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The role of tumormicroenvironment in cancer progression is gaining significant attention. It is realized that can-
cer cells and the corresponding stroma co-evolve with time. Cancer cells recruit and transform the stromal cells,
which in turn remodel the extra cellular matrix of the stroma. This complex interaction between the stroma and
the cancer cells results in a dynamic feed-forward/feed-back loop with biochemical and biophysical cues that as-
sist metastatic transition of the cancer cells. Although biochemistry has long been studied for the understanding
of cancer progression, biophysical signaling is emerging as a critical paradigm determining cancer metastasis. In
this mini review, we discuss the role of one of the biophysical cues, mostly themechanical stiffness of tumor mi-
croenvironment, in cancer progression and its clinical implications.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Despite significant improvement in both early diagnosis and treat-
ment of cancer patients, metastasis is still the major cause of mortality.
It is responsible for 90% of about 500,000 cancer deaths each year in the
United States [1]. Cancer transformation and metastasis are driven by
both genomic changes in the tumor cells and the architecture and envi-
ronmental context of the host and target tissue or organ [2, 3]. In addi-
tion, the process is subjected to various signals such as growth factors,
cytokines, chemotactic stimuli and extracellular matrix modifications.
Accordingly, cancer progression is often conceptualized as a continuum
in which a cell changes over time from a benign phase into an invasive,
metastatic phenotype as it responds to various cues from the microen-
vironment along the way. While this metamorphosis clearly requires
activation and inactivation of specific genes, it is recognized that this
process also involves changes in the biophysical phenotype of the cells
and tissue, such as the adhesive force mechanics responsible for both
cell-cell and cell-extracellular matrix (ECM) interactions [4]. The inter-
play between the biophysical properties of the cells and ECMestablishes
a dynamic reciprocity between neoplastic cells and tumor stroma
consisting of immune and inflammatory cells, fibroblasts, capillaries,
and the ECM scaffold [5–7]. This dynamic reciprocity appears to regulate
a wide range of cellular responses critical to tumorigenesis, including
initiation of metastasis. The growing list of players in the biophysical in-
teractions contains matrix stiffness, pore size, viscoelasticity,
crosslinking proteins and density, fiber network configuration, cancer
cell stiffness [8–14]. Cells sense, process, and respond to mechanical
and other biophysical cues from the ECMusing a coordinatedmechano-
chemical system composed of adhesion receptors, cytoskeletal net-
works, and molecular motors [15–22]. The mechanism by which these
mechanotransduction events takes place is very complex and diverse.
In some cases, individual molecules are responsible when cellular ten-
sion in response to ECM rigidity exposes a cryptic signaling molecule
or unfolds a propeptide chain; in some other cases, the strain in the
cyto-structure can regulate receptor-ligand interaction to affect enzyme
activity or, control a mechanosensitive ion channel [17, 23–25]. Also,
other physical parameters such as change in nuclear volume and
shape [26, 27], cell membrane curvature [28, 29], fluid permeation
[30], plasticity [31, 32] etc. play significant roles in different scenarios
where physical cues are converted into biochemical responses at a cel-
lular level. On a tissue level, solid stress [33–36], interstitial fluid pres-
sure [37–40] and topographic features are a few of many mediators
that influence various stages of disease developments, especially neo-
plasia, fibrosis, cancer etc. Understanding how themechanical microen-
vironment regulates cancer cell biological processes responsible for
metastasis represents a newly developingparadigm. This newparadigm
has the potential to add novel anti-metastasis therapeutics to the cur-
rent arsenal. This review will focus particularly on stiffness characteris-
tics of tumor microenvironment at various stages, its relationship with
metastatic progression and its significance in potential clinical applica-
tions for improved diagnosis and treatment.

