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Abstract

Dust and sandstorm events inject substantial quantities of foreign microorganisms into global ecosystems, with the ability to impact

distant environments. The majority of these microorganisms originate from deserts and drylands where the soil is laden with highly

stress-resistant microbes capable of thriving under extreme environmental conditions, and a substantial portion of them survive long

journeys through the atmosphere. This large-scale transmission of highly resilient alien microbial contaminants raises concerns with

regards to the invasion of sensitive and/or pristine sink environments, and to human health—concerns exacerbated by increases in

the rate of desertification. Further increases in the transport of dust-associated microbiota could extend the spread of foreign

microbes to new ecosystems, increase their load in present sink environments, disrupt ecosystem balance, and potentially introduce

new pathogens. Our present understanding of these microorganisms, their phylogenic affiliations and functional significance, is

insufficient to determine their impact. The purpose of this review is to provide an overview of available data regarding dust and

sandstorm microbiota and their potential ramifications on human and ecosystem health. We conclude by discussing current gaps in

dust and sandstorm microbiota research, and the need for collaborative studies involving high-resolution meta-omic approaches in

conjunction with extensive ecological time-series studies to advance the field towards an improved and sufficient understanding of

these invisible atmospheric travelers and their global ramifications.

Key words: dust and sandstorms microbiota, global spread, stress resistant and pathogenic microorganisms, human and

ecosystem health, metagenomics and multiomics, monitoring.

Introduction

Dust and sandstorm events inject substantial quantities of for-

eign microorganisms to downwind atmosphere, terrestrial,

and aquatic environments, and are known as one of the

most far-reaching vehicles for transport of highly stress resis-

tant and potentially invasive/pathogenic microorganisms

across the globe (Kellogg and Griffin 2006; Favet et al.

2013; Smith et al. 2013; Weil et al. 2017). Significant

increases in the concentration of bacteria and fungi are com-

monly detected in dust clouds during sandstorm events

(Kellogg and Griffin 2006; Griffin 2007; Vijayakumar et al.

2017; Tang et al. 2018). Since microorganisms are fundamen-

tal players in ecosystem processes (Schulz et al. 2013;

Bernhard and Kelly 2016; Graham et al. 2016), large-scale

transport of highly stress resistant, foreign, and potentially

invasive/pathogenic microorganisms could have wide ranging

impacts on downwind environments and our health

(Griffin and Kellogg 2004; Gonzalez-Martin et al. 2014).

African dusts were linked to the meningitis outbreaks in

sub-Saharan Africa (Agier et al. 2013; Jusot et al. 2017)

and the coral reef decline in the Caribbean (Shinn et al.

2000). Dust storms are known to correlate with increased

hospital emergency visits due to asthma exacerbations and

other respiratory and cardiovascular complications (Gyan

et al. 2005; Mallone et al. 2011; Tam et al. 2012; Lee et al.

2013; Meo et al. 2013). However, the few studies investi-

gating the roles of dust storm microbiota in disease out-

breaks found correlation, but did not explore clinical

evidence for causal effects (Chen et al. 2010; Rodo et al.

2014; Wang et al. 2016). Although these studies provide a

link between sandstorms and disease outbreaks, they were

constrained in terms of number and scope.
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Expanded study is needed since dust activity is predicted to

rise substantially in the future due to global climate changes

and anthropogenic causes. The world’s drylands have ex-

panded over the past 60 years, and their expansion is pro-

jected to continue well into the 21st century (Huang et al.

2017). Dryland regions cover approximately 40% of earth’s

total landmass (White and Nackoney 2003), and are spread

throughout the globe, with the largest percentage localized in

Africa and Asia, as shown in figure 1. Increased aridity, fre-

quent draughts, low precipitation, low soil fertility, and exces-

sive anthropogenic exploitations have made dryland soils

exceptionally vulnerable to desertification, degradation, and

erosion by wind (Fu and An 2002; Maestre et al. 2014; Tao

2014; Zhou et al. 2016). Approximately 12x106 hectares of

arable land is lost annually to desertification, which is 30–35

times greater than expected based on historic rates (UNCCD).

Desertification generates new grounds for dust activities

(Moulin and Chiapello 2006; McConnell et al. 2007;

Johnson et al. 2011; Issanova et al. 2015; Sharma et al.

2015), and could increase microbial load in the atmosphere.

The overall escalation in dust activities could alter the equilib-

rium in sink environments by increasing their share of foreign

microbes, extremophiles, and potentially invasive/pathogenic

species. It could also spread dust masses beyond present sink

environments affecting new ecosystems.

The ramifications of dust and sandstorm microbiota are

potentially significant. In order to understand impact, we

need to have detailed information on the agents of impact.

The research in the field of dust and sandstorm aero-

microbiology and its impact on downwind ecology is still in

its infancy. Our current knowledge of these microorganisms

and their functional attributes is insufficient to determine a

cause and effect relationship between their spread and

threats to downwind ecosystems. Understanding the breadth

of microbial diversity in dust clouds, their viability, invasive-

ness/pathogenicity, and their long-term impacts on global

ecosystems will require comprehensive, collaborative studies

and novel approaches. In recent years, with the advent of

culture-independent metagenomics, we are beginning to re-

alize the vast extent of microbial diversity in sandstorm dust

clouds and the extent of their reach (Smith et al. 2013; Rosselli

et al. 2015; Cha et al. 2017; Maki et al. 2017b; Weil et al.

