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Abstract

Purpose of review—As the incidence of type 1 diabetes (T1DM) continues to rise, 

complications including impairment of childhood growth remain a major concern. This review 

provides an overview of alterations in growth patterns prior to and after the onset of T1DM.

Recent findings—Recent advances in this field include several prospective investigations of 

height and weight trajectories in children leading up to the development of islet autoimmunity and 

T1DM as well as evaluations of larger cohorts of T1DM patients to better assess predictors of 

altered growth. In addition, genetic and metabolic investigations have improved our understanding 

of the more rare severe growth impairment of Mauriac Syndrome.

Summary—Despite advances in medical care of children with T1DM, growth remains sub-

optimal in this population and likely reflects ongoing metabolic derangement linked with classic 

microvascular diabetic complications.
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Introduction

Childhood growth is under complex endocrine control and is tightly linked to nutrient 

availability1. It is thus not surprising that type 1 diabetes (T1DM), a disorder characterized 

by profound dysregulation of nutrient metabolism, is associated with impaired growth. This 

review will summarize what is known about growth trajectories in children both preceding 

and following T1DM onset as well as our current understanding of the pathophysiology of 

growth alterations in this population.

Growth prior to the onset of T1DM

Soon after the discovery of insulin, several investigators noted that, at the time of T1DM 

onset, children were taller than unaffected peers (reviewed in Drayer)2. Subsequent reports 

have confirmed this observation3-9, though some cohorts have found the effect to be more 
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substantial in boys2,5,9 or to children who develop T1DM between ages 5 to approximately 

10 years but not children with earlier or later onset of disease7,9. Bonfig and colleagues, in a 

recent large cohort of 22,651 German and Austrian children with T1DM diagnosed between 

1980 and 2000, confirm that this phenomenon persists, despite secular changes in the 

incidence and mean age of onset of diabetes10. In their cohort, the mean height standard 

deviation score (SDS) was 0.22 ± 1.00 at disease onset, significantly higher than a national 

reference base. This effect appears more pronounced in children diagnosed at a younger age, 

with mean height SDS values of 0.30 ± 1.00, 0.26 ± 0.99, and 0.09 ± 0.98 among children 

diagnosed from age 0-5 years, 6-11 years, and 12-17 years respectively.

Attention has thus turned in recent years to investigations of pre-diagnosis growth velocity 

and risk of islet autoimmunity and T1DM. In a retrospective study, the EURODIAB 

collaborative group reported that growth in 499 T1DM patients diagnosed before the age of 

15 years was characterized by higher weight and height SDS after 1 month of age as well as 

higher body mass index (BMI) after 6 months of age compared with local healthy control 

children11. Three prospective studies of children at risk for T1DM based on human 

leukocyte antigen (HLA) genotype or family history have reported more rapid growth to be 

associated with islet autoimmunity. In a subset of the German BABYDIAB and BABYDIET 

cohorts (n=1011), a later age at peak infantile BMI (suggestive of less rapid weight gain) 

was found to be inversely correlated with islet autoimmunity with a hazard ratio (HR) of 

0.60 (95% CI 0.41-0.87) per 2 SD increase in age12. In a subsequent analysis of a larger 

subset of this cohort (n=2236), the authors used a clustering technique to define eight 

specific growth patterns. While no growth pattern was associated with autoimmunity in the 

cohort as a whole, when restricted to offspring of non-diabetic mothers (n=942), 

autoimmunity was associated with rapidly increasing BMI SDS as well as with consistently 

elevated height SDS, while a high length SDS at birth with subsequent regression to average 

length was found to be protective13. In the Diabetes Autoimmunity Study in the Young 

(DAISY) cohort, in which anthropometric measures were collected after the age of 2 years, 

height velocity was positively associated with the development of islet autoimmunity (HR 

1.63, 95% CI 1.31-2.05) and with progression to T1DM (HR 3.34, 95% CI 1.73-6.42)14. In 

The Environmental Determinants of Diabetes in the Young (TEDDY) cohort of 7468 at-risk 

children, islet autoimmunity was positively correlated with weight but not height SDS at 12 

months; no correlations however of growth parameters with progression to T1DM were 

observed15. To investigate whether the same relationships held true outside the high-risk 

population, Magnus and colleagues analyzed 2 Scandinavian birth cohorts comprising over 