2. Evolution of differential stiffness and pro-metastatic architecture
within tumor stroma

For most breast and colorectal cancer types, stiffness of neoplastic
tumors is considerably higher than neighboring normal tissue [41–43]
and is considered to be highly correlated with cancer progression and
metastasis [44, 45]. Although the definite role of the augmenting stiff-
ness in cancer progression still remains enigmatic [44, 46], current
knowledge suggests that gradual stiffening of tumor stroma can primar-
ily be attributed to deposition and remodeling of ECM [12, 44, 47–49].
The mechanism of stromal transformation is complex, and it encom-
passes a myriad of chemical and physical agents and processes. Cancer
cells, cancer associated fibroblasts (CAFs) and macrophages work in
concert to modulate ECMwithin the tumor microenvironment through
the following activities:

a) excessive deposition of structural components such as collagen I
[45], collagens II,III,V,IX [50–52], cross-linker glycoproteins (fibro-
nectin, tenascins etc.) [53–55], proteoglycans (heparan sulphate,
CD44) [56, 57],

b) secretion/regulation of various growth factors and cytokines e.g.
IGF1, EGF, TGFβ, VEGF etc. [58, 59], ECM-transforming enzymes
e.g. matrix metalloproteinases (MMPs) [60, 61], lysyl oxidase
(LOX) [62–64], transglutaminase [51, 65] and.

c) orchestrating topographic reconfiguration of the stroma, such as
alignment of ECM fibers, amid the plethora of aforementioned activ-
ities. Fig. 1 presents a succinct illustration of the process.

Both spatial and temporal variations of such soft to semi-rigid trans-
formation of cancerous tumors is of clinical significance. In cases of co-
lorectal and breast cancer, it is observed that collagen I, LOX
expression, and consequently stiffness, is significantly upregulated at
later stages (III/IV) compared to early stages (I/II) [43, 45, 72].Moreover,
the fact that increased stiffness is associated with advanced stages of
various carcinoma andpotential metastasis,makes stiffness a promising
prognostic and/or therapeutic target. In fact, not only stiffness, its spatial
distribution within the neoplasm and accompanying manifestations
such as indistinct stromal boundary [72], collagen fiber characteristics
(length, width, waviness etc.) [72], tumor-associated collagen signa-
tures-1,2,3 (TACS 1–3) i.e. local densification, fibril straightening/
stretching, radial alignment near boundary [73, 74] are also under ex-
tensive scrutiny as probable markers of tumor progression, metastasis
and patient survival [45, 74]. For example, it was found in a recent
study comparing grade I/II to grade III canine mammary gland carcino-
mas, that grade III cases are more likely to exhibit thicker, longer and
straighter collagen fibers and less likely to have a defined tumor-stro-
mal boundary [72]. Again, within the stroma of numerous solid tumors,
comparatively denser regions of collagen (i.e. TACS-1) are found to be
co-localized with aggressive phenotypes of cancer cells [73, 75, 76]. An-
other fascinating feature of spatial distribution of stiffness, as reported
by Acerbi et al. [43], is that tissue stiffness in the invasive region of the
stroma is significantly higher than that in tumor core or adjacent normal
tissue. Also, increased mechanical heterogeneity within tumor was
found to positively correlate with more aggressive subtypes of human
breast cancer. Furthermore, a remarkable architectural metamorphosis
transpires in parallel with tumor progression. Straightened collagen fi-
bers aligned normal to the boundary (TACS-3) congregate to form dis-
tinct bundles in parts of peripheral regions [74]. These bundles of
remodeled stiff collagens might pave the way for the cancer cells, as in-
vasion ‘highways’ [46], to escape and metastasize to secondary sites.
Hence, such transformation of tumor morphology can turn out to be
very crucial and must be addressed going forward.

3. Stromal metamorphosis and metastasis: a story of reciprocity

Metastasis is a very important juncture in cancer progression and
long has been considered as the principal therapeutic target [77]. Con-
temporary understanding, especially for breast and colon cancer devel-
opment, is that metastatic progression goes hand in hand with tumor
micro-environmental transition i.e. from softer tissue to stiff fibrous
state. The ‘context’ [2] of tumor development is multifaceted in such a
convoluted manner that most of the events are dynamically involved
in a feed-forward loop rather than a cascade. We will discuss the cycle
of events around tumor stiffness and topography.
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Fig. 1. Chronological development of pro-metastatic stromal architecture and themajor factors involved. Segment 1 (top right): At the early stages of cancer, epithelial cancer cells secrete
various growth factors that facilitates fibroblast activation, differentiation, downregulates ECMdegradation by reducingMMPs and hence increase stiffness. In response, stromalfibroblasts
regulate factors such as IGF, KGF etc. that promote cell growth and inhibit apoptosis. Segment 2 (bottom right): Upon activation, fibroblasts manifests myofibroblast (or, CAF) signatures
and produce activin/TGFβ, IGF that stimulate EMT;HGF that increases cell growth; FGF-2 that increases angiogenesis and so on. In addition, CAFs continue to remodel and reinforce ECMby
depositing collagen I, II, V, IX, increasing crosslinking, upregulating LOX and thus stromal stiffness gradually goes up. Due to excessive cellular proliferation and tumor growth, a region at
the core becomes hypoxic and cancer cells increase secretion of VEGF and CTGF that are known to support angiogenesis and infiltration respectively. Segment 3 (bottom left): As
carcinoma cells go through EMT, they produce CSF-1 which activates macrophages that in turn produce EGF, IL-33 etc. that promotes metastasis. At some regions of the invasive front,
the stromal cells align thick collagen bundles radially that can be used as an escape route by the metastatic cells. Eventually, aggressive cancer cells degrade stiff ECM by upregulating
MMPs, ADAMs etc., evade stroma, infiltrate lymph nodes and blood vessels and go through metastasis. Segment 4 (top left): Migrating cancer cells anchor at distant sites and starts
the process all over to develop secondary tumors. [51, 58, 66–71].
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3.1. ECM stiffness