2017). These novel findings opened our eyes to a frontier of

previously unknown microbial diversity, and the research in

the field is gaining momentum due to pertinent discoveries.

We aim to draw attention to this novel frontier of microbial

ecology by examining: 1) The current understanding of dust

and sandstorm derived microbiota (DSM), and their global

spread; 2) Potential ramifications of DSM on human and eco-

system health; and 3) Perspectives to guide future research

towards comprehensive understanding of DSM role at a

global level.

Dust and Sandstorm Derived Microbiota
(DSM) and Their Global Spread

Dust and Sandstorm Derived Microbiota

The majority of DSM originates from large deserts (Griffin

2007). Deserts are laden with highly stress resistant micro-

organisms capable of thriving in harsh environmental condi-

tions with restricted water and nutrients availability, extremes

of temperatures, and UV irradiation (Kuske et al. 1997; Dose

et al. 2001; Varin et al. 2012; Makhalanyane et al. 2015;

FIG. 1.—World map of drylands. Colors highlight regions with varying degrees of aridity. Major deserts (excluding Antarctica and the Arctic) are

annotated. http://www.naturalearthdata.com/, last accessed July 21, 2018.
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Etemadifar et al. 2016). Desert microbiota have increased

abundance of genes involved in osmoregulation and dor-

mancy, which likely contribute to their survival in hostile desert

soil (Fierer et al. 2012). Microorganisms play significant roles in

soil ecosystems, from their vital symbiotic interactions with

plants, to their major roles in maintenance of biological soil

crust, biodegradation of organic matters, and biogeochemical

cycling of nutrients (Ortiz-Castro et al. 2009; Abed et al. 2010;

Schulz et al. 2013). Microbial diversity in soil is dependent on its

pH, nutrient, and moisture contents (Fierer and Jackson 2006;

Clark et al. 2009; Lauber et al. 2009; Angel et al. 2010; Rousk

et al. 2010). Some variations exist in the diversity of taxa that

dwell indifferent deserts,with coldarctic deserts bearing lower

microbial diversity compared with hot deserts (Pointing et al.

2009; Fierer et al. 2012; Lee et al. 2012). Some of the major

bacterial taxa that frequently dwell in desert soil with high rel-

ative abundance include Actinobacteria, Bacteroidetes,

Proteobacteria, Firmicutes, and cyanobacteria (Fierer et al.

2012; An et al. 2013). Archaea also appear to be equally abun-

dant, the majority of which are chemolithoautotrophic ammo-

nia oxidizers potentially involved in biogeochemical cycling of

nitrogen and carbon (Makhalanyane et al. 2015). Desert soil

also harbors diverse communities of fungi that can withstand

adverse environmental conditions (Chan et al. 2013); some of

the most common fungal genera in deserts include Alternaria,

Aspergillus, Cladosporium, and Penicillium (Conley et al. 2006;

Sterflinger et al. 2012; Makhalanyane et al. 2015).

Taxonomically diverse selections of viruses were also found,

although viral diversity and function in desert ecosystems is

poorly understood (Fierer et al. 2007; Zablocki et al. 2016).

In addition to desert microbiome, sandstorms carry large

quantities of the airborne microbiota encountered along their

intermediate path. By some estimate, a cubic meter of air

contains hundreds of thousands of microorganisms

(Burrows et al. 2009; Prussin et al. 2015), with a diversity of

taxa similar to that found in soil (Franzetti et al. 2011). The

majority of these microbes originate from local sources, that

is, soil, aquatic environments, plants, and anthropogenic pol-

lution (Maron et al. 2005; Brodie et al. 2007). Some of the

more dominant bacterial taxa in air include Proteobacteria,

Firmicutes, Bacteroidetes, Actinobacteria, and Cyanobacteria

(Bowers et al. 2009; Smith et al. 2013; Lee et al. 2017). Air

also harbors diverse communities of fungi including

Cladosporium, Aspergilllus, and Penicillium, some of which

are potential allergens (Oh et al. 2014). Archaea including

Thaumarchaeota and Euryarchaeota were also found in the

air (Frohlich-Nowoisky et al. 2014). DNA sequences from a

diversity of viruses, including those related to plant-associated

geminiviruses and animal-infecting circoviruses, were also

found in air (Whon et al. 2012). Airborne microbiota are

known to resist adverse atmospheric conditions (Rothschild

and Mancinelli 2001), and the atmosphere is believed to be

a source of both beneficial and pathogenic microorganisms

(Polymenakou 2012; Nicolaisen et al. 2017).

There is limited data on the extent of microbial diversity

and taxonomic details of DSM. These details are required to

study the functional and ecological significance of these

microbes in their native environments and larger ecosystems.

