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Understanding how nervous systems exploit task-
relevant properties of sensory stimuli to perform natural
tasks is fundamental to the study of perceptual systems.
However, there are few formal methods for determining
which stimulus properties are most useful for a given
natural task. As a consequence, it is difficult to develop
principled models for how to compute task-relevant
latent variables from natural signals, and it is difficult to
evaluate descriptive models fit to neural response.
Accuracy maximization analysis (AMA) is a recently
developed Bayesian method for finding the optimal task-
specific filters (receptive fields). Here, we introduce
AMA–Gauss, a new faster form of AMA that incorporates
the assumption that the class-conditional filter
responses are Gaussian distributed. Then, we use AMA–
Gauss to show that its assumptions are justified for two
fundamental visual tasks: retinal speed estimation and
binocular disparity estimation. Next, we show that
AMA–Gauss has striking formal similarities to popular
quadratic models of neural response: the energy model
and the generalized quadratic model (GQM). Together,
these developments deepen our understanding of why
the energy model of neural response have proven useful,
improve our ability to evaluate results from subunit
model fits to neural data, and should help accelerate
psychophysics and neuroscience research with natural
stimuli.

Introduction

Perceptual systems capture and process sensory
stimuli to obtain information about behaviorally

relevant properties of the environment. Characterizing
the features of sensory stimuli and the processing rules
that nervous systems use is central to the study of
perceptual systems. Most sensory stimuli are high-
dimensional, but only a small set of stimulus features
are relevant for any particular task. Thus, perceptual
and neural processing in particular tasks is driven by
sets of features that occupy a lower dimensional space
(i.e., can be described more compactly) than the
stimuli. These considerations have motivated percep-
tion and neuroscience researchers to develop methods
for dimensionality reduction that characterize the
statistical properties of proximal stimuli, that describe
the responses of neurons to those stimuli, and that
specify how those responses could be decoded (Bell &
Sejnowski, 1997; Cook & Forzani, 2009; Cook,
Forzani, & Yao, 2010; Hotelling, 1933; Lewicki, 2002;
McFarland, Cui, & Butts, 2013; Olshausen & Field,
1996; Pagan, Simoncelli, & Rust, 2016; Park, Archer,
Priebe, & Pillow, 2013; Ruderman & Bialek, 1994;
Rust, Schwartz, Movshon, & Simoncelli, 2005;
Schwartz, Pillow, Rust, & Simoncelli, 2006; Tipping &
Bishop, 1999; Vintch, Movshon, & Simoncelli, 2015).
However, many of these methods are task-independent;
that is, they do not explicitly consider the sensory,
perceptual, or behavioral tasks for which the encoded
information will be used. Empirical studies in psycho-
physics and neuroscience often focus on the behavioral
limits and neurophysiological underpinnings of per-
formance in specific tasks. Thus, there is a partial
disconnect between task-independent theories of en-
coding and common methodological practices in
psychophysics, and sensory and systems neuroscience.
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Task-specific normative models prescribe how best
to perform a particular task. Task-specific normative
models are useful because they provide principled
hypotheses about (1) the stimulus features that nervous
systems should encode and (2) the processing rules that
nervous systems should use to decode the encoded
information. Many normative models in widespread
use are not directed at specific tasks. Methods for
fitting neural response cannot generally be interpreted
with respect to specific tasks. Accuracy maximization
analysis (AMA) is a Bayesian method for finding the
stimulus features that are most useful for specific tasks
(Burge & Jaini, 2017; Geisler, Najemnik, & Ing, 2009).
In conjunction with carefully calibrated natural stim-
ulus databases, AMA has contributed to the develop-
ment of normative models of several fundamental tasks
in early- and mid-level vision (Burge & Geisler, 2011;
Burge & Geisler, 2012; Burge & Geisler, 2014; Burge &
Geisler, 2015), by determining the encoding filters
(receptive fields) that support optimal performance in
each task. These task-specific normative models have,
in turn, predicted major aspects of primate neuro-
physiology and human psychophysical performance
with natural and artificial stimuli (Burge & Geisler,
2014, 2015).

The primary theoretical contribution of this manu-
script is to establish formal links between normative
models of specific tasks and popular descriptive models
of neural response (Figure 1). To do so, we first develop
a new form of AMA called AMA–Gauss, which
incorporates the assumption that the latent-variable-
conditioned filter responses are Gaussian distributed.
Then, we use AMA–Gauss to find the filters (receptive
fields) and pooling rules that are optimal with natural
stimuli for two fundamental tasks: estimating the speed
of retinal image motion and estimating binocular
disparity (Burge & Geisler, 2014, 2015). For these two
tasks, we find that the critical assumption of AMA–
Gauss is justified: the optimal filter responses to natural
stimuli, conditioned on the latent variable (i.e., speed or
disparity), are indeed Gaussian distributed. Then, we
show that this empirical finding provides a normative
explanation for why neurons that select for motion and
disparity have been productively modeled with energy-
model-like (i.e., quadratic) computations (Cumming &
DeAngelis, 2001; DeAngelis, 2000; Ohzawa, 1998;
Ohzawa, DeAngelis, & Freeman, 1990; Ohzawa,
DeAngelis, & Freeman, 1997). Finally, we recognize
and make explicit the formal similarities between
AMA–Gauss and the generalized quadratic model
(GQM) (Park et al., 2013; Wu, Park, & Pillow, 2015), a
recently developed method for neural systems identifi-
cation. These advances may help bridge the gap
between empirical studies of psychophysical and
neurophysiological tasks, methods for neural systems

identification, and task-specific normative modeling
(Figure 1).

In addition to these theoretical contributions, the
development of AMA-Gauss represents a technical
advance. The major drawback of AMA is its compu-
tational expense. Its compute-time for filter learning is
quadratic in the number of stimuli in the training set,
rendering the method impractical for large-scale
problems without specialized computing resources. We
demonstrate, both analytically and empirically, that
AMA-Gauss reduces compute-time for filter learning
from quadratic to linear. Thus, for tasks for which the
critical assumption of AMA-Gauss is justified, AMA-
Gauss can be of great practical benefit.

Background

Energy model

Energy models have been remarkably influential in
visual neuroscience. The standard energy model posits
two Gabor-shaped subunit receptive fields, the re-
sponses of which are squared and then summed (Figure
2A). These computations yield decreased sensitivity to
the local position of stimulus features (i.e., spatial
phase) and increased sensitivity to the task-relevant
latent variable. Energy models have been widely used
to describe the computations of neurons involved in
coding retinal image motion and binocular disparity
(Adelson & Bergen, 1985; Cumming & DeAngelis,
2001; DeAngelis, 2000). However, the motion–energy
and disparity–energy computations are primarily de-

Figure 1. Linking scientific subfields. Perception science benefits

when links are drawn between psychophysical and neurosci-

ence studies of particular tasks, task-agnostic statistical

procedures that fit models to data, and task-specific normative

methods that determine which models are best. The current

work develops formal links between the energy model for

describing neural response, the generalized quadratic model

(GQM) for fitting neural response, and AMA–Gauss for

determining the neural response properties that best serve a

particular task.
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scriptive models of a neuron’s response properties. The
energy model does not make explicit how neural
responses should be decoded into estimates.

Under what circumstances would energy-model-like
computations be optimal? Energy-model-like computa-
tions are optimal if quadratic pooling is necessary for
determining the likelihood of the task-relevant latent
variable. We show in the following material that for
retinal speed and binocular disparity estimation, two

tasks classically associated with the energy model,
quadratic pooling is indeed necessary to optimally decode
the task-relevant latent variable (see Results). Therefore
energy-model-like computations are optimal for these
tasks with natural stimuli. AMA–Gauss is specifically
designed to find the receptive fields and pooling rules that
optimize performance under these conditions. It is thus
likely to help accelerate the development of normative
models of other tasks for which the energy model has
provided a useful description.

Generalized quadratic model (GQM)

The standard energy model assumes that the
responses of certain neurons can be accounted for by
two Gabor-shaped subunit receptive fields. Real
neurons are not constrained to have only two subunit
receptive fields, nor are their shapes constrained to be
Gabor-shaped. The generalized quadratic model
(GQM) fits multiple arbitrarily-shaped subunit filters
and quadratic pooling rules that best account for a
neuron’s response (Figure 2B; Park et al., 2013). The
GQM is a specific example of a large class of models
designed for neural systems identification, collectively
known as ‘‘subunit models.’’ The spike-triggered
average (STA), spike-triggered covariance (STC), and
the generalized linear model (GLM) are popular
examples of this class of models. The goal of these
models is to provide a computational level description
of a neuron’s computations that can predict its
responses to arbitrary stimuli.

Unfortunately, a tight description of a neuron’s
computations does not necessarily provide insight
about how (or whether) that neuron and its computa-
tions subserve a specific task; after a subunit model has
been fit, the purpose of the neuron’s computations is
often unclear. Thus, although methods for neural
systems identification are essential for determining
what the components of nervous systems do, they are
unlikely to determine why they do what they do. One
way to address this issue is to develop normative
frameworks (1) that determine the computations that
are optimal for particular tasks and (2) that share the
same or similar functional forms as popular methods
for describing neural response.

AMA–Gauss is a normative method that is designed
to find the filters (receptive fields) and quadratic pooling
rules that are optimal for specific sensory-perceptual
tasks (Figure 2C; see Methods). AMA–Gauss has a
functional form that is closely related to the energy
model and the GQM, but it has a different aim. Rather
than describing what a neuron does, it prescribes what
neurons should do. In fact, given a hypothesis about the
function of a particular neuron, AMA–Gauss can
predict the subunit filters and pooling rules that will be
recovered by the GQM. The development of closely

Figure 2. Computations of an energy model neuron, a GQM

model neuron, and an AMA–Gauss likelihood neuron. All three

have quadratic computations at their core. The energy model

and the GQM describe the computations that neurons perform.

AMA–Gauss prescribes the computations that neurons should

perform to optimize performance in a specific task. (A) The

standard energy model assumes two Gabor-shaped orthogonal

subunit filters (receptive fields) fgbr to account for a neuron’s

response. The response of an energy model neuron RE is

obtained by adding the squared responses of the filters. (B) The

GQM fits multiple arbitrarily-shaped orthogonal subunit re-

ceptive fields f? that best account for a neuron’s response. The

response of a GQM model neuron RGQM is obtained by pooling

the squared (and linear, not shown) responses of the subunit

filters via a weighted sum, and passing the sum through an

output nonlinearity. (C) AMA–Gauss finds the optimal subunit

filters fopt and quadratic pooling rules for a specific task. Unlike

standard forms of the energy model and the GQM, AMA–Gauss

incorporates contrast normalization and finds subunit filters

that are not necessarily orthogonal. The response RLu of an

AMA–Gauss likelihood neuron represents the likelihood of

latent variable Xu. The likelihood is obtained by pooling the

squared (and linear, not shown) subunit filter responses,

indexed by i and j, via a weighted sum (Equation 20).
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related normative models and methods for neural
systems identification is likely to enhance our ability to
interpret fits to neural data and accelerate progress in
psychophysical and neuroscientific research.

