bland-

Altman analysis. Statistical analysis is made using MedCalc software (MedCalc Software 

Bvba, Osten, Belgium).
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3. RESULTS

3.1 Bone Mineral Density

The predicted BMD showed a correlation coefficient of ρ = 0.940; 95%; CI = [0.933 

− 0.947]; p < 1e − 4 with the reference standard on the 1000 test cases. Fig. 3 displays the 

correlation plot. A similar correlation coeffcient is present on the 1000 validation cases (ρ = 

0.938; 95%CI = [0.930 − 0.945]; p < 1e − 4). The Bland-Altman plot is shown in Fig. 3. The 

proposed method overestimates BMD by an average of d = 6.4 Hounsfield Units (HU). The 

standard deviation of the difference among measurements is σ = 15.97 HUs, and the limits 

of agreement are [−37.7, 24.8] HUs. Examples of the estimated values in few cases are 

shown in Fig. 2.

3.2 Percentage of Emphysema

The predicted percentage emphysema had a correlation coefficient of ρ = 0.976; 95%; CI = 

[0.972 0.978]; p < 1e − 4 with the reference standard on the 1000 test cases, as shown in Fig. 

4. Such correlation coeffcient is also present on the 1000 validation cases: ρ = 0.975; 95%CI 
= [0.972 − 0.978]; p < 1e − 4. The Bland-Altman plot is shown in Fig. 4. The mean 

difference is 0.2%, the standard deviation of the difference is 1.98 and the limits of 

agreement are [−3.695, 4.081]. Examples of the estimated values in few cases are shown in 

Fig. 2.

We transformed the percentage emphysema measurements to log-scale in order to perform 

further statistical analysis, since most of the cases are centered around 5 percent units. There 

correlation coeffcient in log-scale between the proposed method and the reference standard 

is ρ = 0.938; 95%; CI = [0.930 − 0.945]; p < 1e 4, as shown in Fig. 4. In log-scale, the mean 

difference is 0.002, the standard deviation of the difference is 0.15 and the limits of 

agreement are [−0.301, 0.306].

4. DISCUSSION

In this paper, we have proposed the use of deep learning for biomarker quantification 

directly from 2D images obtained from 3D CT scans, without the prior segmentation of 

structures of interest. We have achieved strong correlations against reference standards for 

two use cases: the estimation of BMD measured on vertebrae in the spine (ρ = 0.940; p < 

0.0001) and the estimation of percentage of emphysema measured in the lungs (ρ = 0.976; p 
< 0.0001), demonstrating the performance of the proposed method. The correlation 

coeffcients are similar between the validation and test sets, showing a good generalization of 

the method to unseen data.

For BMD, the standard deviation of the agreement between the proposed network and the 

reference standard was σ= 15.97 HUs. Such σ is lower than the variability in HUs of 

normal, osteopenic and osteoporotic subjects,26 showing equivalence between the methods. 

For percentage of emphysema, the limits of agreement measured using Bland-Altman 

analysis yield [−3.695, 4.081]. These 5% points are within the limits stablished in,21 where a 

5 or 10 grading interval in the range [0 – 100] are proposed.
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One limitation of the proposed method is the requirement of 2D fields of view of the 

structures where the biomarkers are computed. Ideally, one would like to regress on the 

whole CT scan, but it is currently unfeasible due to the limitations of current computational 

devices, at least at high resolutions. We have solved such issue using a standard object 

detector. Such object detection could be improved by using a deep learning method. Another 

limitation is that the CT scans acquired are non-contrast non-ECG gated thoracic CTs. It 

would be interesting to research how does this method perform when intravenous contrast is 

injected, augmenting the HUs in regions such as large vessels and the heart.

In this study we have used a very large database of subjects for training, validation and 

evaluation of the proposed method. A study on the dependance of the performance of the 

regression network based on the number of training cases used for training would be 

interesting, as well as to research if transfer learning could be used to learn one regressor 

from another one. Such tasks are left as future work.

The paradigm of image-to-biomarker directly may enable further research on large clinical 

datasets in other use cases. Several measurements are included in radiology reports, but the 

precise area of the image where they have been measured is rarely stored in the PACS 

systems. By leveraging a method that inputs radiology images and measurements, we could 

unlock such databases without the need of expensive expert annotations. We also believe that 

deep learning defines a holistic approach that exploits additional image content in the 

computation of the biomarkers beyond its established meaning, exploiting the systemic e ect 

of many diseases, specially in chronic conditions.
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Figure 1. 
Regression network used. A composite image is feed to the network, that consist of three 

convolutional layers followed by max-pooling operations, one fully connected layer and one 

output layer.
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Figure 2. 
Six different cases used to evaluate the deep neural network. The cases expand the range of 

bone mineral density and emphysema present on the database. Top row: BMD montages, 

from left to right, the subjects have a reference BMD of 72, 150 and 290 HUs. The system 

estimated 68, 178 and 270 HUs respectively. Bottom row: emphysema montages. From left 

to right the subjects have a percentage emphysema of 55%, 25% and 1%. The estimated 

percentage emphysema is 55%, 19% and 0.4% respectively.
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Figure 3. 
Correlation and Bland-Altman plots of the computed BMD with respect to the reference 

standard.
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Figure 4. 
Correlation and Bland-Altman plot of the computed emphysema percentage with respect to 

the reference standard in (top) natural scale and (bottom) log transformed.
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