Global Spread of DSM and Their Wide-Ranging Reach

According to different studies, each year between 0.5 billion

and 5 billion tons of dust is injected into the atmosphere

(Perkins 2001), the majority of which originate from the

Sahara Deserts and Sahel regions in Africa, and the Gobi

and Taklamakan Deserts in Asia (Griffin 2007). Sandstorms

from the Sahara Deserts transmit roughly a billion tons of dust

across the atmosphere, and are considered as one of the

major sources of the intercontinental dust transport (Moulin

et al. 1997; Griffin 2007). Figure 2 shows NASA satellite

images of a strong sandstorm that blew off the west coast

of Africa on October 13, 2017, carrying massive amounts of

African dusts across the Atlantic Ocean. The dust plume gen-

erated from this particular storm stretched for a few thousand

kilometers over the Atlantic, and reached the Caribbean

within 5–6 days. Sandstorms such as this are common occur-

rences in the region, and can transport substantial quantities

of African dust thousands of kilometers from the source;

depending on the strength and direction of the wind, these

dust can move westward across the Atlantic Ocean to the

Americas and the Caribbean (Prospero and Carlson 1981;

Swap et al. 1992; Perry et al. 1997; Prenni et al. 2009), or

north and eastward over the Mediterranean Sea to Europe

and the Middle East, respectively (Ganor et al. 1991; Franzen

et al. 1995; LoyePilot and Martin 1996; Kubilay et al. 2000;

Rodrı�guez et al. 2001). Gobi and Taklamakan Deserts in Asia,

the second largest source of long-range dust transport, inject

approximately 100–460 Mt/year (Laurent et al. 2006) to 800

Mt/year (Zhang et al. 1997) of dust into the atmosphere

(Bishop et al. 2002; Griffin 2007). The dust plumes generated

from Asia sandstorms frequently disturb the air quality in East

Asia (Iwasaka et al. 1983; Choi et al. 2001; Trochkine et al.

2003), and can reach as far as the Americas (Husar et al.

2001; VanCuren and Cahill 2002), the Alps (Grousset et al.

2003), the Arctic (Huang et al. 2015), and even circle around

the globe (Uno et al. 2009). Strong sandstorms originating

from African and Asian deserts are known to carry a large

enough quantity of dust to affect air quality in destinations

thousands of kilometers away from the source (Prospero

1999; Griffin 2007). Considering that one gram of soil can

harbour 108–109 prokaryotes (Whitman et al. 1998), this

could translate into transport of trillions upon trillions of

microbes into the air and downwind destinations along their

intermediate path. Increases in the concentration of microbes

in sandstorm dust clouds have been documented extensively

by both culture dependent and independent approaches

(Kellogg and Griffin 2006; Griffin 2007; Nishimura et al.

2010; Yamaguchi et al. 2014).
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A few studies examined the impact of increased transport

of DSM on ambient airborne microbiota in leeward environ-

ments. A recent metagenomic analysis of air samples col-

lected during an Asian dust event in South Korea showed a

significant increase in the number of bacterial Operational

Taxonomic Units (OTU) with significantly different microbial

composition including potential human pathogens, compared

with control nondust samples (Cha et al. 2017). A similar

analysis of air samples in Northern China demonstrated sub-

stantial increases in airborne bacterial diversity and concentra-

tion in dust versus nondust air samples (Tang et al. 2018).

Asian dust was shown to carry substantial increases in the

proportion of endospore forming Bacillus as well as other

bacterial genera including Modestobacter (Cha et al. 2016),

which are resistant to desiccation and UV irradiation (Gtari

et al. 2012). Examination of two transpacific Asian air plumes

at Mt. Bachelor Observatory (2.8 km above sea level) in North

America revealed a richness of microbiota tantamount to

those found in surface environments; the plumes carried in-

creased level of Gram-positive bacteria that included many

spore forming species adapted to survive in extreme condi-

tions (Smith et al. 2013). Similarly, analysis of airborne

bacterial communities in the free troposphere at high altitude

(500–3,000 m above ground level) over the Noto Peninsula in

Japan during Asian dust days showed a high diversity of bac-

teria, dominated by natural-sand/terrestrial-associated taxa in-

cluding endospore forming Bacillus members (Maki et al.

2017a). Hara et al. (2015) isolated a number of UV tolerant

endospore forming culturable bacteria in air samples collected

over the East China Sea during Asian dust events, demonstrat-

ing that dust storms carry viable bacteria.

At present, we do not know exactly what percentage of

DSM survives the long journey through the atmosphere. It is

also uncertain whether these alien microbial contaminants

can adapt to disparate new environmental conditions upon

arrival, and if they could significantly alter their new host

ecosystems. Findings from a recent culture independent

metagenomic study by Weil et al. revealed that a massive

sandstorm originating from the Sahara Deserts deposited a

large fraction of the entire microbial communities from

Saharan soil to snow covered Alpine mountains in Italy

(Weil et al. 2017). Within these deposits, the authors found

a number of putative pathogens and some of the most highly

stress resistant microorganisms ever detected on the planet.