Methods

This section formally develops AMA–Gauss. To
provide context for this technical contribution, we first
review the setup and main equations for AMA (Geisler
et al., 2009). Then, we derive the main equations for
AMA–Gauss, provide a geometric intuition for how it
works, and discuss practices for best use. Readers who
are more interested in the scientific implications, and
less interested in the mathematical formalisms, can skip
ahead to Results.

Accuracy maximization analysis

The goal of AMA is to find the filters (receptive
fields) that extract the most useful stimulus features for
a particular task. Consistent with real biological
systems, AMA places no constraints on the orthogo-
nality of its filters, and its filter responses are corrupted
by noise. AMA searches for the optimal filters with a
closed form expression for the cost that relies on a
Bayes optimal decoder. The filters are constrained to
have unit magnitude (jjfjj ¼ 1.0). The expression for the
cost requires the specification of five factors (see Figure
3A). These factors are (1) a well-defined task (i.e., a
latent variable to estimate from high-dimensional
stimuli), (2) a labeled training set of stimuli, (3) a set of
encoding filters, (4) a response noise model, (5) and a
cost function (Figure 3A). The training set specifies the
joint probability distribution PðX; sÞ between the latent
variable X and the stimuli s (Figure 3B) and implicitly
defines the prior PðXÞ ¼

P
s PðX; sÞ over the latent

variable (see Discussion). If the training set is
representative, results will generalize well to stimuli
outside the training set.

For any particular filter set, the matched Bayes
optimal decoder provides the cost by computing the
posterior probability over the latent variable PðXjRÞ,
reading out the optimal estimate from the posterior,
and then assigning a cost to the error. The steps for
finding the optimal task-specific filters are: (1) select a
particular stimulus skl from the labeled training set, (2)
obtain a set of noisy filter responses R(k, l) from a
particular (possibly nonoptimal) set of filters, (3) use
the optimal non-linear decoder g(.) to obtain the
optimal estimate X̂opt and its expected cost �Ckl, (4)
repeat for each stimulus and compute the average cost
across all stimuli in the training set (5) update the filters
to reduce the cost, and (6) repeat until the average cost
is minimized. The optimal task-specific filters fopt are
those that minimize the cost (Figure 3B).

Bayes optimal decoder and filter response model

The Bayes optimal decoder gives a closed form
expression for the cost for any filter or set of filters,
given the training stimuli. The posterior probability of
latent variable Xu given the noisy filter responses R(k, l)
to stimulus skl is given by Bayes’ rule

P Xu R k; lð Þjð Þ ¼ P R k; lð ÞjXuð ÞP Xuð ÞPNlvl

i¼1 P R k; lð ÞjXið ÞP Xið Þ
ð1Þ

where Nlvl is the number of latent variable level, and l
indexes the stimuli having latent variable value Xk. The
conditional distribution of noisy responses given the
latent variable is

P RjXuð Þ ¼
XNu

v¼1
P Rjsuvð ÞP suvjXuð Þ ð2Þ

where Nu is the number of stimuli having latent variable
level Xu, and v indexes training stimuli having that
latent variable value. Conveniently, PðsuvjXuÞ and
PðXuÞ are determined by the training set; PðsuvjXuÞ ¼
1
Nu

is the probability of particular stimulus v with latent
variable Xu given that there are Nu such stimuli, and
PðXuÞ ¼ Nu

N is the fraction of all stimuli having latent
variable Xu. Therefore, Equation 1 reduces to

P XujR k; lð Þð Þ ¼
PNu

v¼1 P R k; lð Þjsuvð ÞPNlvl

i¼1
PNi

J¼1 P R k; lð Þjsij
� � ð3Þ

Equation 3 indicates that the posterior probability is
given by the sum of the within-level stimulus likeli-
hoods, normalized by the sum of all stimulus likeli-
hoods.

Our aim is to understand task-specific information
processing in biological systems. Thus, the response

Figure 3. Accuracy maximization analysis. (A) Factors deter-

mining the optimal decoder used by AMA during filter learning.

(B) Steps for finding optimal task-specific filters via AMA.
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noise model should be consistent with the properties of
biological encoders. AMA uses scaled additive (e.g.,
Poisson-like) Gaussian noise, a broadly used model of
neural noise in early visual cortex (Geisler & Albrecht,
1997). Equations 4–7 define the response model, and
specify the distribution of noisy filter responses PðRjsuvÞ
to each stimulus. For an individual filter ft from set of
filters f ¼ ½f1; f2; :::; fq� (where q is the number of filters),
the mean response rt, noisy response Rt, and noise
variance r2

t to stimulus suv having latent variable value
Xu are

ruv;t ¼ fTt suv ð4Þ

Ruv;t ¼ ruv;t þ gt ð5Þ

gt ;N 0; r2
uv;t

� �
ð6Þ

r2
uv;t ¼ ajruv;tj þ r2

0 ð7Þ

where g is a noise sample, a is the Fano factor, and r2
0 is

baseline noise variance. The proximal stimulus s ¼ x��x
jjx��xjj

is contrast-normalized consistent with standard models
(Albrecht & Geisler, 1991; Heeger, 1992), where x is an
(possibly noise corrupted) intensity stimulus. If q filters
are considered simultaneously, the response distribu-
tions PðRjsÞ, and the variables in Equations 4–7
become q-dimensional: mean response vector
r ¼ ½r1; r2; :::; rq�, noisy response vector
R ¼ ½R1;R2; :::;Rq�, and response noise covariance
matrix K.

The posterior probability distribution over the latent
variable given the noisy filter responses to any stimulus
in the training set is fully specified by Equations 3–7.
The next step is to define the cost associated with a
noisy response to an individual stimulus. The cost is
given by

Ckl ¼
X
X

c X̂
opt
kl ;X

� �
P XjR k; lð Þð Þ

� �
ð8Þ

where c(.) is an arbitrary cost function and X̂
opt
kl is the

optimal estimate associated with noisy response R(k, l).
The overall cost for a set of filters is the expected cost
for each stimulus averaged over all stimuli

�C ¼ 1

N

XN
k;l

ERðk;lÞ Ckl½ � ð9Þ

The goal of AMA is to obtain the filters f that minimize
the overall cost

fopt ¼ argmin
f

�C ð10Þ

where f
opt are the optimal filters.

A single evaluation of the posterior probability
distribution (Equation 3) for each stimulus in the

training set requiresOðN2NlvlÞ operations whereN is the
total number of stimuli and Nlvl is the number of latent
variable levels in the training set. As noted earlier, this
compute time makes AMA impractical for large scale
problems without specialized computing resources.

There are at least two methods for achieving
significant computational savings in optimization
problems: employing models with strong parametric
assumptions, and employing stochastic gradient de-
scent routines. Both methods have drawbacks. Models
with strong parametric assumptions are only appro-
priate for cases in which the assumptions approxi-
mately hold. Stochastic gradient descent routines are
noisy and may not converge to the optimum filters. We
have previously developed AMA–SGD, a stochastic
gradient descent routine for AMA (Burge & Jaini,
2017). Here, we develop AMA–Gauss, a model with
strong parametric assumptions.

AMA–Gauss

In this section, we first introduce AMA–Gauss and
highlight its advantages over AMA. Subsequently, we
provide expressions for AMA–Gauss likelihood func-
tion, L2 and L0 cost functions, and their gradients. We
believe this is a valuable step toward making AMA a
more practical tool in vision research.

AMA–Gauss: Class-conditional Gaussian assumption

AMA–Gauss is a version of AMA that makes the
parametric assumption that the filter responses are
Gaussian distributed when they are conditioned on a
particular value of the latent variable

P RjXuð Þ ¼ N R; lu;Ruð Þ ð11Þ
where R are responses to stimuli having latent variable
level Xu,

lu ¼
1

Nu

XNu

v¼1
fTsuv ¼ fTsu ð12Þ

is the class-conditional mean of the noisy filter
responses and

Ru ¼
1

Nu

XNu

v¼1
fTsuv � fTsu
� �

fTsuv � fTsu
� �T� �" #

þ K

ð13Þ
is the class-conditional covariance of the noisy filter
responses. The first term in Equation 13 is the class-
conditional covariance of the expected filter responses.
The second term in Equation 13, K, is the covariance
matrix of the filter response noise g ;Nð0;KÞ. There
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are two major reasons for making the Gaussian
assumption. First, if the response distributions are
Gaussian, then AMA–Gauss will return the same filters
as AMA while simultaneously providing huge savings
in compute time. Second, the assumption is justified for
at least two fundamental visual tasks in early vision (see
Results; Burge & Geisler, 2014, 2015). With time, we
speculate that similar statements will be justified for
other sensory-perceptual tasks.

Under the AMA–Gauss assumption, the posterior
probability (Equation 1) of latent variable Xu is

P XujR k; lð Þð Þ ¼ N R k; lð Þ; lu;Ruð ÞPNlvl

i¼1N R k; lð Þ; li;Rið Þ
ð14Þ

where Nlvl is the number of latent variable levels. The
AMA–Gauss posterior (Equation 14), has a simpler
form than the AMA posterior (Equation 3). Hence,
whereas a single evaluation of the AMA posterior
probability distribution requires OðN2NlvlÞ operations
(Equation 3), the AMA–Gauss posterior requires only
OðNNlvlÞ operations where N is the number of stimuli
in the training set (see Results). This reduction in
compute-time substantially improves the practicality of
AMA when the Gaussian assumption is justified. Even
if the Gaussian assumption is not justified, AMA–
Gauss is guaranteed to make the best possible use of
first- and second-order conditional response statistics,
and could thus provide a decent initialization at low
computational cost.

AMA–Gauss: Derivations of the likelihood function, costs,
and gradients

Analytic solutions for the optimal filters under
AMA–Gauss (and AMA) are not available in closed
form. Here, we provide expressions for the AMA–Gauss
likelihood function, L2 cost, L0 cost, and their gradients.