3.1.1. Effect of ECM stiffness on cancer cells and other stromal inhabitants
Extra-cellular matrix stiffness has a considerable influence on cellu-

lar behavior. Increased stiffness, mostly through mechanotransduction,
may elicit a wide range of responses from different types of cells. For ex-
ample, breast epithelial cells in a stiff 3D matrix become more prolifer-
ative following high Rho activity, FAK phosphorylation and adhesion
[78]. Again, apart from autocrine/paracrine TGFβ and stromal cell-de-
rived factor-1 (SDF-1 or CXCL12) [79] signaling, ECM stiffness plays an
important role in differentiation of stromal fibroblasts into cancer asso-
ciated fibroblasts (CAFs). P190B RhoGAP overexpression in association
with elevated extra-cellular and cytoskeletal tension activates latent
TGFβ that, in turn, activates fibroblasts [80]. Interestingly, ECM stiffness
of ∼16 kPa [81], which is typical Young's modulus of fibrotic/cancer tis-
sue (1.08–68 kPa) rather than normal tissue (0.38–7.33 kPa) [82], was
found to be the threshold for upregulated expression of α-SMA, a
proven myofibroblast (also CAF) marker [81, 83]. Also, a transcription
factor which facilitates CAF generation and maintenance is YAP/TAZ,
which requires high stiffness and actomyosin contractility for activation
[84]. For epithelial cells, Provenzano et al. [85] suggested that high-stiff-
ness matrix is necessary for maintaining invasive phenotype and
culpable for upregulation of a set of cancer-associated genes dubbed
as ‘proliferation signatures’ [52, 86]. Even the immune cells such asmac-
rophages are sensitive to surrounding rigidity. Macrophages grown in-
vitro on high stiffness substrates yield more pro-inflammatory media-
tors (e.g. TNF-α, NO, IL-1β etc.) than macrophages on softer substrates
[87]. Intriguingly, all these responses by these cells are, in a sense, self-
induced. It is the cells themselves that synthesize and remodel ECM to
change its composition, arrangement and rigidity. In response, ECM
prompts the cells to adapt to altered environment by changing their be-
havior and activities. Very often, this change in cellular activities leads to
even more modulation of the matrix and stroma. Thus, a reciprocal ex-
change between the stromal cells and ECM results in a dynamically
adaptive cycle that contributes fatefully towards malignant tumor pro-
gression. Numerous research suggest that the mechanical microenvi-
ronment of tumor stroma gradually shifts towards a metastatic niche.
ECM stiffness is one of the key elements of stromal biophysics and in-
creasing evidence is corroborating the fact. For example, a stiffer micro-
environment, induced by increased collagen crosslinking in breast
cancer tumors in vivo, promotes initiation of metastasis [12, 49]. An ap-
propriately stiff fibrin gel microenvironment produces a metastatic var-
iant of murine B16-F1 melanoma cells that are highly tumorigenic in
animal models [88]. Cellular actomyosin activity and force generation