FIG. 2.—A massive sandstorm blows off the west coast of Africa and over the Atlantic Ocean towards the Caribbean, on October 13, 2017. (A) A dust

plume greater than 2,000km in length could be seen over the Atlantic Ocean, 3 days later on October 16. (B) The dust plume was stretched over 4,000 km

by day 4, October 17. The dust clouds reached the Caribbean by day 5 on October 18, covering Dominican Republic (Dom Rep) by October 19 (C), and

moving towards the Bahamas (BHM) and Florida (Fla.) in the United States (USA). The natural color images were captured with the Moderate Resolution

Imaging Spectroradiometer (MODIS) abroad NASA’s Satellites. Images courtesy of NASA Earthdata: https://worldview.earthdata.nasa.gov/, last accessed July

21, 2018.
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Surprisingly, some of these microorganisms might have sur-

vived in the frozen Alpine soil and still remained viable upon

melting of the snow (Weil et al. 2017). In a similar study, the

snow samples collected at Mont Blanc glaciers (French Alps)

during Sahara dust storms showed high indices of bacterial

diversity with a dominance of phylotypes commonly found in

desert and arid soils (Chuvochina et al. 2011a, 2011b), some

of which belonged to genera known to carry resistance to

adverse environmental conditions including extreme cold, UV

irradiation, and desiccation; these traits could enable them to

remain viable during atmospheric transport and subsequently

adapt to the snow covered environment despite the physical

and physiological stress associated with these events.

Comparison of microbial data with their closest relatives in

the GenBank identified 15 phylotypes as potential snow col-

onizers (Chuvochina et al. 2011b). In another study, sand-

storm originating from the Sahara Desert was shown to

change the bacterial assemblage and composition of a pris-

tine fresh water lake in Austrian Alps, and increased viable

bacterial concentration in these waters (Peter et al. 2014).

These findings raise significant concerns over invasion and

alteration of pristine and sensitive sink environments, and fur-

ther suggest the spread of human diseases by alien microbial

contaminants. However, the prevailing data on sandstorm

microbiota is exceedingly sparse and insufficient to estimate

the potential global effect exerted by these microorganisms.

Potential Ramifications of DSM on Human
and Ecosystem Health

The Impact of DSM on Human Health

A primary concern with the dispersal of microorganisms via

sandstorms is the potential impact on human health. A few

studies have found correlations between DSM and disease

outbreaks, but no major attempts were made to establish

cause and affect relationships. The annual meningitis out-

breaks in Sahel region of Africa were linked to the occurrence

of seasonal changes including high temperatures, dry air, and

increased dust activities from African deserts (Sultan et al.

2005; Griffin 2007; Agier et al. 2013; Jusot et al. 2017).

Inhalation of hot and dry dusty air is thought to impair host

immune response, leading to an increase in the nasopharyn-

geal carriage of precolonized or airborne bacterial pathogens,

their direct aspiration into the lung, and dissemination into

blood and brain (Jusot et al. 2017). The potential role of dust

borne microbiota in the spread of meningitis in the region,

however, is not clear and requires detailed investigations.

Interestingly, several OTUs potentially belonging to meningitis

pathogens were detected in the Sahara dust deposits within

the snow packs in Swiss Alps (Meola et al. 2015). The out-

breaks of Kawasaki disease (KD), a serious heart complication

acquired in childhood, in Japanese children was linked to

Candida species found in tropospheric winds originating

from China (Rodo et al. 2014). The seasonal occurrence of

KD in US children similarly showed a significant association

with the strong wind currents that originated from central

Asia (Rodo et al. 2011; Rodo et al. 2014). Another infectious

disease presumably caused by wind dissemination of micro-

organisms is Valley Fever, whose fungal causative agents

Coccidioides immitis and Coccidioides posadasii are primarily

found in hot and arid desert soil (Kirkland and Fierer 1996). In

particular, positive correlations were found between the in-

tensification of sandstorms and the epidemics of Valley Fever

in Southern United States in the last decade (Tong et al.

2017). The incidence of measles in Western China was pos-

itively correlated with dust events in the region (Ma et al.

2017). The epidemics of pulmonary tuberculosis, a chronic

infectious disease of the lung caused by Mycobacterium tu-

berculosis, was similarly linked to Asian dust storms (ADS) in

China (Wang et al. 2016). A significant increase in the con-

centration of ambient influenza type A virus was detected in

air samples collected in Taiwan during ADS (Chen et al. 2010);

and the highly pathogenic H5N1 avian influenza virus out-

breaks in 2003–2005 in Japan and South Korea, positioned

downwind of ADS, were potentially caused by increases in the

influenza virus load during ADS (Chen et al. 2010). A strong

association between increased particulate matter (PM2.5) lev-

els and the risk of acquiring influenza-like illness was reported

in Beijing, China across all the age categories studied (Feng

et al. 2016). Outbreak of the foot-and-mouth disease (FMD)

in Miyazaki, Japan in July–March 2010 which led to the

slaughter of 289,000 domestic animals was linked to trans-

port of the FMD virus via yellow sandstorms that originated

from China (Maki et al. 2012). Dust events typically lead to

increased hospital emergency visits due to asthma exacerba-

tions and other respiratory and cardiovascular complications

(Yang et al. 2005; Kanatani et al. 2010; Tam et al. 2012; Meo

et al. 2013), but the potential link between sandstorm micro-

biota and these human health concerns have rarely been in-

vestigated even though mounting evidence suggest that

microorganisms contribute to the establishment and/or exac-

erbations of asthma (Glezen et al. 2000; Denning et al. 2006;

Hilty et al. 2010; Huang et al. 2011). Airborne dissemination

of microorganisms could also greatly increase the range and

influence of horizontal gene transfer. This would be particu-

larly problematic when antibiotic resistant genes (ARGs) are

acquired by pathogenic microorganisms rendering them re-

sistant to antibiotic treatments (Martinez 2008).