The maximum likelihood AMA–Gauss encoding
filters fL are those that simultaneously maximize the
likelihood of the correct latent variable Xk across all
stimuli in the training set. Stimuli having latent variable
value Xk are indexed by l, and the ith stimulus in the
training set is denoted (ki, li). The likelihood function of
the AMA–Gauss filters is

L fð Þ ¼
YN
i¼1

2pð Þ�
d
2jRki j

�1
2

"

exp � 1

2
R ki; lið Þ � lki

� �T
R�1ki

R ki; lið Þ � lki

� �� 	#

ð15Þ
The maximum likelihood filters can be determined by
maximizing the likelihood function or, equivalently,
minimizing the negative log-likelihood function

fL ¼ argmin
f

� logL fð Þ½ �

In practice, the expected negative log-likelihood is
easier to minimize. Complete derivations of the
likelihood function, the expected log-likelihood func-
tion, and closed form expressions for the associated
gradients are provided in Appendix A. These expres-
sions can be used to estimate the maximum-likelihood
filters via gradient descent.

Next, we derive the AMA–Gauss cost for two
popular cost functions for which the minimum mean
squared error (MMSE) estimate and maximum a
posteriori (MAP) are optimal: the L2 and L0 cost. The
cost function specifies the penalty assigned to different
types of error. For the L2 (i.e. squared error) cost
function, the expected cost for each stimulus skl
(Equation 9) is

�Ckl ¼ ER k;lð Þ X̂
opt
kl � Xk

� �2h i
ð16Þ

where the optimal estimate X̂
opt
kl ¼

PNlvl

u¼1XuPðXujRðk; lÞÞ
is the mean of the posterior.

For the L0 (i.e., 0,1) cost function, the expected cost
across all stimuli is closely related to the KL-divergence
of the observed posterior and an idealized posterior
with all its mass at the correct latent variable Xk; in
both cases, cost is determined only by the posterior
probability mass at the correct level of the latent
variable (Burge & Jaini, 2017; Geisler et al., 2009).
Here, the expected KL-divergence per stimulus is equal
to the negative log-posterior probability at the correct
level (Geisler et al., 2009)

�Ckl ¼ ERðk;lÞ � logP XkjR k; lð Þð Þ½ � ð17Þ

In a slight abuse of terminology, we refer to this
divergence as the L0 or KL-divergence cost.

The gradient of the total expected cost across all
stimuli can be evaluated by calculating the gradient of
the cost for each stimulus rf

�Ckl (see Equation 9).
Hence, the gradient of the total expected cost is

rf
�C ¼ 1

N

XN
k;l

rf
�Ckl ð18Þ

The gradient of the cost for each stimulus can be
evaluated by calculating the gradient of the posterior
probability. Complete derivations of the cost and the
gradient of the cost for the L2 and L0 cost functions are
given in Appendix B and Appendix C, respectively.

Cost is minimized when responses to stimuli having
different latent variable values overlap as little as
possible. The cost functions (i.e., max-likelihood, L0

cost, L2 cost) exert pressure on the filters to produce
class-conditional response distributions that are as
different as possible given the constraints imposed by
the stimuli. Hence the optimal filters will (1) maximize

Journal of Vision (2017) 17(12):16, 1–26 Jaini & Burge 6



the differences between the class-conditional means or
covariances and (2) minimize the generalized variance
for each class-conditional response distribution. (Gen-
eralized variance is a measure of overall scatter,
represents the squared volume of the ellipse, and is
given by the determinant of the covariance matrix.)

AMA–Gauss: Geometric intuition

Figure 4 provides a geometric intuition for the
relationship between the filter response distributions,
the likelihood, and the posterior probability distribu-
tion for two simple hypothetical cases. Both cases have
three latent variable values. In one case, the informa-
tion about the latent variable is carried by the class-
conditional mean (Figure 4A–C). In the other case, the
information about the latent variable is carried by the
class-conditional covariance (Figure 4D–F). In all
cases, the class-conditional responses to stimuli having
the same latent variable value are Gaussian distributed.
With a single filter, the response distributions are one-
dimensional (Figure 4A, D). For any observed noisy
response R, the likelihood of a particular level of the
latent variable Xu is found by evaluating its response

distribution at the observed response (blue dot; Figure
4A, D). The posterior probability of latent variable Xu

is obtained by normalizing with the sum of the
likelihoods (blue, red, and green dots; Figure 4B, E).
With two filters, the response distributions are two-
dimensional (red, blue, and green ellipses with corre-
sponding marginals; Figure 4C, F). The second filter
will increase the posterior probability mass at the
correct value of the latent variable (not shown) because
the second filter selects for useful stimulus features that
the first filter does not. These hypothetical cases
illustrate why cost is minimized when mean or
covariance differences are maximized between classes
and generalized variance is minimized within classes.
The filters that make the response distributions as
different as possible make it as easy as possible to
decode the latent variable.

AMA–Gauss: Best practices

The AMA–Gauss method developed here does not
automatically determine the number of stimuli to train
on, or the number of task-specific filters to learn; these
choices are left to the user.

Figure 4. Relationship between conditional filter response distributions, likelihood, and posterior probability. Two hypothetical cases

are considered, each with three latent variable values. (A) One-dimensional (i.e., single filter) Gaussian conditional response

distributions, when information about the latent variable is carried only by the class-conditional mean; distribution means, but not

variances, change with the latent variable. The blue distribution represents the response distribution to stimuli having latent variable

value Xk. The red and green distributions represent response distributions to stimuli having different latent variables valuesXu 6¼ Xk.

The blue dot represents the likelihood LðXu; R1ðk; lÞÞ ¼ N ðR1ðk; lÞ; lu;RuÞ that observed noisy filter response R1(k, l) to stimulus sk,l
was elicited by a stimulus having latent variable level Xu¼ Xk. Red and green dots represent the likelihoods that the response was

elicited by a stimulus having latent variable Xu 6¼ Xk (i.e., by a stimulus having the incorrect latent variable value). (B) Posterior

probability over the latent variable given the noisy observed response in (A). The posterior probability of the correct latent variable

value (in this case, Xk) is given by the likelihood of the correct latent variable value normalized by the sum of all likelihoods. Colored

boxes surrounding entries in the inset equation indicate the likelihood of each latent variable. (C) Two-dimensional (i.e., two-filter)

Gaussian response distributions. Each ellipse represents the joint filter responses to all stimuli having the same latent variable value.

The second filter improves decoding performance by selecting for useful stimulus features that the first filter does not. The black dot

near the center of the blue ellipse represents an observed noisy joint response R(k, l) to stimulus sk,l. The likelihood LðXu;Rðk; lÞÞ
¼ N ðRðk; lÞ; lu;RuÞ that the observed response was elicited by a stimulus having latent variable value Xu is obtained by evaluating

the joint Gaussian at the noisy response; in this case, the product of the likelihoods represented by the blue dots on the single filter

response distributions. (D–F) Same as A–C, but where information about the latent variable is carried by the class-conditional

covariance instead of the mean; ellipse orientation, but not location, changes with the latent variable. AMA–Gauss finds the filters

yielding conditional response distributions that are as different from each other as possible, given stimulus constraints.
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To obtain representative results (i.e., to minimize
sampling error) the training set must be of sufficient
size. AMA–Gauss uses the sample mean and covari-
ance to approximate the Gaussian distributions of filter
responses conditional on each value of the latent
variable (Equation 11). Training sets with at least 250
stimuli per level tend to give representative results.

To extract all task-relevant information from each
stimulus a sufficient number of receptive fields must be
learned. In general, the best practice is to learn filters
until the change in the value of the total cost is
negligible (Geisler et al., 2009). The current paper aims
to demonstrate the properties and usefulness of AMA–
Gauss rather than determine the best number of filters;
for clarity, we show only four filters for each task (see
Results). Previous work has shown that, for the two
tasks considered here, eight filters are required to
capture nearly all task-relevant information (Burge &
Geisler, 2014, 2015). The results presented in this paper
hold for all eight filters, but we show only four for ease
of presentation.

Results

Retinal speed estimation and binocular disparity
estimation are canonical visual tasks. Accurate and
precise estimation of retinal image motion is critical for
the accurate estimation of object motion and self-
motion through the environment. Accurate and precise
estimation of binocular disparity is critical for the
accurate estimation of depth and the control of
fixational eye movements. Although of fundamental
importance for mobile seeing organisms, both tasks are
difficult in natural conditions because of the enormous
variability and complexity in natural images.

The plan for the results section is as follows. First, we
use AMA–Gauss1 to find the receptive fields that are
optimal for estimating speed and disparity from local
patches of natural images. Second, we compare AMA–
Gauss and AMA and show that both methods (1) learn
the same filters and (2) converge to the same cost for
both tasks. Third, we verify that AMA–Gauss achieves
the expected reductions in compute-time: filter-learning
with AMA–Gauss is linear whereas AMA is quadratic in
the number of stimuli in the training set. Fourth, we
show that the class-conditional filter responses are
approximately Gaussian, thereby justifying the Gaussian
assumption for these tasks. Fifth, we show how contrast
normalization contributes to the Gaussianity of the
class-conditional responses. Sixth, we explain how the
filter response distributions determine the likelihood
functions and optimal pooling rules. Seventh, we explain
how these results provide a normative explanation for
why energy-model-like computations describe the re-

sponse properties of neurons involved in these tasks.
Eighth, and last, we establish the formal relationship
between AMA–Gauss and the GQM, a recently
developed method for neural systems identification.

For each task, we obtained an existing labeled
training set of natural photographic stimuli consisting
of approximately 10,000 randomly sampled stimuli. All
stimuli subtended 18 of visual angle. Perspective
projection, physiological optics, and the wavelength
sensitivity, spatial sampling, and temporal integration
functions of the foveal cones were accurately modeled.
Input noise was added to each stimulus with a noise
level just high enough to mask retinal image detail that
would be undetectable by the human visual system
(Williams, 1985). Both training sets had flat prior
probability distributions PðXÞ over the latent variable
(see Discussion). The training set for speed estimation
consisted of 10,500 stimuli [10,500 stimuli ¼ 500
stimuli/level 3 21 levels; (Burge & Geisler, 2015)].
Retinal speeds ranged from�88/s toþ88/s; negative and
positive speeds correspond with leftward and rightward
drifting movies. Each stimulus had a duration of 250
ms. The training set for disparity estimation consisted
of 7,600 stimuli [7,600 stimuli ¼ 400 stimuli/level 3 19
levels; (Burge & Geisler, 2014)]. Binocular disparities
ranged from �16.875 arcmin to þ16.875 arcmin;
negative and positive disparities correspond to un-
crossed and crossed disparities. (Note that although
these training sets have a discrete number of latent
variable values, AMA filters can be learned with
discrete- or with real-valued latent variables.) For
extensive additional details on these training sets and
for ideal observer performance in these tasks, please see
Burge and Geisler, 2014, 2015. One important limita-
tion of these datasets is that all motion signals were
rigid and that all disparity signals were planar. Future
work will examine the impact of nonrigid motion (e.g.,
looming) and local depth variation (e.g., occlusion) on
performance (see Discussion).