Image of Fig. 1
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Fig. 2. Epithelial cancer cells, perhaps, wait for stromal stiffness to reach an optimum level before they decide for EMT. HCT-8 cells (human colon cancer) adhere to 21 kPa polyacrylamide
(PA) gel substrate, functionalized with fibronectin, and form cell islands. On substrate of appropriate rigidity (here 21 kPa), they dissociate from each other and become rounded after 7
days of culture (a) [93]. Within few more days, most of the cell islands become R cells. The R cells are more tumorigenic in mouse models, and express several oncogenes [92].
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depend on the stiffness of the microenvironment [89–91]. Thus tumor
mechanical microenvironments may influence metastatic transition
through local force cues that generate or select a subset of metastatic
cells [92]. And different cell types may keep tuning their surrounding
environment until a suitable stiffness is attained. For instance, our pre-
vious work shows that HCT-116 and DU-145 cells (colon and prostate
cancer cells respectively) express metastatic pheno- and geno-types
on 10 kPa polyacrylamide (PA) gels whereas HCT-8 cells (colon carci-
noma cells) express similar phenotype on 21 kPa substrates [92, 93].
These epithelial type cells (E-cells) become rounded (R-cells) when cul-
tured on appropriately stiff substrates for about 7 days (Fig. 2). The R-
cells are more tumorigenic in mouse models compared to their E coun-
terparts. They express several oncogenes and suppress apoptotic genes.
None of the above mentioned cells manifested similar transformations
on very low stiffness substrates (1 kPa PA gels) or very high stiffness
substrates (3.6 GPa polystyrene) [92]. Moreover, these metastatic cells
tend to be softer than the normal cells [92]. Thus the role that ECM stiff-
ness plays in metastatic progression is quite significant.
Stromal cells
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Fig. 3. TGFβ from the stromal cells increases the activin ligand in epithelial cells and in
serum which is required for an increase in epithelial cell migration leading to
metastasis. This process can by blocked by the activin specific ligand trap, follistatin.
3.1.2. Biophysics of activin/TGFβ signaling in metastasis
Cancer genome sequencing confirmed key genes whose mutations

can drive tumorigenesis [94] and have solidified components of the
TGFβ superfamily as drivers of pathogenesis in colon cancer. These in-
clude inactivating mutations in the TGFβII receptor (TGFBR2), the
activin receptor 2A (ACVR2A) and downstream signaling target
SMAD4 [94]. TGFβ and activin are involved in the regulation of cell pro-
liferation, differentiation,migration and apoptosis [95–97]. Activation of
SMAD2/3/4 proteins through ligand binding in the canonical pathway
leads to translocation to the nucleus and transcriptional regulation of
target genes to affect growth suppression andupregulation. Thenon-ca-
nonical pathway is SMAD4-independent and engages other signaling
pathways [95, 96]. Activin and TGFβ both have dual and opposing
roles in colon carcinogenesis as they may promote growth suppression,
aswell asmigration andmetastasis inmore advanced colon cancer, also
known as the molecular switch [98–101]. In early stage colon cancer,
the TGFβ super family is growth suppressive,while in advanced disease,
high serum and stroma levels of TGFβ are associated with poor progno-
sis in colon cancer [102, 103] and in pancreatic cancers [104].

Our published data indicate that TGFβ induces activin secretion from
colon tumor stromal cells which acts to promotemetastatic behavior in
epithelial cells as measured by increased cell migration and increased
epithelial to mesenchymal transition (EMT) [105]. Normal colorectal fi-
broblast and epithelial colon cancer cell linewere analyzed for activin li-
gand expression following TGFβ stimulation. After TGFβ treatment,
activin secretion was increased in colon cancer epithelial cell irrespec-
tive of active SMAD4. Interestingly, levels of activin secretion both at
baseline and after TGFβ treatment were substantially higher either in
stromal cells alone or in co-cultures of stromalwith epithelial cells, indi-
cating that the stroma is a significant source of secreted activin.
Transwell migration assay with colon cancer cells showed that both
activin and TGFβ individually increase cell migration. Treatment with
activin specific inhibitor follistatin (FST) that inhibit activin signaling
but not TGFβ, confirms that TGFβ induced cell migration is dependent
on activin signaling while FST does not inhibit TGFβ induced growth
suppression (Fig. 3) [105].