99,000 children and similarly found that the change in weight from birth to 12 months 

predicted the development of T1DM16. These and similar data have been taken as evidence 

of the “overload” or “accelerator” hypotheses: namely, that increased growth rates and 

excess adiposity lead to insulin resistance, promoting β-cell hyperfunction and increased 

antigen expression, ultimately leading to both autoimmunity and accelerated β-cell 

failure17,18. They do not however exclude other explanatory models including shared 

genetics of growth and islet autoimmunity or diet-associated alterations in the gut 

microbiome19.
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Growth following the onset of T1DM

Impaired growth velocity, with a decrease in height SDS from disease onset to final adult 

height, has been a consistent observation in cohorts of patients with T1DM7,8,20-23. Both 

pre-pubertal growth velocity as well as the pubertal growth spurt have been reported to be 

lower in T1DM7,24,25. Effect modification by sex has been reported in some studies: in 

cohorts from the Oxford Regional Prospective Study (ORPS), pubertal growth velocity was 

more dramatically affected in girls compared with boys7,22, while other cohorts have 

conversely found more significant effects in boys25,26. In the largest cohort described to 

date, Bonfig and colleagues evaluated 1685 patients diagnosed between 1980 and 2000 who 

had reached near-adult height10. Over an average of 9.1 years, height SDS decreased from 

0.25 ± 0.95 at diagnosis to −0.16 ± 0.97 (females) and −0.17 ± 1.00 (males) at near-

adulthood, for an average decrease of 0.41 SDS. Near-adult height SDS did not differ by 

sex, but was lower among patients with longer duration of disease. In addition, there was a 

marked difference in effect by glycemic control as measured by HgbA1c, with mean adult 

height SDS of 0.030, −0.122, and −0.308 among patients with HgbA1c <7.0%, 7.0-8.0%, 

and >8.0% respectively. This correlation of height velocity with glycemic control has been 

observed in several other cohorts as well21-25,27. Donaghue and colleagues in an Australian 

cohort found a secular trend of improved growth when comparing children diagnosed from 

1974-1990 with those diagnosed from 1991-199528, likely due to improved treatment 

options and technologies29. However, in resource-poor settings, the magnitude of the effect 

of T1DM on final height remains more substantial30.

Mauriac syndrome

The most extreme example of growth failure in T1DM is Mauriac syndrome, described 

initially in 1930, which, in addition to growth failure, is characterized by hepatomegaly due 

to glycogen accumulation, delayed puberty, and Cushingoid features31. While Mauriac 

syndrome is invariably observed in the setting of poor glycemic control, only a small 

fraction of T1DM patients with elevated HgbA1c develop the condition, suggesting that 

additional risk factors must exist. A potential genetic cause was recently described by 

MacDonald and colleagues who studied a 13 year old boy with Mauriac syndrome severe 

enough to cause liver impingement on the diaphragm and respiratory distress32. Sequential 

sequencing of candidate genes in the glycogen metabolism pathway revealed a heterozygous 

mutation of a highly conserved amino acid in the phosphorylase kinase γ subunit 2 

(PHKG2) gene. Phosphorylase kinase is an activator of glycogen phosphorylase, the enzyme 

that catalyzes the initial step in glycogenolysis. Mutations in PHKG2 had previously been 

described to cause glycogen storage disease type IX when found in homozygous or 

compound heterozygous forms33,34. The authors overexpressed the mutant form in a human 

liver cell line and demonstrated decreased phosphorylase kinase activity and inhibition of 

glycogen breakdown. Notably, the patient’s mother had the same mutation but did not have 

diabetes, and the patient’s father had T1DM with poor glycemic control but wildtype 

PHKG2; neither parent had hepatomegaly or other features of Mauriac syndrome. The 

authors thus propose a “two-hit” pathophysiologic mechanism: the genetic mutation in 

phosphorylase kinase exacerbates the well-described inhibition of glycogen phosphorylase 

by hyperglycemia35, leading to severe impairment of glycogen breakdown. While a role for 

Mitchell Page 3

Curr Opin Endocrinol Diabetes Obes. Author manuscript; available in PMC 2018 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this or similar genetic abnormalities in Mauriac syndrome certainly requires validation in 

additional patients, two recent case series of Mauriac syndrome patients from the United 

Kingdom and the Netherlands noted elevated fasting lactate in 16/31 (52%) and 4/4 (100%) 

of patients respectively, suggestive of an underlying inherited disorder of metabolism36,37. In 

both these case series, those patients who achieved improved glycemic control had 

improvement in hepatomegaly and transaminitis, consistent with a role for hyperglycemia in 

contributing to the pathophysiology. Unexplored as yet is whether such mutations in the 

absence of poor glycemic control have negative effects on growth or microvascular disease.