Before processing, retinal image stimuli for both
tasks were vertically averaged under a raised cosine
window (0.58 at half-height). Vertically oriented linear
receptive fields respond identically to the original and
vertically averaged stimuli, and canonical receptive
fields for both tasks are vertically oriented (Burge &
Geisler, 2014, 2015). Thus, the vertically averaged
signals represent the signals available to the orientation
column that would be most useful to the task. Future
work will examine the impact of off-vertical image
features on performance.

Next, we used AMA–Gauss to find the optimal
filters for both tasks. The results presented as follows
were obtained using the L0 cost function and constant,
additive, independent filter response noise. In general,
we have found that the optimal filters are quite robust
to the choice of cost function when trained with natural
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stimuli (Burge & Jaini, 2017). Figure 5 shows results for
the retinal speed estimation task. Figure 6 shows results
for the disparity estimation task. AMA and AMA–
Gauss learn nearly identical encoding filters (Figure 5A
and 6A; q . 0.96) and exhibit nearly identical
estimation costs (Figure 5B and 6B); note, however,
that these filter and performance similarities are not
guaranteed (see Appendix D). AMA–Gauss also
dramatically reduces compute time (Figures 5C, D and
6C, D). With AMA, the time required to learn filters
increases quadratically with their number of stimuli in
the training set. With AMA–Gauss, filter learning time
increases linearly with the number of stimuli. Finally,
the class-conditional filter responses are approximately
Gaussian (Figures 5E, F and 6E, F), indicating that the
Gaussian assumption is justified for both tasks.
Quadratic computations are therefore required to
determine the likelihood of a particular value of the
latent variable. The posterior probability distribution
over the latent variable PðXjRÞ can be obtained from
the likelihoods by straightforward application of Bayes’
rule.

Response normalization, response Gaussianity,
and decoding performance

Contrast varies significantly in natural stimuli. How
does contrast normalization affect the filter responses?

For the class of problems considered here (e.g., retinal
speed estimation, binocular disparity estimation, and
other energy-model-related tasks), neurophysiological-
ly plausible contrast normalization (Albrecht & Geisler,
1991; Heeger, 1992) must be built into the filter
response model (Equation 4) for the class-conditional
filter responses PðRjXuÞ to be Gaussian distributed.
[Note that some standard models of normalization are
computationally equivalent (Albrecht & Geisler, 1991;
Heeger, 1992), but that other more specialized forms of
normalization are not (Carandini & Heeger, 2012;
Coen-Cagli, Dayan, & Schwartz, 2012; Gao & Vas-
concelos, 2009).) In AMA–Gauss, the input stimulus s
is a contrast normalized (jjsjj � 1:0) version of a
(possibly noise-corrupted) intensity stimulus x with
mean intensity �x. Luminance normalization converts
the intensity stimulus to a contrast stimulus c ¼ x��x

�x by
subtracting off and dividing by the mean. Contrast
normalization converts the contrast stimulus to a
contrast normalized signal with unit magnitude (or less)
s ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nc2
50
þ
P

i
c2i

p where c50 is an additive constant and n

is the dimensionality of (e.g., number of pixels defining)
each stimulus. Here, we assumed that the value of the
additive constant is c50¼ 0.0. The effect of the value of
c50 has been studied previously (Burge & Geisler, 2014).

To examine the effect of contrast normalization on
the class-conditional filter response distributions, we
computed the filter responses to the same stimuli with
and without contrast normalization. With contrast

Figure 5. Speed estimation task: filters, cost, compute time, and class-conditional response distributions. (A) AMA–Gauss and AMA filters

for estimating speed (�8 toþ88/s) from natural image movies are nearly identical; q . 0.96 for all filters. (B) The cost for all the filters

for both the models is identical. (C) Compute time for 50 evaluations of the posterior probability distribution is linear with AMA–Gauss,

and quadratic with the full AMA model, in the training set size. (D) Same data as in (C) but on log–log axes. (E), (F) Joint filter responses,

conditioned on each level of the latent variable, are approximately Gaussian. Different colors indicate different speeds. Individual

symbols represent responses to individual stimuli. Thin black curves show that the filter response distributions, marginalized over the

latent variable PðRÞ ¼
PNlvl

u¼1 PðRjXuÞPðXuÞ, are heavier-tailed than Gaussians (see Results and Discussion).
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normalization, filter response distributions are ap-
proximately Gaussian (Figure 7A, B, E, F). Without
contrast normalization, filter response distributions
have tails much heavier than Gaussian (Figure 7C, D,
G, H). (Note that AMA–Gauss learns very similar
filters with and without contrast normalization. Nor-
malization does not change which stimulus features
should be selected; it changes only how the selected
features are represented.) Thus, biologically realistic
normalization helps Gaussianize the conditional re-
sponse distributions. Related results have been report-
ed by other groups (Lyu & Simoncelli, 2009; Wang,
Bovik, Sheikh, & Simoncelli, 2004).

Contrast normalization not only Gaussianizes the
response distributions; it also improves performance. If
response distributions are heavy-tailed and have strong
peaks at zero, then the Gaussian assumption is violated
and attempts to decode the latent variable from those
responses suffer. Contrast normalization reduces the
peak at zero, thereby reducing decoding difficulty.
Figure 8 compares decoding cost in the speed and
disparity tasks with and without contrast normaliza-
tion and shows that failing to normalize harms
performance. Thus, contrast normalization improves
task performance by decreasing kurtosis and increasing
response Gaussianity.

Subunit response models (e.g., the standard energy
model, the GQM, and other LN models) are widely
used to describe and fit neurons. They do not generally
incorporate normalization (Adelson & Bergen, 1985;
Park et al., 2013; Rust et al., 2005; Vintch et al., 2015).
This fact is unsurprising. Many laboratory experiments
use high-contrast white noise stimuli to map neural
receptive fields (Jones & Palmer, 1987a, 1987b). Linear

subunit receptive field responses to Gaussian noise are
guaranteed to be Gaussian, so the lack of contrast
normalization does not hurt performance in common
laboratory conditions. With natural signals, the failure
to normalize can hurt performance. Perhaps this is one
reason why subunit models tend to generalize poorly to
natural stimuli (but see Eickenberg, Rowekamp, Kouh,
& Sharpee, 2012). It may be useful to incorporate
response normalization in future instantiations of these
models.

Data-constrained likelihood functions

The class-conditional response distributions fully
determine the likelihood function over the latent
variable for any joint filter response R to an arbitrary
stimulus. When the class-conditional response distri-
butions are Gaussian, as they are here, the log-
likelihood of latent variable value Xu is quadratic in the
encoding filter responses

logL Xu; Rð Þ ¼ logP RjXuð Þ

¼ � 1

2
R� luð ÞTR�1u R� luð Þ þ fu

ð19Þ
where fu ¼ � 1

2 log j2pRuj. (Note that the likelihood
function over the latent variable (Equation 19) is
distinct from likelihood function over the AMA–Gauss
filters; Equation 15.) Carrying out the matrix multi-
plication shows that the log-likelihood can be re-
expressed as the weighted sum of squared, sum-
squared, and linear filter responses

Figure 6. Disparity estimation task: filters, cost, compute time, and class-conditional response distributions. (A) AMA–Gauss and AMA

filters for estimating disparity from natural stereo-images (�15 to þ15 arcmin). (B–F) Caption format same as Figure 5B–F.
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log P RjXuð Þ½ � ¼
Xq
i¼1

wi;uRi þ
Xq
ii¼1

wii;uR
2
i

þ
Xq�1
i¼1

Xq
j¼iþ1

wij;u Ri þ Rj

� �2 þ f0u

ð20Þ

where q is the number of filters and where the weights

are functions of the class-conditional mean and

covariance for each value Xu of the latent variable

(Burge & Geisler, 2014, 2015). Specifically,

wi;u ¼ R�1u lu ð21Þ

wii;u ¼ �diag R�1u

� �
þ 0:5R�1u 1 ð22Þ

wij;u ¼ �0:5R�1ij;u; 8ij where j . i ð23Þ

f0u ¼ �0:5lT
uR�1u lu þ fu ð24Þ

where diag(.) is a function that returns the diagonal of a

matrix and 1 is a column vector of ones. [Note that in
these equations i and j index different filters (see Figure

Figure 7. Filter responses with and without contrast normalization. (A) Class-conditional filter response distributions PðRtjXuÞ to
contrast-normalized stimuli for each individual filter and each level of the latent variable in the speed estimation task. For visualization,

responses are transformed to Z-scores by subtracting off the mean and dividing by the standard deviation. Gaussian probability density

is overlaid for purposes of comparison. (B) Kurtosis of the two-dimensional conditional response distributions from filters 1 and 2 (violet;

also see Figure 5E) and filters 3 and 4 (green; also see Figure 5F) for all levels of the latent variable. A two-dimensional Gaussian has a

kurtosis of 8.0. Kurtosis was estimated by fitting a multidimensional generalized Gaussian via maximum likelihood methods. (C, D) Same

as A, B but without contrast normalization. (E–H) Same as (A–D), but for the task of disparity estimation.
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2), not different latent variables and stimuli, as they do
elsewhere in this manuscript.] These equations (Equa-
tions 20–24) indicate that the log-likelihood of latent
variable value Xu is obtained by pooling the squared
(and linear) responses of each receptive field with
weights determined by the mean lu and covariance Ru)
of the subunit responses to stimuli with latent variable
Xu.

In the speed and disparity estimation tasks, nearly all
of the information about the latent variable is carried
by the class-conditional covariance; the covariance of
the filter responses to natural stimuli changes signifi-
cantly with changes in the latent variable (see Figures
4D–F, 5E, F, and 6E, F). Thus, the weights on the
squared and the sum-squared filter responses change
dramatically with the value of the latent variable
(Figure 9). In the speed estimation task, for example,
the weights w34(X) on the sum-squared response of
filter 3 and filter 4 peak at 08/s (see Figure 9A). This
peak results from the fact that the filter 3 and filter 4
response covariance is highest at 08/s (see Figure 5F;
Equation 23). In contrast, very little information is
carried by the class-conditional means; the mean filter
responses to natural stimuli are always approximately
zero. Hence, the weights on the linear subunit responses
are approximately zero (see Equation 21, Figure 4A–
C).