Current data on the potential link between DSM and dis-

ease outbreaks show correlation, but are insufficient for

establishing causation. Establishing a cause-and-effect rela-

tionship between DSM and human health concerns is difficult

since the majority of these microorganisms are not yet char-

acterized, and their viability, pathogenic potential, and geo-

spatial distributions remain mostly unknown. A

comprehensive database of DSM, environmental metadata,

and implementation of disease surveillance strategies in
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downwind environments are all prerequisites for establishing

a clear link between DSM and human health concerns.

Surveillance strategies based on emerging biosensor technol-

ogies with high sensitivity and specificity for detection of

windborne pathogens could provide advanced warning sys-

tem for at-risk populations (Yoo et al. 2017).

The Impact of DSM on Aquatic Environments

Over two-third of our planet is covered with aquatic ecosys-

tems including oceans, marines, lakes, rivers, and estuaries.

Microorganisms are essential players in the natural function-

ing of these ecosystems from their major roles in biogeochem-

ical cycling of nutrients, to their involvement in food chains

through primary productivity, and the sequestration and ex-

port of atmospheric CO2. Dust storms could have significant

impacts on these processes through: 1) replenishing of essen-

tial nutrients (i.e., P and N) and trace metals (i.e., Fe) needed

for growth and propagation of indigenous microorganisms;

and 2) deposit of a large supply of foreign microbes, including

potentially pathogenic microorganisms.

The majority of previous research on dust impact in aquatic

environments primarily examined the influence of dust

nutrients on indigenous microorganisms with little to no focus

on the potential impact of DSM. These studies suggest that

dust nutrients could promote or inhibit propagation of certain

species over others depending on the trophic status of marine

environments (oligotrophic vs. eutrophic) and the richness/

toxicity/anthropogenic content of the dust source (Herut

et al. 2005; Paytan et al. 2009; Lekunberri et al. 2010;

Romero et al. 2011; Gallisai et al. 2014; Guieu et al. 2014;

Westrich et al. 2016). Concomitant with the deposit of

nutrients, dust storms can deliver copious supplies of highly

stress resistant foreign microorganisms to aquatic environ-

ments. In a microcosm bioassay experiment, when dust sam-

ples from different deserts with distinct microbial

communities were added to presterilized Mediterranean sea-

water, a significant increase in bacterial production and nitro-

gen fixation was detected within a short period following dust

addition suggesting that dust borne microorganisms were

alive and metabolically active (Rahav et al. 2016). Peter

et al. (2014) compared the viability, composition, and abun-

dance of bacteria in a fresh water lake in Austrian Alps during

rain events influenced by Saharan versus non-Saharan dust

days, and showed that the bacterial assemblage and compo-

sition in the lake differed significantly between the two

events, with Gamma Proteobacteria dominating the

Saharan dust intrusion events and Beta Proteobacteria dom-

inating the non-Saharan events. The authors found a rapid

increase in bacterial cell count in sterile lake water samples

upon addition of the rain from Saharan dust days demonstrat-

ing that the bacteria in the wet deposits were alive and able to

readily propagate. These studies, although limited in their

number, focus, and temporal scope, suggest that sandstorms

could significantly impact the makeup of microbial commu-

nity structures in downwind aquatic environments in part

through deposit of large supplies of foreign microorganisms.

Intrusion of large quantities of potentially stress resistant

foreign microorganisms could affect microbial community

interactions and equilibrium in these environments; but the

long-term impact or threats to the ecology of pristine settings

such as the alpine lakes is not known.

In addition to their predicted impact on ecosystem main-

tenance and sustainability, dust borne microorganisms could

have pathogenic ramifications on aquatic organisms. One of

the best studied examples is the potential link between in-

creased dust activities and the rapid decline in the coral reef

status in the Caribbean, which receives hundreds of millions

of tons of dust from Sahara Deserts annually (Shinn et al.

2000). Aspergillus sydowii, the fungal causative agent of

Aspergillosis or sea fan disease, was isolated from both the

Sahara-derived dust samples in the Caribbean and from the

diseased sea fan corals in the region (Weir et al. 2000;

Garrison et al. 2003). Later, it was shown that inoculation

of healthy sea fans with Aspergillus spp. isolated from dust

samples in the Caribbean produced Aspergillosis-like disease

morphology in the infected corals and the fungi was success-

fully reisolated from the diseased animals (Weir-Brush et al.