Pathophysiology of impaired growth in T1DM

Longitudinal bone growth proceeds by an orderly differentiation of growth plate 

chondrocytes from the resting to the proliferative and finally to the hypertrophic stage. 

Subsequent invasion by blood vessels and ostegenic precursor cells leads to new bone 

formation and thus bone elongation1. This process is critically dependent on elements of the 

growth hormone (GH)-insulin-like growth factor 1 (IGF1) axis. GH directly stimulates 

chondrocyte proliferation38. GH also stimulates local and hepatic synthesis of IGF1 which 

acts to promote chondrocyte hypertrophy39,40. Dysregulation of the GH-IGF1 axis in T1DM 

is well-described and is characterized by decreases in circulating IGF1, IGF-binding protein 

3, and GH-binding protein, along with increases in GH and IGF-binding protein 141,42. 

Insulin directly regulates hepatic GH responsiveness by altering GH receptor availability as 

well as downstream signaling43,44. Altered IGF1 and binding protein concentrations are thus 

thought to be secondary to decreased portal vein insulin concentration given that therapeutic 

administration of insulin in diabetes is via the subcutaneous route. Administration of insulin 

or intensification of therapy improves but does not normalize these abnormalities45-47. 

Indirect evidence for the importance of portal insulin was provided by Hedman and 

colleagues who demonstrated that residual β-cell function was associated with higher IGF1 

and lower IGFBP1 concentrations independent of glycemic control48. More recent data 

suggest that this effect may be limited to pre-pubertal children49. Direct support for this 

hypothesis has recently been provided by van Dijk and colleagues who compared patients 

treated with intraperitoneal insulin pump therapy vs. subcutaneous pump and/or multiple 

daily injection regimens and found that IGF1 concentrations were higher, though not fully 

normalized, in those on intraperitoneal therapy, though this relationship did not persist after 

controlling for total daily dose of insulin50.

The lack of normalization of the IGF1 axis by intensive insulin therapy including 

intraperitoneal insulin may reflect additional metabolic alterations contributing to impaired 

growth in T1DM. For example, TIDM patients have elevated circulating inflammatory 

markers including interleukin-6, C-reactive protein, and fibrinogen51. These and other 

inflammatory cytokines can impact growth both by direct effects on the growth plate as well 

as by suppression of IGF152. In addition, the latest genome-wide association studies have 

identified over 400 loci determining height. While elements of the GH-IGF axis are 

implicated, numerous other pathways, including local signaling molecules in the growth 

plate as well as cartilage matrix proteins have been implicated as well53,54. Diabetes-

associated alterations in nutrient signaling at the growth plate may have effects on these 

critical determinants of growth and remain to be explored.
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Clinical implications of impaired growth

While accumulated evidence clearly indicates that T1DM continues to be associated with 

decreased height velocity and final adult height, the magnitude of the effect in most reports 

is fairly moderate. For example, the mean loss of 0.41 SDs found by Bonfig et al. would be 

equivalent to approximately 2.5-3.0 cm at final adult height depending on sex and reference 

population10. Furthermore, given that mean height at diagnosis of T1DM is slightly elevated, 

mean final adult height is only minimally lower than the population average. Given 

improving but persistently high rates of microvascular complications including severe 

retinopathy and end stage renal disease as well as the persistent excess cardiovascular 

mortality among patients with T1DM55,56 moderate effects on adult height may seem to be a 

relatively minor concern.

Short stature in T1DM, however, has been linked in several reports to microvascular 

complications, particularly to diabetic nephropathy25,57-61. In one of the earliest 

observations, 181 subjects with T1DM diagnosed in childhood were found to have a mean 

height SDS of −0.22 ± 1.15, lower than that both of the general population and of their 

parents and siblings, consistent with several other reports57. Notably, the authors reported 

that height was inversely correlated with severity of both retinopathy and nephropathy. After 

adjustment for longitudinal glycemic control, this relationship remained significant for 

retinopathy though not for nephropathy. The UK Microalbuminuria Collaborative Study 

Group reported that subjects in their cohort who progressed to microalbuminuria were on 

average 6 cm shorter than those who did not; height was not an independent predictor of 

progression however after adjusting for covariates including baseline albumin excretion, 

blood pressure, and glycemic control59. Wadén and colleagues examined data from 2 large 

cohorts: the Finnish Diabetic Nephropathy Study (FinnDiane, n=3968) and the Diabetes 