The filter response distributions determine the
computations (i.e., quadratic pooling rules and
weights) required to compute the likelihood of different
latent variable values. If these computations (Equation
20–24) are paired with an exponential output nonlin-
earity and implemented in a neuron, the neuron’s
response RL

u ¼ LðXu; RÞ would represent the likelihood
that a stimulus having a particular value Xu of the
latent variable elicited the observed filter responses R.
This latent variable value Xu would be the preferred
stimulus of the likelihood neuron. We refer to this
hypothetical neuron as an AMA–Gauss likelihood
neuron (see Equation 20).

Four example, likelihood functions are shown in
Figure 10A, one for each of four stimuli having a true
speed of �48/s. Figure 10B shows four likelihood
functions for stimuli having a true speed of 08/s. Figure
10C, D show likelihood functions for stimuli having
�15 arcmin and 0 arcmin of binocular disparity,
respectively. These plots show the likelihood functions,
but they are not the standard way of assessing the
response properties of neurons in cortex.

The response properties of neurons in cortex are
most commonly assessed by their tuning curves.
Likelihood neuron tuning curves are obtained by first
computing the mean likelihood neuron response across
all natural stimuli having latent variable value Xk

�RL
u Xkð Þ ¼ 1

Nk

XNk

l¼1
L Xu; R k; lð Þð Þ ð25Þ

Figure 8. Decoding performance with and without contrast normalization. (A) Contrast normalization decreases decoding cost for the

speed estimation task. (B) Percentage increase in cost without contrast normalization. (C, D) Same as (A, B) but for the disparity

estimation task. The same result holds for different cost functions (e.g., squared error) and larger number of filters. If eight filters are

used in the disparity task, failing to contrast normalize can decrease performance by ;40%.

Figure 9. Quadratic pooling weights for computing the

likelihood. Weights on squared and sum-squared filter re-

sponses (wii(X) and wij(X)) as a function of the latent variable.

Weights on the linear filter responses are all approximately zero

and are not shown. (A) Weights for speed estimation task. (B)

Weights for disparity estimation task. Weights on squared

responses are at maximum magnitude when the variance of the

corresponding filter responses is at minimum. Weights on sum-

squared responses are at maximum magnitude for latent

variables yielding maximum response covariance (see Figures

5E, F and 6E, F).

Journal of Vision (2017) 17(12):16, 1–26 Jaini & Burge 12



and then repeating for all values of the latent variable.
Tuning curves for a population of likelihood neurons
R

LðXÞ having a range of preferred speeds are shown in
Figure 10E. The speed tuning curves are approximately
Gaussian for preferred speeds near 08/s and approxi-
mately log-Gaussian otherwise. Consistent with these
results, neurons in middle temporal (MT) area have
approximately log-Gaussian speed tuning curves, and
have bandwidths that increase systematically with
speed (Nover, Anderson, & DeAngelis, 2005). It is also
interesting to note that while quadratic computations
are required to optimally decode the latent variable
directly from the filter responses (see Figure 5E, F),
likelihood neuron responses are linearly separable in
speed. Similar points can be made about the disparity
likelihood neurons (Figure 10F). The computations
reported here thus constitute a general recipe for how
to construct selective, invariant neurons having an
arbitrary preferred stimulus (latent variable) from the
responses of a small, well-chosen set of receptive fields.

Linking AMA–Gauss and the energy model

Neural activity involved in many visual tasks has
been productively modeled by energy-model-like (i.e.,
quadratic) computations (Cumming & DeAngelis,

2001; Emerson, Bergen, & Adelson, 1992; Peng & Shi,
2010). We have shown that in two classic tasks (retinal
speed and binocular disparity estimation), the class-
conditional filter response distributions to natural
stimuli are approximately Gaussian distributed. In such
cases, quadratic combinations of the filter responses are
the optimal computations and yield the likelihood of a
particular value of the latent variable (Equation 20).
The weights are determined by the filter responses to
natural stimuli (see Methods). Thus, if these computa-
tions were instantiated in a neuron, then its response
would represent the likelihood of latent variable
(Figure 2C). The current results therefore constitute a
normative explanation for why energy-model-like
computations account for response properties of
neurons involved in these tasks.

Interestingly, in recent years, discrepancies have
emerged between the properties of neurons in cortex
and the energy models that are often used to describe
them (Cumming & DeAngelis, 2001; Rust et al., 2005;
Tanabe, Haefner, & Cumming, 2011). Many of these
discrepancies are a natural consequence of the optimal
computations for estimating disparity and motion from
natural stimuli (Burge & Geisler, 2014, 2015). For
example, the responses of motion- and disparity-
selective neurons have both been found to depend on
multiple excitatory and suppressive subunit receptive

Figure 10. Likelihood functions for speed and disparity tasks. (A) Likelihood functions for four randomly chosen natural image movies

having true speeds of 48/s. Each likelihood function represents the population response of the set of likelihood neurons, arranged by

their preferred speeds. To ease the visual comparison, the likelihood functions are normalized to a constant volume by the sum of the

likelihoods. (B) Same as (A), but for movies with a true speed of 08/s. (C, D) Same as (A, B) but for stereo-images with�7.5 arcmin and

0.0 arcmin of disparity, respectively. (E) Tuning curves of speed-tuned likelihood neurons. For speeds sufficiently different from zero,

tuning curves are approximately log-Gaussian and increase in width with speed. For near-zero speeds, tuning curves are

approximately Gaussian. Each curve represents the mean response (i.e., tuning curve) of a likelihood neuron having a different

preferred speed, normalized to a common maximum. Gray areas indicate 68% confidence intervals. (F) Tuning curves of disparity-

tuned likelihood neurons.
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fields, rather than the two exclusively excitatory subunit
receptive fields posited by the energy model. Multiple
subunit receptive fields have increased potential to
select task-relevant information from each stimulus.
Excitatory and inhibitory weighting schemes are
required to use the selected information optimally. The
quadratic computations in Equation 20 specify exactly
how to optimally weight and sum the responses from
multiple receptive fields to achieve selectivity for
particular latent variable values (also see Figure 9).
These computations yield more selective, invariant
tuning curves (and improved estimation performance)
than those of the standard energy model (Burge &
Geisler, 2014, 2015), and follow directly from the
normative framework employed here.

Linking AMA–Gauss and the GQM: Connecting
normative and response triggered analyses

In this section, we establish the formal similarities
between AMA–Gauss and the generalized model
(GQM), a recently developed subunit model for neural
systems identification (Park et al., 2013; Wu et al.,
2015). The goal of the GQM is to identify (fit) the
subunit receptive fields that drive a neuron’s response
(Figure 2B). The goal of AMA–Gauss is to find the
subunit receptive fields and quadratic pooling rules that
are best for a particular task (Figure 2C). AMA can
thus generate predictions about the subunit receptive
fields that the GQM will recover from a neuron, under
the hypothesis that the neuron computes the likelihood
of a task-relevant latent variable.

The GQM assumes that a neuron’s spiking or
intracellular voltage response to a stimulus is given by

y;P f Q xð Þð Þð Þ where Q xð Þ ¼ xTCxþ bTxþ a

ð26Þ
where y is the neural response, P(.) is the noise model,
f(.) is a nonlinearity, and k ¼ fðQðxÞÞ is the mean
response. In Park et al., 2013, the authors use
maximum likelihood methods to recover the parame-
ters of the model given a set of stimuli, the neuron’s
response to each stimulus, and a noise model. In
AMA–Gauss, the log-likelihood of latent variable Xu is
given by

l Xuð Þ ¼ �
1

2
R� luð ÞTR�1u R� luð Þ þ fu ð27Þ

where lu and Ru are the class-conditional response
mean and covariance and fu is a constant. The noisy
filter response vector R is given by the projection of the
stimulus onto the filters f plus noise (Equations 4, 5).
Hence, Equation 27 can be rewritten as

l Xuð Þ ¼ �
1

2

�
xTfR�1u fTx� 2 lT

uR�1u � gTuR�1u

� �
fTx

þ lT
uR�1u lu � gTuR�1u gu þ 2gTuR�1u lu

�
þ fu

ð28Þ

or l Xuð Þ ¼ xTCxþ bTxþ a

where C ¼ � 1
2 fTR�1u f is a rank-q matrix where q is the

number of filters, bT ¼ lT
uR�1u fT � gTuR�1u fT, and

a ¼ � 1
2lT

uR�1u lu þ 1
2 gTuR�1u gu � gTuR�1u lu þ fu. (Parame-

ter values under the expected log-likelihood are
provided in Appendix E). The parameters of the GQM
are therefore simple functions of the AMA–Gauss
encoding filters f and their responses to natural stimuli,
conditional on latent variable Xu. Given a hypothesis
about the functional purpose of a neuron’s activity,
AMA–Gauss could predict the parameters that the
GQM would recover via response-triggered analyses.

The primary formal distinction between AMA–
Gauss and the GQM is that AMA–Gauss explicitly
models noise in the encoding filter responses, whereas
the GQM models noise only after quadratic pooling of
the filter responses; that is, the GQM implicitly assumes
noiseless filter responses. When subunit responses are
noiseless, all subunit receptive fields spanning the same
subspace (i.e., all linear filter combinations) provide an
equivalent encoding. When responses are noisy (as they
are in all biological systems), the stimulus encodings
provided by different filters spanning the same sub-
space are no longer equivalent (Burge & Jaini, 2017).
Future work will examine whether this distinction
between AMA and the GQM can be leveraged to
overcome a limitation common to all standard subunit
models, namely, that their descriptions of neurons are
unique only up to the subspace spanned by the subunit
receptive fields (but see Kaardal, Fitzgerald, Berry, &
Sharpee, 2013).

Discussion

Accuracy maximization analysis (AMA) is a super-
vised Bayesian method for task-specific dimensionality
reduction; it returns the encoding filters (receptive
fields) that select the stimulus features that provide the
most useful information about the task-relevant latent
variable (Geisler et al., 2009). In conjunction with
carefully collected databases of natural images and
scenes and psychophysical experimental techniques,
AMA has contributed to the development of ideal
observers for several fundamental sensory-perceptual
tasks in early- and mid-level vision (Geisler et al., 2009;
Burge & Geisler, 2011, 2014, 2015). Unfortunately,
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AMA’s compute time is high enough to render the
method impractical for large problems without spe-
cialized computing resources.