2004). In a tissue culture bioassay, A. sydowii was shown to

impede the motility of dinoflagellate symbiodinium, the coral

symbiont that plays essential roles in coral fitness and energy

production (Hallegraeff et al. 2014). Considering that coral

reefs house some of the most vibrant marine ecosystems,

these studies support the notion that escalation in dust activ-

ities could have a negative impact on marine health through

increased deposit of dust borne pathogens.

Long term monitoring of sandstorm spread using ad-

vanced satellite technologies combined with fieldwork analy-

sis of DSM in downwind environments over the Ocean and

terrestrial regions, and close observations of infectious out-

breaks could reveal more concrete links between pathogenic

DSM and major disease outbreaks in aquatic ecosystems.

The Impact of DSM on Agriculture

Long-range transport of atmospheric dust could have both

positive and negative implication on plants and agriculture in

sink environments. A clear example of the positive impact of

intercontinental dust transport is the continuous fertilization

of nutrient depleted soils in the Amazon. By transport of

nutrients, in particular phosphorus, and topsoil to the

Amazon, Sahara sandstorms are believed to be major contrib-

utors to the fertility and productivity of the Amazon rainforest

(Yu et al. 2015). However, dust storms can also have negative

impacts on downwind agriculture through transport of sub-

stantial quantities of foreign, stress resistant and/or patho-

genic microorganisms, which could potentially change the

make-up of soil microbial communities or introduce
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pathogenic microorganisms to crops and plants. Since mod-

ern crops lack genetic diversity and are susceptible to similar

set of pathogens, aerial dispersion of plant pathogens and

invasive microorganisms by sandstorms could have major

implications in agricultural productivity and the global

economy. Understanding the mechanisms involved in re-

gional and long-range aerial transport of crop pathogens,

and monitoring their spread could help instigate remedi-

ation strategies to combat the global spread of plant in-

fectious diseases.

The majority of the studies on aerial dispersal of plant

pathogens (phytopathogens) have primarily focused on fungi,

since over a thousand species of fungi are responsible for

70% of all known plant diseases (Shi et al. 2016). Fungi

form spores that can withstand adverse environmental con-

ditions (Wainwright et al. 2003; Griffin 2004; Sterflinger et al.

2012), enabling them to survive long journeys through the

atmosphere (Griffin et al. 2001; Prospero et al. 2005). Several

species of fungi known to cause common plant diseases, such

as leaf spot, rust, rot, wilt, inhibition of growth, black mold,

and early blights, were identified in Asian and African dusts

collected thousands of kilometers in sink environments (Yeo

and Kim 2002; Kellogg et al. 2004; Wu et al. 2004; Ho et al.

2005; Griffin 2007; Kakikawa et al. 2008; Palmero et al.

2011; Grishkan et al. 2012; Smith et al. 2012). Brown and

Hovmøller surveyed the global outbreaks of plant diseases

caused by intercontinental dispersion of fungal spores and

uncovered a number of fungal diseases that affected planta-

tions of tobacco, coffee, banana, sugarcane, potato, wheat

and cereal worldwide (Brown and Hovmoller 2002). Many

species of the genus Puccinia with well-known long-range

wind dispersion patterns are the causative agents of major

crop disease outbreaks worldwide. Long distance dissemina-

tion of airborne Puccinia spores by winds, for example, were

responsible for the crop stem rust in the North American con-

tinent (Eversmeyer and Kramer 2000), the wheat leaf rust in

the Indian subcontinent (Nagarajan and Singh 1990), the sug-

arcane rust, stem rust, and stripe rust across different conti-

nents (Watson and De Sousa 1983; Purdy et al. 1985;

Wellings and McIntosh 1990), and the loss of the cereal crops

worldwide (Narayanasamy 2011). Other important fungal

crop pathogens such as Hemileia vastatrix causing the coffee

leaf rust (Bowden et al. 1971) and Phakopsora pachyrhizi

causing the soybean rust (Pan et al. 2006) were introduced

to North America by windborne dissemination from Africa

and Asia, respectively. Since the long-range spread of crop

diseases by pathogenic fungi could cause significant eco-

nomic downturn and food insecurities globally, effective sur-

veillance and management strategies are needed to halt the

spread of infections (Mahaffee and Stoll 2016). Periodic mon-

itoring of air with molecular approaches, such as quantitative

PCR (qPCR) to identify specific pathogens and/or culture in-

dependent metagenomics to screen the entire airborne

microbiota, are powerful tools that could be more commonly

implemented to monitor and identify potential threats as early

as possible (Nicolaisen et al. 2017). Early pathogen detection

would enable implementation of well-informed disease man-

agement strategies to combat infections.