Control and Complications Trial (DCCT, n=1246)61. In the Finnish cohort, shorter stature 

was associated with nephropathy and retinopathy after adjusting for glycemic control and 

other covariates, but became non-significant after adjusting for duration of diabetes during 

childhood. In particular, height and nephropathy were associated only in patients who 

developed diabetes before age 13. In the DCCT cohort, those with height in the lowest 

quartile had an adjusted hazard ratio of 2.39 (95% CI 1.34-4.25) for progression to diabetic 

nephropathy compared to those in quartiles 2-4, even after adjustment for childhood 

exposure to diabetes. The incidence of retinopathy was also associated with stature in the 

DCCT cohort but was no longer significant after adjustment. Most recently, using the ORPS 

cohort, Marcovecchio and colleagues examined changes in height SDS across puberty in 

relationship to microalbuminuria and found that height velocity was more substantially 

impaired in those with microalbuminuria (loss of −0.29 SDs from ages 11 to 18 years) than 

those with normal albumin excretion (loss of −0.08 SDs)25. This relationship persisted after 

adjustment for sex and duration of disease but became non-significant after adjusting for 

glycemic control. Overall, these data suggest that impaired growth velocity during childhood 

is a marker of disease control which may serve as an index of ongoing microvascular disease 

as well as a harbinger of future risk. Interestingly, there are also reported associations of 

height with nephropathy in patients not exposed to diabetes during childhood, including 

those who develop T1DM in adulthood58, patients with T2DM62, and even in non-diabetic 
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patients63. These data suggest that some of the association between height and nephropathy 

may be independent of diabetic effects on growth but rather mediated by shared genetic 

pathways, by in utero exposures affecting both growth and nephron development64, or by 

associations of low birth weight, short stature, and insulin resistance65.

In addition, the same alterations in the GH-IGF axis which affect growth velocity in youth 

with T1DM are likely to be major contributors to the skeletal fragility which is increasingly 

recognized as a serious complication of T1DM66. Two recent meta-analyses have 

demonstrated that adults with T1DM have an over 6-fold increased risk of hip fracture67,68, 

an injury associated with a 5 to 8-fold excess mortality in the subsequent 3 months as well as 

substantial morbidity including loss of independence69,70. Diminished bone mineral density 

is observed early in the course of T1DM71,72, and a recent study from Weber and colleagues 

using a large UK database showed for the first time that even children with T1DM are at 

increased risk of fracture, with hazard ratios of 1.14 (95% CI 1.01 to 1.29) and 1.35 (95% CI 

1.12-1.63) for men and women <20 years old respectively73. Data from a rodent model in 

which hepatic IGF1 was deleted showed a 6% decrease in femoral length, a 9% decrease in 

total bone mineral density, and a 26% loss of cortical bone volume, suggesting that growth 

and bone density are both sensitive to circulating (endocrine) IGF174. Clinically, in one 

small study of girls ages 12-15 with T1DM, serum IGF1 concentrations positively correlated 

with estimates of bone strength as measured by peripheral quantitative computed 

tomography75. Intriguingly, 2 recent studies of skeletal microarchitecture in adults with 

childhood onset T1DM have demonstrated decreased trabecular bone density at the distal 

radius and tibia76,77; in both, effects on bone density were limited to those subjects who had 

clinical evidence of diabetic microvascular disease. These findings again point to the 

intimate relationship of compromised growth and bone accrual with classic microvascular 

disease.

Conclusions and future directions

Growth velocity is a sensitive sign of health in childhood. Evidence of impaired growth 

among patients with T1DM is therefore an indication that, despite the many technological 

advances in the treatment of T1DM, much work remains to be done to optimize care of this 

vulnerable population. Conversely, the increased growth observed prior to onset may provide 

clues regarding the triggers for development of diabetes in at-risk patients. As new 

treatments and technologies emerge, improved growth among children with T1DM may 

presage substantial lifetime reductions in diabetes-associated complications including 

microvascular disease and skeletal fragility.
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Key points

• Increased weight and height velocity in infancy and early childhood are 

correlated with risk of islet autoimmunity and T1DM.

• Among children with T1DM, both pre-pubertal growth and the pubertal 

growth spurt are impaired.

• Poor glycemic control may interact with mild genetic defects in glycogen 

metabolism to cause Mauriac syndrome

• Decreased growth in T1DM is correlated with microvascular complications 

including nephropathy and may share a common pathophysiology with 

diabetes-associated skeletal fragility.
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