In addition, activin signaling is a key element in metastatic pancre-
atic cancer as evidenced by elevated serum activin levels in pancreatic
cancer patients with poor prognosis [104]. Also, over-expression of
activin in mouse xenografts of pancreatic cancer cells led to larger tu-
mors and significantly decreased weight indicative of tumor cachexia
[104]. Ohnishi et al. [106] showed that activin induces collagen secre-
tion from pancreatic stellate cells in a dose dependent manner and de-
scribed the role of activin in the development of pancreatic fibrosis.
We speculate that activin release from the stromal cellsmight be related
to the ECM stiffness around them. Our preliminary experiments support
this possibility. We plated colon cancer associated fibroblasts on 2, 10
and 40 kPa gel substrate, mimicking various stiffness microenviron-
ment and observed that greater stiffness of the stroma increased the
activin level in the epithelial cells.

Due to immense significance of metastasis in disease development,
elucidating the forces driving metastasis is critical for developing inter-
ventions in cancer progression. An important event underlying metas-
tasis is EMT. Extensive literature has established links between
transcriptional factors (EMT-TFs) such as Snail1 [107, 108], ZEB [109],
Twist [110, 111] andmetastatic processes of cancer cells e.g. E-cadherin
downregulation, angiogenesis, and intravasation [107]. A reviewbyWei
and Yang [112] sheds light on various mechanotransduction pathways
that integrate physical cues from tissue rigidity and biochemical signal-
ing to drive cancer cell plasticity and metastatic promotion. Recent de-
velopments indicate that EMT-TFs are also expressed in CAFs and are
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instrumental in coordinated plasticity progression, increased prolifera-
tion and chemoresistance [113, 114]. ECM rigidity, again, is found to
be influential in this process. For instance, increased ECM stiffness in-
duces ROCK activity through elevated intracellular tension, integrin ac-
cumulation and signaling to ERK2 which stabilizes Snail1 to nucleus
[115]. By regulation of Snail1, CAFs within stiff matrix can control
YAP1 level and activities [115]. Elevated YAP interaction with TEAD/
TEF transcription factors enhances growth, transformation, migration,
and invasion [116]. Expression in CAFs of another transcription protein,
Twist1, also correlates with tumor growth, invasion depth and lymph
node metastasis [117]. Remarkably, both Twist1-activated fibroblasts
and Snail1-expressing CAFs stimulate ECM stiffness [118], which pro-
vides yet another evidence of feed-forward operation. Furthermore,
there is evidence suggesting that macrophages aid collagen synthesis
by organizing collagen I into fibrillar bundles [119], even though they
are not known for collagen production. In addition, macrophages infil-
trate in higher numbers into invasive lesions of higher stiffness and
their density correlates with increased cellular TGFβ signaling at the in-
vasive front, corroborated by evidence from human breast cancer biop-
sies [43]. Thus, tissue mechanics and inflammation may cooperate to
drive aggressive progression in tumor.

3.1.3. Effect of ECM stiffness on endothelial cells
Endothelial cells (ECs) are important in cancer progression, how-

ever, the influence of tumor stiffness on the endothelium is largely un-
known. With newly developing device systems, we are learning more
about how endothelial cells create a vascular network within tumor
stroma and facilitate nutrients and oxygen supplies to the hypoxic
core where solid stress as well as interstitial fluid pressure is high
[120–122]. In addition, ECs secrete a number of “angiocrine factors”
such asANGPT2, FGF, IGF, IL, CSF, SDF1 etc. that promotemetastatic pro-
gression [123, 124]. Also, ECs play their part in ECM remodeling for es-
tablishing vascular niches in the stroma. The EC basement membrane
comprises various ECM constituents e.g. lamininα4 (LAMA4), fibronec-
tin, hyaluronan and collagen-α type IV etc. and acts as a storage of var-
ious cytokines and growth factors [124]. Another noteworthy protein,
CCN1 (CYR61) is a matricellular protein that is known to be involved
in a number of tumorigenic processes e.g. cell adhesion, migration, fi-
brosis, apoptosis, angiogenesis etc. [125]. A recent study on endothelial
cells found that expression of CCN1 is higher on stiffer substrates (in-
vitro) and also stiffer regions of orthotopically transplanted tumors
(in-vivo) [126]. This stiffness-induced CCN1 is considered to be
upregulating N-cadherin on endothelium through activation of β-ca-
tenin nuclear translocation and signaling [126, 127]. N-cadherin, in
turn, facilitates interaction between cancer and endothelial cells and fa-
cilitates aggressive cells' (transitioned to mesenchymal state) infiltra-
tion into blood/lymph vessels for metastasis (see Fig. 4).