We have developed AMA–Gauss, which makes the
assumption that the class-conditional filter responses
are Gaussian distributed and have shown that AMA–
Gauss markedly reduces compute-time without com-
promising performance when the assumption is justi-
fied. We show that the assumption is justified for two
fundamentally important visual tasks with natural
stimuli (see Figure 5 and Figure 6; Burge & Geisler,
2014, 2015). These results provide a normative expla-
nation for why energy model-like computations have
proven useful in the study of motion and disparity
estimation and discrimination. We speculate that the
assumption will prove justified for other energy-model-
related tasks in early vision (e.g., motion-in-depth
estimation). AMA–Gauss also has the same formal
structure as the generalized quadratic model (GQM) a
recently developed method for neural systems identifi-
cation, raising the possibility that a single framework
could be used both to predict and estimate the
properties of involved in particular tasks.

There are several important implications of these
results. First, the optimal filters and the optimal
pooling rules for decoding the latent variable are all
determined by the properties of natural stimuli. If the
training sets are representative of stimuli encountered
in natural viewing, then the computations reported here
should be optimal for the tasks of speed and disparity
estimation. Second, at the right level of abstraction, the
optimal solutions to these two different tasks share
deep similarities, thereby raising the possibility that the
same normative computational framework will apply
to all energy-model related tasks.

Response distributions: Gaussian vs. heavy-
tailed

The results reported here may appear to conflict with
the widely reported finding that receptive field re-
sponses to natural images are highly non-Gaussian,
with heavy tails sharp peaks at zero (Cadieu &
Olshausen, 2012; Field, 1987; Olshausen & Field, 1997).
There are two explanations for this apparent discrep-
ancy. First, previous analyses generally have not
incorporated contrast normalization. Second, previous
analyses are generally unsupervised and therefore do
not condition on relevant latent variables (e.g. motion;
Cadieu & Olshausen, 2012). Note that even when
contrast normalization is incorporated and the class-
conditional responses are Gaussian, the filter responses,
marginalized over the latent variable, tend to be heavy-
tailed because the marginals are mixtures of Gaussians
PðRtÞ ¼

P
u PðRtjXuÞPðXuÞ with different variances

(see black curves in Figure 5E, F and Figure 6E, F).
Therefore, our results are more similar to previous
results than it may appear at first glance (Ruderman &
Bialek, 1994). In general, heavy-tailed response distri-
butions are yielded by response models that do not
incorporate biologically plausible contrast normaliza-
tion and response analyses that do not include latent
variable conditionalization (Lyu & Simoncelli, 2009;
Wang et al., 2004). Incorporating response normaliza-
tion and latent variable conditionalization, as we have
here, may help reveal statistical properties of receptive
field responses to complex natural stimuli that have not
yet been fully appreciated.

Likelihood functions: Data-constrained vs
assumed

Evolution selects organisms because they perform
certain critical sensory, perceptual, and behavioral
tasks better than their evolutionary competitors.
Certain features of sensory stimuli are more useful for
some tasks than others. The stimulus features that are
most useful to encode thus depend on the task-relevant
latent variables that will be decoded from the stimuli.
However, many models of neural encoding do not
explicitly consider the tasks for which the encoded
information will be decoded (Olshausen & Field, 1997;
Simoncelli & Olshausen, 2001) and many task-specific
models of neural decoding do not explicitly consider
how sensory stimuli and neural encoders constrain the
information available for decoding (Ernst & Banks,
2002; Ma, Beck, Latham, & Pouget, 2006).

The approach advanced here is an early attempt to
address both issues simultaneously. By performing
task-specific analyses using thousands of individual
natural stimuli, learning the optimal filters, and
characterizing the class-conditional responses to natu-
ral stimuli, we determined the likelihood functions that
optimize performance in natural viewing. The likeli-
hood functions that result from the filter response
distributions are (on average) log-Gaussian in speed
and disparity, with widths that increase with the value
of the latent variable. In previous work with natural
stimuli, we showed that the optimal receptive fields,
response distributions, and resulting likelihood func-
tions are robust to significant variation in the shape of
the prior, cost function, and noise power (Burge &
Jaini, 2017). It is reasonable to conclude that the task
and the constraints imposed by natural stimuli are the
most important determinants of the width and shape of
the likelihood functions.

Some prominent theories of neural processing
operate on the assumption that likelihood functions
can take on arbitrary widths and shapes via flexible
allocation of neural resources (Ganguli & Simoncelli,
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2014; Girshick, Landy, & Simoncelli, 2011; Seung &
Sompolinsky, 1993; Wei & Stocker, 2015). Some
reports have gone further to suggest that, in the context
of Bayesian efficient coding, the prior probability
distribution over the latent variable is the primary
factor determining the widths and shapes of the
likelihood functions (Ganguli & Simoncelli, 2014; Wei
& Stocker, 2015). These reports predict that if the prior
probability distribution is flat, the likelihood functions
will be symmetric and have widths that remain constant
with changes in the value of the latent variable. These
reports also predict that if the prior probability
distribution is nonuniform (e.g., peaked at zero), the
likelihood functions will be asymmetric with widths
that change systematically with the latent variable.

In the tasks that we examined, we found that
asymmetric likelihood functions optimize performance
despite the fact that the training sets from which the
optimal filters were learned had flat priors over the
latent variable (see Results; Burge & Geisler, 2014,
2015; Burge & Jaini, 2017). These results appear at
odds with the predictions of previous reports. However,
these previous reports do not model the impact of
natural stimulus variation. The implicit assumption is
that task-irrelevant (‘‘nuisance’’) stimulus variation can
be ignored (Ganguli & Simoncelli, 2014; Wei &
Stocker, 2015). If the goal is to understand optimal
task-specific processing of natural signals, our results
indicate that such variation cannot be ignored. Indeed,
task-relevant and irreducible task-irrelevant natural
stimulus variability are almost certainly the most
important determinants of likelihood function shapes
and widths.

In natural viewing, visual estimates are driven
primarily by stimulus measurements (likelihood func-
tions), not by prior distributions. If estimates were
driven only by the prior, observers could not respond
to spatial or temporal changes in the environment. A
full account of task-specific perceptual processing and
its underlying neurophysiology must therefore incor-
porate natural stimulus variability. Future studies on
the efficient allocation of neural resources should verify
that the likelihood functions used in modeling efforts
can be constructed by nervous systems given the
constraints imposed by natural stimuli.

Natural vs. artificial stimuli

The problem of estimating speed and disparity from
natural images is different from the problem of
estimating speed and disparity with artificial laboratory
stimuli in at least one important respect. Variability
among natural stimuli having the same latent variable
level is substantially greater than variability amongst
artificial stimuli commonly used in vision and visual

neuroscience experiments. In motion experiments
(Figure 11A), drifting Gabors and random-dot kine-
matograms are common artificial stimuli. In disparity
experiments, phase-shifted binocular Gabors and ran-
dom-dot stereograms are common artificial stimuli
(Figure 11B). The statistical properties of these artificial
stimuli are notably different than the statistical
properties of natural stimuli. Gabors have Gaussian
amplitude spectra and random-dot stereograms have
delta auto-correlation functions. Natural stimuli have a
rich variety of textures and shapes that cause significant
variation in their 1/f amplitude spectra and auto-
correlation functions.

To examine the impact of artificial stimuli on the
class-conditional responses, we created artificial stim-
ulus sets comprised of contrast-fixed, phase-random-
ized Gabors drifting at different speeds and having
different amounts of disparity. For each task, the
spatial frequency of the carrier was closely matched to
the preferred spatial frequency of the first two optimal
filters (1.0 cpd for speed, 1.5 cpd for disparity). Joint
filter responses to these artificial stimuli are shown in
Figure 11C, D; they are notably different than the filter
responses to natural stimuli. Although the class-
conditional responses to Gabors are approximately
aligned with the major axis of the Gaussian charac-
terizing responses to corresponding natural stimuli, the
responses themselves are no longer Gaussian distrib-
uted, exhibiting ring-shaped structure instead. Thus,
determining the optimal rules for processing natural
stimuli by analyzing only artificial stimuli is likely to be
a difficult enterprise.

These results suggest another conclusion that may be
somewhat counterintuitive given the history of the field.
The tradition in vision science has been to eliminate
irrelevant stimulus variation from experimental proto-
cols by using simple artificial stimuli. These stimuli are
easy to characterize mathematically and manipulate
parametrically. But artificial stimuli lack the richness
and variability that visual systems evolved to process.
Analyzing complex, variable natural stimuli may reveal
simple (e.g., Gaussian) statistical structure that might
otherwise be missed. We believe that the results
presented here highlight the importance of conducting
rigorous, well-controlled, task-focused computational
and behavioral investigations with natural stimuli.
These investigations complement classic studies with
artificial stimuli, and provide a fuller picture of how
visual systems function in natural circumstances.

Limitations and future directions

The results presented here represent the first in what
we hope is a series of steps to link normative models for
natural tasks and descriptive models of neural re-
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sponse. However, although we believe that developing
AMA-Gauss and demonstrating its links to methods
for neural systems identification are useful advances,
several limitations should be kept in mind. Here, we
address the drawbacks of the natural stimulus sets, the
general applicability of AMA–Gauss, and the impor-
tance of the links that we have drawn to descriptive
models of neural response.

The natural image sets used in this manuscript had
natural contrast distributions and photographic tex-
tures, but they lacked natural depth structure. All
motion signals were rigid and all disparity signals were
planar. Future work will examine the impact of non-
rigid motion (e.g., looming) and local depth variation
(e.g., occlusion) on performance. We have recently
collected a dataset of stereo images that addresses this
limitation (Burge, McCann, & Geisler, 2016). Each
stereo image has co-registered distance data from which
ground truth disparity patterns can be computed. Pilot
analyses suggest that the results presented in the

current manuscript hold for natural stereo images with
local depth variation. We suspect, but we are not yet
well-positioned to show, that the same will be true of
motion signals having natural depth variation.

AMA–Gauss is the appropriate normative frame-
work for understanding energy-model-related tasks,
but the general usefulness of AMA–Gauss is unknown.
AMA–Gauss makes the best possible use of the first-
and second-order filter response statistics, but it is blind
to higher-order response statistics that may exist in
natural motion (Nitzany & Victor, 2014) and natural
disparity signals (see Appendix D). To increase
generality, one could develop a further variant of AMA
that incorporates rectification into the response model.
This modification would confer the ability, at least in
principle, to pick up on potentially useful higher-order
motion and disparity cues, and provide a normative
model that complements other methods for neural
systems identification (McFarland et al., 2013).