Studies on potential long distant aerial spread of plant

pathogenic bacteria have not been as extensive as those of

fungi. Although a large number of putative bacterial plant

pathogens were found in regional and intercontinental dust

samples (Griffin et al. 2001; Kellogg et al. 2004; Kakikawa

et al. 2008; Chuvochina et al. 2011b; Munday et al. 2013), no

evidence of a direct link between the long-range aerial trans-

port of bacteria and the spread of plant infectious diseases has

been found. The majority of well-known phytopathogenic

bacteria, including Agrobacterium, Xanthomonas,

Pseudomonas, Erwinia, Clavibacter, and Rhodococcus species

(Francis et al. 2010; Mansfield et al. 2012), do not form endo-

spores, which make them unlikely candidates for long distant

transport, unless they possess other mechanisms for resisting

adverse atmospheric conditions. Microorganisms can improve

their viability in the atmosphere by acting as cloud condensa-

tion nuclei (CCN), which can help increase the relative humid-

ity of their surrounding environment, and protect them

against desiccation and harmful UV irradiation. The ability to

form CCN potentially played a role in the long distant aerial

spread of Erwinia carotovora, the causal agent of potato

blackleg disease, from the source waters off the west coast

of the United States (US) to inland destinations in Colorado

(US), where the disease was prevalent (Franc 1994).

Pseudomonas syringae, another known plant pathogen

with the ability to act as CCN (Lindow et al. 1982), could

use a similar strategy for long-range aerial transport and dis-

ease spread. The mechanisms involved in long distance aerial

spread of phytopathogenic bacteria warrant closer examina-

tion in light of their potential ramifications on disease spread.

Unlike fungi and bacteria, plant viruses usually require vec-

tors for transmission of infection. The main route for trans-

mission of plant viruses is by means of insect vectors including

aphids, whiteflies, leafhoppers, beetles, and many other

insects (Maramorosch 1980; Agrios 2005; Ng and Perry

2004). Aphids are known to carry and spread a large diversity

of viruses including the barley yellow dwarf viruses (BYDV)

that affects wide varieties of cereal crops worldwide (Miller

and Rasochova 1997; Hall et al. 2010). Plant viruses can also

transmit infections by means of infected seeds and pollens

(Mink 1993). Little is known about the potential long-range

atmospheric transport of plant pathogenic viruses and disease

transmission in sink environment, although large number of

viral DNA sequences, in particular those belonging to plant

associated viruses, have been found in the air (Whon et al.

2012). The identification of airborne plant viral DNA sequen-

ces does not necessarily indicate the presence of viable viruses

that could transmit infection. Viral particles are particularly

sensitive to lengthy exposure to desiccation, extreme temper-

atures, and UV irradiation (Prussin et al. 2014), and are
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extremely unlikely to remain viable during long-range atmo-

spheric transport unless they are carried inside host vectors

such as plant debris, pollen, bacteria, fungi, or insects. Before

any decision can be made regarding the potential ramifica-

tions of aerial spread of viral plant pathogens on global agri-

culture, we need to acquire a more extensive knowledge of

the airborne viral community structures, their role in the at-

mosphere, and the potential mechanisms involved in their

viability, virulence, and spread throughout the atmosphere.

Perspectives

Our present knowledge of sandstorm microbiota is limited

with regard to their diversity, function, and impact. The ma-

jority of our knowledge comes from culture-based studies. By

many accounts, over 90% of environmental microbiota can-

not be cultured in laboratories; also since microorganisms are

grown in isolation in growth culture media, culture-based

approaches cannot provide information on microbial commu-

nity structures in their natural environments. This information

is essential for understanding their potential impact on host

ecosystems. Regardless of their potential limitations, these

studies confirmed that a large number of viable microorgan-

isms, including known and opportunistic human and plant

pathogens, are transported via sandstorms (Kellogg and

Griffin 2006; Vijayakumar et al. 2017). Culture-based

approaches in their current state can only provide a small

glimpse into sandstorm-associated microbial diversity and

function, unless significant improvements are made to

make it possible to grow the majority of environmental micro-

biota (Vester et al. 2015).

In recent years, with the advent and significant progress in

culture-independent metagenomic approaches, we are be-

ginning to realize the vast extent of microbial diversity spread

via sandstorms. Table 1 provides a list of some of the most

recent publications on dust and sandstorm microbiology,

showing that culture independent metagenomics approaches

are gaining momentum. As can be seen from the table, the

majority of recent studies were conducted on Asian and

African dust events, with a few focusing on Arabian and

Australian dust storms. Endospore forming, stress resistant

microorganisms were commonly found in dust samples

from different studies. These studies, although promising,

are limited in terms of number and scope, and in particular

studies of viral metagenomics is noticeably lacking.