3.2. Cancer cell stiffness and stromal morphology

Cancer cells, irrespective of the type of carcinoma, are usually softer
than their normal counterparts [128, 129]. This softening of neoplastic
cells has several implications. Perhaps, one of the reasons why cells un-
dergo such a transformation is preparing for breaking out of the primary
site through the stromal ECM scaffold. There are a few modes of their
evasion such as amoeboid migration, mesenchymal migration, and col-
lective invasion. Single cell or amoeboid migration is somewhat inde-
pendent of ECM breakdown and cells usually maneuver their way
through tissue gaps and trails by alteration of their shapes. Mesenchy-
mal cells, in contrast, utilize FAK, Rho activities and proteolytic ECM
degradation to ‘force’ theirway out adopting a spindle-likemorphology.
In collective migration, some mesenchymal cells lead the way for a
strand of cells that follow the traction pull. Overall, all of thesemigration
mechanisms are influenced by both cancer cell stiffness and architec-
tural properties e.g. ECM dimension, density or gap size, orientation,
stiffness [46, 75, 130, 131].

4. Dual agents in cancer microenvironment

One fascinating aspect of cancer microenvironment that adds to the
complexity of tumor progression is the dual role played by several
agents, both physical and chemical. The dual agents can act as both can-
cer suppressor and promoter and choose their course of action based on
the signals received from the surroundings. Thus, such actors can be po-
tential therapeutic targets that can bemanipulated to reverse the effects
of cancer progression. A quintessential example of such a dual agent is
activin/TGFβ. In preceding sections, we have discussed how TGFβ ex-
pression in stromal fibroblasts and carcinoma cells depends on and/or
influences stromal stiffness to promote metastatic progression. In con-
trast, TGFβ signaling can also act to suppress tumor progression through
regulation of cell growth, apoptosis and immortalization [132]. Thus,
during tumor progression, various genomic coding for protective and
cytostatic TGFβ signaling is either mutated or deleted. As a result,
TGFβ signaling switches to promote cancer progression, invasion, and

Image of Fig. 4
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tumor metastasis [132]. Activin A has also demonstrated both onco-
genic and tumor suppressor roles. In prostate and breast cancer it
proved to be a tumor suppressive actor while in lung, head and neck
squamous cell carcinoma, its expression is correlated with increased
growth, invasion and poor patient prognosis [95]. Although the interac-
tion between activin signaling and tumormicroenvironment is not well
understood, recent findings indicate that activin A signaling operates in
a cell-type and context dependent manner. For instance, it can exert
positive functions such as cell cycle arrest in non-invasive cells, but
can increase proliferation in aggressive cancer cells [95, 133]. Thus,
activin expression in the tumor may provoke differential outcomes.
During tumor growth, stromal cells like fibroblasts secrete activin A to
inhibit growth, but cancer cells can adapt and TGFβ stimulates EMT by
regulating transcription factors such as ZEB, Snail or Twist. In addition,
TGFβ has been shown to stimulate collective migration primarily
through extracellular-regulated kinase 1/2 (ERK1/2) activation [95,
134, 135].We have evidence that on substrates of higher stiffness, fibro-
blasts exert more force and also produce more activin/TGFβ. Thus grad-
ual remodeling and stiffening of stromal ECM appears to be an
important contributing factor for role switching of TGFβ.