Figure 11. Natural stimuli, artificial stimuli, and class-conditional responses. Many different retinal images are consistent with a given

value of the task-relevant latent variable. These differences cause within-class (task-irrelevant) stimulus variation. Within-class

stimulus variation is greater for natural stimuli than for typical artificial stimuli used in laboratory experiments. (A) Stimuli for speed

estimation experiments. Two different example stimuli are shown for each stimulus type: natural stimuli (represented by cartoon line

drawings), Gabor stimuli, and random-dot stimuli. Both example stimuli for each stimulus type drift at exactly the same speed, but

create different retinal images. Natural stimuli cause more within-class retinal stimulus variation than artificial stimuli. (B) Same as

(A), but for disparity. (C) Speed task: class-conditional responses to contrast-fixed 1.0 cpd drifting Gabors with random phase (speed

task). Colors indicate different speeds. Ellipses represent filter responses to natural stimuli having the same speeds. (D) Disparity task:

Class-conditional responses to contrast-fixed 1.5 cpd binocular Gabors with random phase. Class-conditional responses no longer

have Gaussian structure, and instead have ring structure.
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Conclusion

In this paper, we develop AMA–Gauss, a new form
of AMA that incorporates the assumption that the
class-conditional filter responses are Gaussian distrib-
uted. We use AMA–Gauss to establish links between
task-specific normative models of speed and disparity
estimation and the motion- and disparity-energy
models, two popular descriptive models of neurons that
are selective for those quantities. Our results suggest
that energy-model-like (i.e., quadratic) computations
are optimal for these tasks in natural scenes. We also
establish the formal similarities between AMA–Gauss
and the generalized quadratic model (GQM), a recently
developed model for neural systems identification. The
developments presented here forge links between
normative task-specific modeling and powerful statis-
tical tools for describing neural response, and demon-
strate the importance of analyzing natural signals in
perception and neuroscience research.

Keywords: normative model, neural systems
identification, accuracy maximization analysis, energy
model, generalized quadratic model, contrast
normalization, natural scene statistics, quadratic
computations, speed, disparity
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Appendix A: Gradient of the likelihood function

In any given training set having N stimuli, each stimulus is associated with some category k and an associated
stimulus from that category l. Let us denote this pair (k, l) for the ith sample point with (ki, li). Then assuming that
the response distribution conditioned on the classes is Gaussian, the likelihood function can be written as

L fð Þ ¼
YN
i¼1

2pð Þ�
d
2 Rkij j�

1
2exp � 1

2
R ki; lið Þ � lki

� �T
R�1ki

R ki; lið Þ � lki

� �� 	
Substituting the expression for the noisy responses (Equation 5) and defining lðfÞ ¼ logLðfÞ yields the log-likelihood
function of the AMA–Gauss filters

l fð Þ ¼ fu �
1

2

XN
i¼1

logjfTBkif þ Kj þ fTskili � fTski þ g
� �T

fTBkif þ K
� ��1

fTskili � fTski þ g
� �

Journal of Vision (2017) 17(12):16, 1–26 Jaini & Burge 20

http://dx.doi.org/10.1167/6.4.13
http://dx.doi.org/10.1167/6.4.13
https://www.ncbi.nlm.nih.gov/pubmed/16889482
http://jov.arvojournals.org/article.aspx?articleid=2192881


where ski ¼ 1
Nki

PNki

mi¼1 skimi
and Bki ¼ 1

Nki

PNki

mi¼1ðski;mi
� skiÞðski;mi

� skiÞ
T are the class-conditional stimulus mean and

covariance matrix, respectively, and fu ¼ � 1
2 log j2pRuj is a constant.

Rearranging to segregate terms that do not depend on noise samples

l fð Þ ¼ fu �
1

2

XN
i¼1

�
log jfTBkif þ Kj þ skili � skið ÞTf fTBkif þ K

� ��1
fT skili � skið Þ

þ gT fTBkif þ K
� ��1

fT skili � skið Þ þ skili � skið ÞTf fTBkif þ K
� ��1

gþ gT fTBkif þ K
� ��1

g
�
ð29Þ

where fTBf þ K is a symmetric matrix. Recognizing that each term in Equation 29 is a scalar, and rewriting using
the properties that Tr(a)¼ a, Tr(AB) ¼ Tr(BA) and Tr(A)¼ Tr(AT) yields

l fð Þ ¼ fu �
1

2

XN
i¼1

�
log jfTBkif þ Kj þ Tr

�
fTBkif þ K
� ��1

fT skili � skið Þ skili � skið ÞTf

�

þ 2Tr skili � skið ÞTf fTBkif þ K
� ��1

g
� �

þ Tr fTBkif þ K
� ��1

ggT
� �	

ð30Þ

To determine the gradient of the log-likelihoodrf lðfÞ, we derive the gradient of each term in Equation 30 separately
as follows. Before doing so, we state some standard matrix results that will be used in the derivation (Petersen,
Pedersen et al., 2008).

] log det Xð Þð Þ
]X

¼ XT
� ��1 ð31Þ

]

]X
Tr Aþ XTCX

� ��1
XTBX

� �
¼ �2CX Aþ XTCX

� ��1
XTBX Aþ XTCX

� ��1 þ 2BX Aþ XTCX
� ��1 ð32Þ

]

]X
Tr XTCX
� ��1

A ¼ �CX XTCX
� ��1

Aþ AT
� �

XTCX
� ��1 ð33Þ

The gradient of the first term in Equation 30 is obtained by using Equation 31 and the chain rule of differentiation

rf log j fTBkif þ K
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Y

j ¼ ] log jYj
]Y

] fTBkif þ K
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Y

0
B@

1
CA

]f

rf log jfTBkif þ Kj ¼ 2Bkif fBkif
T þ K

� ��1 ð34Þ
The gradient of the second term in Equation 30 is obtained using Equation 32

rfTr fTBkif þ K
� ��1

fT skili � skið Þ skili � skið ÞTf
� �
¼ 2 skili � skið Þ skili � skið ÞTf fTBkif þ K

� ��1 � 2Bkif fTBkif þ K
� ��1

fT skili � skið Þ skili � skið ÞTf fTBkif þ K
� ��1

ð35Þ
The gradient of the third term is obtained using Equation 33 and the chain rule of differentiation

rf2Tr skili � skið ÞTf fTBkif þ K
� ��1

g
� �

¼ 2 skili � skið ÞgT fTBkif þ K
� ��1

þ 2Bkif fTBkif þ K
� ��1

g skili � skið ÞTf þ fT skili � skið ÞgT
� �

fTBkif þ K
� ��1

ð36Þ
The gradient of the fourth term is similarly obtained using Equation 33

rfTr fTBkif þ K
� ��1

ggT
� �

¼ �4Bkif fTBkif þ K
� ��1

ggT
� �

fTBkif þ K
� ��1 ð37Þ

Journal of Vision (2017) 17(12):16, 1–26 Jaini & Burge 21



The full gradient of the AMA–Gauss filter log-likelihood l(f) stated in Equation 30 can therefore be found
by combining Equations 34–37.

The gradient of the expected log-likelihood follows directly from the gradient of the log-likelihood. The response
noise g ;Nð0;KÞ is normally distributed (Equation 6); therefore, Eg½gTðfTBkifÞ

�1g� ¼ TrððfTBkifÞ
�1KÞ. Substituting

into Equation 30 yields the expected log-likelihood of the AMA–Gauss filters

Eg l fð Þ½ � ¼ fu �
1

2

XN
i¼1

log jfTBkif þ Kj � skili � skið ÞTf fTBkif þ K
� ��1

fT skili � skið Þ � Tr fTBkif þ K
� ��1

K
� �h i

ð38Þ
The gradient of the expected log-likelihood, using Equations 34, 35, and 37, is given by

rfEg l fð Þ½ � ¼ �
XN
i¼1

�
Bkif fBkif

T þ K
� ��1 � Bkif fTBkif þ K

� ��1
fT skili � skið Þ skili � skið ÞTf fTBkif þ K

� ��1
þ skili � skið Þ skili � skið ÞTf fTBkif þ K

� ��1 � 1

2
Bkif fTBkif þ K

� ��1
Kþ KT
� �

fTBkif þ K
� ��1	

ð39Þ

Appendix B: Gradient of L2 cost function

The average expected cost across all the stimuli is

�C ¼ 1

N

X
k;l

�Ckl ð40Þ

Given the squared error loss function, the expected cost per stimuli can be written as

�Ckl ¼ ER k;lð Þ X̂
opt
kl � Xk

� �2h i
ð41Þ

where X̂
opt
kl ¼

PNlvl

u¼1 XuPðXujRðk; lÞÞ since the optimal estimate for a squared error function is the mean of the
posterior, i.e., E½XujRðk; lÞ�. Using the approximation that the expected cost of each stimulus is equal to the cost given
the expected response (Geisler et al., 2009) yields

�Ckl ffi
XNlvl

u¼1
XuP Xujr k; lð Þð Þ � Xk

 !2

ð42Þ

Therefore, to evaluate the gradient of the total cost we just need to evaluate the expression for the gradient of the
expected cost of each stimulus. Hence,

rfq
�Ckl ¼ rfq X̂

opt
kl � Xk

� �2 ¼ 2 X̂
opt
kl � Xk

� �
rfq X̂

opt
kl ð43Þ

The gradient of the optimal estimate given the mean response is

rfq X̂
opt
kl ¼

XNlvl

u¼1
Xu rfqP Xujr k; lð Þð Þ
� �

ð44Þ

Hence, the problem reduces to finding ½rfqPðXujrðk; lÞÞ�

P Xujr k; lð Þð Þ ¼ N r k; lð Þ; lu;Ruð ÞPNlvl

i¼1
N r k; lð Þ; li;Rið Þ

ð45Þ

Making substitutions in Equation 45 gives
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P Xujr k; lð Þð Þ ¼
jRuj�0:5 exp �0:5 r k; lð Þ � luð ÞTR�1u r k; lð Þ � luð Þ

h i
PNlvl

i¼1 j Rij�0:5exp �0:5 r k; lð Þ � lið ÞTR�1i r k; lð Þ � lið Þ
h i ð46Þ

¼
jfTBuf þ Kj�0:5 exp �0:5AT

kl ;u
f fTBuf þ K
� ��1

fTAkl;u

h i
PNlvl

i¼1 j fTBif þ Kj�0:5 exp �0:5AT
kl;if fTBif þ K
� ��1

fTAkl;i

h i ð47Þ

where Akl,u ¼ skl – su. The gradient of the posterior probability can then be evaluated using the following relation
with the gradient of the logarithm of the posterior probability

rfqP Xujr k; lð Þð Þ ¼ P Xujr k; lð Þð Þ rfq logP Xujr k; lð Þð Þ
� �

ð48Þ
Taking the natural logarithm of the posterior yields

logP Xujr k; lð Þð Þ ¼ � log
XNlvl

i¼1

jfTBuf þ Kj0:5

jfTBif þ Kj0:5
exp

�
1

2
AT

kl;uf fTBuf þ K
� ��1

fTAkl;u � AT
kl;if fTBif þ K
� ��1

fTAkl;i

� �	
ð49Þ

Next, we define new variables to simplify this expression for the log posterior probability and the subsequent
derivation of its gradient. Let each term in the summation in Equation 49 be

Zi u; k; l; fð Þ ¼ Ti u; k; l; fð Þ exp½1=2Ui u; k; l; fð Þ� ð50Þ

where Tiðu; k; l; fÞ ¼ jf
TBufþKj0:5

jfTBifþKj0:5 is the scale factor in each term in the summation in Equation 50 and where

Uiðu; k; l; fÞ ¼ AT
kl;ufðfTBuf þ KÞ�1fTAkl;u � AT

kl;ifðfTBif þ KÞ�1fTAkl;i is the exponentiated term in each term of the
sum in Equation 50. Hence, by substituting Equation 50 into Equation 49 the simplified expression for the log
posterior is

logP Xujr k; lð Þð Þ ¼ � log
XNlvl

i¼1
Zi u; k; l; fð Þ ð51Þ

The gradient of the log posterior probability can therefore be expressed as

rf logP Xujr k; lð Þð Þ ¼ rf � log
XNlvl

i¼1
Zi u; k; l; fð Þ

 !
ð52Þ

The gradient of the log is

rf logP Xujr k; lð Þð Þ ¼
PNlvl

i¼1rfZi u; k; l; fð ÞPNlvl

i¼1 Zi u; k; l; fð Þ
ð53Þ

Expanding the numerator by substituting Equation 50 using the chain rule for differentiation

rf logP Xujr k; lð Þð Þ ¼ � 1PNlvl

v¼1 Zv u; k; l; fð Þ
XNlvl

i¼1

�
exp½ð1=2Ui u; k; l; fð Þ�rfTi u; k; l; fð Þ

þ 1

2
Ti u; k; l; fð Þ exp½1=2Ui u; k; l; fð Þ�rfUi u; k; l; fð Þ

�
ð54Þ

The remaining terms to be evaluated are rfTiðu; k; l; fÞ andrfUiðu; k; l; fÞ.
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The expression for rfTiðu; k; l; fÞ is

rfTi u; k; l; fð Þ ¼ rf
jfTBuf þ Kj0:5

jfTBif þ Kj0:5
¼
jfTBuf þ Kj0:5jfTBif þ Kj0:5 fTBuf þ K

� ��1
Buf � fTBif þ K

� ��1
Bif

� �
jfTBif þ Kj

¼ jf
TBuf þ Kj0:5

jfTBif þ Kj0:5
Buf fTBuf þ K
� ��1 � Bif fTBif þ K

� ��1� �
ð55Þ

The expression for rfUiðu; k; l; fÞ is

Ui u; k; l; fð Þ ¼ Tr AT
kl;uf fTBuf þ K
� ��1

fTAkl;u � AT
kl;if fTBif þ K
� ��1

fTAkl;i

� �
¼ Tr AT

kl;uf fTBuf þ K
� ��1

fTAkl;u

� �
� Tr AT

kl;if fTBif þ K
� ��1

fTAkl;i

� �
¼ Tr fTBuf þ K

� ��1
fTAkl;uA

T
kl;uf

� �
� Tr fTBif þ K

� ��1
fTAkl;iA

T
kl;if

� �
¼ Tr fTBuf þ K

� ��1
fTDkl;uf

� �
� Tr fTBif þ K

� ��1
fTDkl;if

� �
rfUi u; k; l; fð Þ

¼ rfTr fTBuf þ K
� ��1

fTDkl;uf
� �

�rfTr fTBif þ K
� ��1

fTDkl;if
� �

ð56Þ

where Dkl;u ¼ Akl;uA
T
kl;u. The expression for the gradient of the trace in Equation 56 is obtained by using Equation

32. Thus,

rfTrððfTBuf þ KÞ�1fTDkl;ufÞ ¼ �2BufðfTBuf þ KÞ�1fTDkl;ufðfTBuf þ KÞ�1 þ 2Dkl;ufðfTBuf þ KÞ�1 ð57Þ
The gradient rfUiðu; k; l; fÞ is obtained by substituting Equation 57 into Equation 56. The gradient of

logPðXujrðk; lÞÞ is obtained by substituting Equation 55 and Equation 56 into Equation 54. The gradient of the
posterior probability is obtained by plugging Equation 54 into Equation 48. The gradient of the cost for each
stimulus is obtained by plugging Equation 48 into Equation 44, and then plugging that result into Equation 43.

Appendix C: AMA–Gauss gradient with L0 / KL-divergence cost function

The total cost for a set of filters is given by the average expected cost across all stimuli

�C ¼ 1

N

XN
k;l

ERðk;lÞ Ckl½ � ð58Þ

Given the 0,1 cost function, the cost associated with the filter response to an arbitrary stimulus is given
byCkl ¼ 1�P XkjR k; lð Þð Þ. This cost is monotonic with KL-divergence and we refer to this cost as the KL-cost.

Ckl ¼ � logP XkjR k; lð Þð Þ ð59Þ
We approximate the expected cost associated with each stimulus with the expected cost given the mean response
(Geisler et al., 2009). Thus, we have

ER k;lð Þ Ckl½ � ¼ �
Z ‘

�‘

logP XkjR k; lð Þð ÞP R k; lð Þjsklð ÞdR k; lð Þ ð60Þ

ffi � logP Xkjr k; lð Þð Þ ð61Þ
Therefore, the total cost for a set of filters is given by

�C ¼ � 1

N

XN
k;l

logP Xkjr k; lð Þð Þ ð62Þ

Hence, the gradient of the total expected cost �C can then be written as

Journal of Vision (2017) 17(12):16, 1–26 Jaini & Burge 24



rf
�C ¼ 1

N

XN
k;l

rfq logP Xkjr k; lð Þð Þ½ � ð63Þ

The full expression for the expected cost �C is obtained by substituting the expression for rfq ½logPðXkjrðk; lÞÞ� given
by Equations 54, 55, and 56 in Appendix B.

Appendix D: AMA vs. AMA–Gauss: A simulated example yielding discrepant
results

Here, we show AMA and AMA–Gauss are not guaranteed to give equivalent results, and therefore that the
similarity of the results presented in the main text is not a foregone conclusion. We show that AMA learns the correct
filters and that AMA–Gauss does not when the class-conditional response distributions are non-Gaussian. We
simulate stimuli s with three stimulus dimensions, from each of two categories X1 and X2. (For comparison, in the
main text the speed and disparity stimuli had 256 and 64 stimulus dimensions, respectively). The simulated stimuli are
shown in Figure A1A–C. The first two dimensions of the simulated stimuli contain the information for discriminating
the categories; the third stimulus dimension is useless. Specifically, the stimulus distributions are given by

P sjX1ð Þ ¼ 1

2
N s; 0;RAð Þ þ 1

2
N s; 0;RBð Þ ð64Þ

P sjX2ð Þ ¼ 1

2
N s; 0;RRAR

T
� �

þ 1

2
N s; 0;RRBR

T
� �

ð65Þ

Figure A1. AMA vs. AMA–Gauss with simulated non-Gaussian class-conditional stimulus distributions. (A–C) Simulated stimuli from

category 1 (red) and category 2 (blue). Each subplot plots two of the three stimulus dimensions against each other. All of the

information for discriminating the categories is in the first two stimulus dimensions. AMA filters (black) and AMA–Gauss (gray) filters

(which have the same dimensionality as the stimuli) are represented by arrows. AMA filters place all weight in the first two

informative stimulus dimensions; that is, the two-dimensional subspace defined by the two AMA filters coincides with the most

informative stimulus dimensions. AMA–Gauss filter weights are placed randomly across the three stimulus dimensions; that is, the

two-dimensional subspace defined by the two AMA-Gauss filters will be random with respect to the most informative subspace. (D)

Class-conditional AMA filter responses RAMA allow the categories to be discriminated. (E) Class-conditional AMA–Gauss filter

responses RAMA–Gauss do not allow the categories to be discriminated.
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where RA ¼
Vlarge 0 0
0 Vsmall 0
0 0 1

2
4

3
5; RB ¼

Vsmall 0 0
0 Vlarge 0
0 0 1

2
4

3
5

and R is a 458 rotation matrix that operates on the first two dimensions. Stimuli in both categories are therefore
distributed as mixtures of Gaussians with identical first- and second-order stimulus statistics (i.e., same mean and
covariance). Thus, all information for discriminating the categories exists in higher-order statistical moments of the
first two stimulus dimensions. Hence, because AMA–Gauss is sensitive only to class-conditional mean and
covariance differences, it will be blind to the stimulus differences that define the categories.

AMA and AMA–Gauss were each tasked with learning two filters that discriminate the stimulus categories.
AMA learns filters that enable the categories to be discriminated; its filters place all weight on the first two
informative stimulus dimensions (Figure A1A, black arrows), and zero weight on the third uninformative stimulus
dimension (Figure A1B, C). AMA–Gauss is blind to the stimulus statistics that enable the stimulus categories to be
discriminated; its filters place their weights randomly, often putting substantial weight on the uninformative third
stimulus dimension (Figure A1A–C, gray arrows). AMA–Gauss fails to learn filters that allow the categories to be
nicely discriminated.

Figure A1D, E show AMA and AMA–Gauss conditional response distributions. AMA filter responses capture
the mixture distribution that defines each category, and AMA–Gauss does not. Thus, the results in the main text are
not simply due to the fact that Gaussians often provide good generic approximations of distributions with a lot of
probability mass in one place.

Appendix E: Connection between AMA–Gauss and GQM

The log-likelihood of latent variable Xu using Equation 28 can be written as

l Xuð Þ ¼ �
1

2
xTfR�1u fTx� 2 lT

uR�1u � gTuR�1u

� �
fTxþ lT

uR�1u lu � gTuR�1u gu þ 2gTkR�1u lu

� �
þ fu ð66Þ

where fu ¼ � 1
2 log j2pRuj is a constant. The expected log-likelihood can then be written as

Eg½l Xuð Þ� ¼ � 1

2
xTfR�1u fTx� 2lT

uR�1u fTxþ lT
uR�1u lu � Tr R�1u K

� �� �
þ fu ð67Þ

It is evident from Equation 67 that Eg½lðXuÞ� is of the form xTCxþ bTxþ a where

C ¼ � 1

2
fR�1u fT ð68Þ

bT ¼ lT
uR�1u fT ð69Þ

and a ¼ � 1

2
lT
uR�1u lu þ

1

2
Tr R�1u K
� �

þ fu ð70Þ
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