The classic double agent in cancer biophysics is the extracellularma-
trix (ECM). As a mediator between biomechanics and tumor biology,
ECM can play a suppressor role at early stages of tumor progression;
but at later stages, it can radically change its role and convert to a pro-
moter of invasion and metastasis. Fang et al. discussed inhibiting and
promoting activities of collagen at different stages of cancer develop-
ment and how it can behave like a ‘double-edged sword’ in tumor pro-
gression [46]. Traditionally, ECM has been considered as a physical
scaffold that binds cells and tissues together. In cancer, collagen was
regarded as a steric hindrance to cell motility and invasion and also bio-
chemically inert. However, recent findings show that ECMcan also elicit
biochemical and biophysical signaling [48, 49] that may modulate cell
adhesion, migration, angiogenesis, tissue remodeling and metastasis in
cancer. ECM remodeling through increased deposition of collagen, pro-
tease-dependent and –independent cross-linking and stiffening, pro-
teolytic degradation etc. are relevant to metastatic processes at
various stages of tumor development. One of the key factors in ECM re-
modeling is Lysyl oxidase (LOX) which is an enzyme that catalyzes the
cross-linking of collagens or elastin in the ECM and thus regulates the
tensile strength of tissues. However, recent results revealed additional
activities of LOX such as gene transcription, motility/migration, and
cell adhesion [136]. Due to its influence on such diverse functions, LOX
also can play multiple roles in cancer. Several studies found that LOX
(ras mRNA) is a potent tumor suppressor gene in some stromal cells
that happened to be inhibiting signaling pathways that induce carcino-
genic transformations [136–138]. For instance, Giampuzzi and col-
leagues demonstrated that LOX-downregulated normal kidney
fibroblasts led to increased cellular proliferation and anchorage-inde-
pendent growth, loss of PDGF and IGF-1 regulation, and constitutive ac-
tivation of ras [139]. Although tumor suppressive characteristics of LOX
is still to be explored for better understanding, its contribution in pro-
moting cancer is muchmore pronounced. Numerous research has dem-
onstrated a positive correlation between LOX expression and migration
[140, 141], invasion, EMT [142–144], metastasis [142], and poor patient
prognosis. In summary, tumor microenvironment is a complex realm
where interaction between various physical and chemical aspects are
abundant. There are plenty of agents other than TGFβ, LOX or collagen
that exhibit such dual nature and thus are potential therapeutic target.
Harnessing any of these agents within tumor microenvironment may
lead to novel treatment methods in cancer.

5. Translational relevance

Increased matrix stiffness not only promotes tumor progression by
enhancing metastasis, but also impedes transport of therapeutic agents
reducing the efficacy of chemotherapy which is a critical problem for
the delivery of treatment. In cases of canine breast cancer, poor progno-
sis was associated with increased tumor stiffness and a tumor associ-
ated collagen signature (TACS) of increased collagen density, fiber
width, length and straightness [72]. The clinical use of elastography al-
lows assessment of tissue stiffness and could provide a biomarker for
more aggressive disease. Marangon et al. [145] utilized shear wave
elastography (SWE) in combination with mild hyperthermia and ther-
mal ablation to treat a murine model of epidermoid carcinoma. They
noted an initial transient increase in tumor stiffness followed by a soft-
ening of the tumor with subsequent treatment leading to a reduced
tumor volume when compared to untreated tumor-bearing mice
which has the potential to translate into a new therapeutic approach.
Heat treatment of hepatocellular carcinoma (HCC) cell lines was used
by Zhang et al. [146] to mimic radiofrequency ablation therapy. The
heat treated HCC were combined with synthetic matrix of a spectrum
of stiffness and implanted as xenografts. They observed that insufficient
heat treatment led to significant promotion of HCC proliferation and in-
creased stiffness enhance cell motility. Importantly treatmentwith vita-
min K1 combined with Sorafenib reverses the effects of increased
stiffness indicating the potential for cancer therapies which reduce
tumor stiffness.
6. Summary

In this mini review we discussed the current state of understanding
on the role of tumor stiffness on cancer progression. The detailedmolec-
ular mechanism by which stiffness influences the dynamic interactions
between cancer cells and the stroma is only beginning to emerge. How-
ever, it is becoming evident that tumor biophysics may offer a new par-
adigm for understanding cancer and for novel therapeutics. And with
the advancement ofmicro- and nano-tool technologies,we are breaking
new barriers and beginning to understand better how closely physics
and biological processes are linked. As a result, we are seeing an increase
in the effort to understand tumor biophysics better and potentially em-
ploy physical and mechanical characteristics as diagnostic, prognosis or
therapeutic purposes. For future, a vast avenue is yet to be explored in
this research direction. Our current understanding of various biochem-
ical signaling in cancer is mostly based on 2D cell culture and thus, de-
veloping methods to study these pathways in an ex-vivo 3D platform
can help us better understand how exactly these physical parameters
affect chemical signaling. Also, since stromal stiffening is related with
poor prognosis, canwe revert tumor remodeling to preventmetastasis?
Or, can we use tumor rigidity or solid stress as indicators of cancer pro-
gression and patients' outcome? Moreover, although we know ECM
stiffness influences activin secretion, we still do not know how exactly
cells convert this physical cue into a biochemical signal and control
growth factor synthesis and release. Such questions are currently
being addressed by various laboratories around the world. Insights
from these studies are expected to add new arsenal against cancer.
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