Metagenomics could provide the ability to study the entire

microbiota and their community composition through direct

sequencing and characterization of environmental DNA with-

out the need for prior cultivation. In this paper, we use the

term metagenomics to denote both the targeted amplicons

sequencing (TAS) and the whole-genome shotgun sequenc-

ing (WGS) approaches. Although metagenomics is frequently

used in studies of microbiome from different environments,

few studies have adopted it for microbial analysis of air and

sandstorm samples (Behzad et al. 2015). Culture-independent

phylogenetic studies using TAS revealed that surprisingly di-

verse microbial communities are transported by sandstorm; in

particular those by Weil et al. (2017) who showed that a

strong sandstorm originating from the Sahara Deserts in

Africa deposited a large fraction of the entire desert micro-

biome to a pristine remote mountain in Italy. In order to un-

derstand “impact”, we need to more fully characterize

microbial diversity and function. Few of the published sand-

storm metagenomic studies thus far have provided detailed

phylogenetic analysis of sandstorm microbiota at species and

strain levels, which is needed for determining the ecological

significance and invasiveness/pathogenicity of these microor-

ganisms. This could be due to the sole use of TAS, which is

known for its low-resolution power amongst closely related

species, sequencing errors, amplification biases, and inability

to detect viruses (Hong et al. 2009; Quince et al. 2009; Quince

et al. 2011; Wylie et al. 2012; Logares et al. 2014; Sharpton

2014). A more insightful approach, which is not commonly in

practice in sandstorm research, is analysis of the entire micro-

bial genomes in the environmental samples using WGS. This

approach has significantly improved our understanding of mi-

crobial community structure, genes, and function in many

environments including marine and soil (Simon and Daniel

2011) and would benefit sandstorm research. Although con-

siderable advances in DNA sequencing platforms and bioin-

formatics analysis have been made in recent years, the

approach still suffers from an inability to completely charac-

terize the entire microbiota in environmental samples mainly

due to: 1) inefficient assembly of the entire sample metage-

nome; and 2) inability to annotate a substantial fraction of

these metagenomes since current databases lack representa-

tive sequences for many environmental microorganisms.

Further improvements in air/dust sample collection (Behzad

et al. 2015), DNA extraction methodologies, sequencing

approaches and platforms, bioinformatics tools and software,

and the availability of larger database of annotated environ-

mental microbiota could help further advance sandstorm

metagenomic research. A combined metagenomic and single

cell genomic approach could also overcome the current short-

comings of metagenomics by improving the single cell ge-

nome and metagenome assembly and annotations (Lasken

and McLean 2014). Metatranscriptomics, meta-proteomics,

and metabolomics are other omic approaches rarely used in

studies of sandstorm aeromicrobiology. The multi-omic

approaches could help unravel not only the entire community

and their genome makeup but also the functional and eco-

logical significance of these microorganisms in their native

environments and global biosphere.

In order to exert impact, DSM needs to survive the long

journey across the atmosphere, and continue to remain viable

and propagate in their new host ecosystems. On the subject

of viability, current culture dependent and independent

approaches do not provide accurate representation of the
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percent-viability of DSM before and upon arrival in destina-

tion. Knowledge of microbial viability is essential for determin-

ing the spread and propagation of foreign, pathogenic or

invasive microorganisms. The presence of DNA sequences be-

longing to pathogenic microorganisms in environmental

metagenome does not necessarily indicate that the pathogen

is alive and able to propagate. Culture dependent approaches

could provide better metrics for assessment of viability but

currently greater than 90% of environmental microbes can-

not be cultured using standard culturing media. Dust samples

contain diverse groups of microorganisms that propagate in

different environmental conditions; whereas some microbes

prefer standard conditioned media for growth, others have

specific growth requirements that need to be met. A combi-

nation of culture dependent and independent methodologies

could be employed to circumvent the shortcomings associ-

ated with either of the two approaches (Vester et al. 2015).

Culturing requirements could be improved by using culture

independent multi-omic approaches to obtain information on

the complexity of the microbiota in dust samples and their

metabolic needs; this information could then be used to de-

sign specific culture media formulations to improve percent

cultivability of environmental microbiota (Gutleben et al.

2018). This would help resolve questions pertaining to viabil-

ity, and also advance studies of microbial diversity and func-

tion in culture settings.

Since sandstorms are recurring events and their impacts

potentially additive, time-series studies are needed to deter-

mine potential long-term ramifications of increased DSM

transmission on the ecology of downwind ecosystems

(Chuvochina et al. 2011b; Weil et al. 2017). These studies

could establish microbial fingerprints of various environments

and enable tracking variations in microbial patterns in re-

sponse to different environmental changes, including sand-

storms (Faust et al. 2015). Comparative analysis of microbiota

and environmental metadata from source and destination

environments could enable identification of influential varia-

bles, including invasive/pathogenic microorganisms, involved

in ecosystem alterations. The ideal settings for such studies

would be environments with minimal external influence, and

reduced seasonal variability (Hervas et al. 2009; Mladenov

et al. 2011).

Time series studies place particular demands on consis-

tency and reproducibility of data since they typical involve

collaboration among multiple laboratories. Such collabora-

tions require standardized approaches to enable comparison

of data collected across different time and space, by multiple

laboratories. Metagenomic approaches are particularly sensi-

tive to variability in methodology; metagenomic studies that

use different approaches and protocols generate different

outcomes concerning microbial quantity, diversity, and com-

position (Clooney et al. 2016). Currently there is no consensus

within the field on best methodologies, or standardization

between multiple laboratories. Standardized OperatingV
ir

u
se

s
D

u
st

S
o

u
rc

e
C

o
lle

ct
io

n
S
it

e
M

e
th

o
d

s
o

f

id
e
n

ti
fi

ca
ti

o
n

P
o

te
n

ti
a
l

Im
p

a
ct

R
e
fe

re
n

ce

W
id

e
d

iv
e
rs

it
y

o
f

D
N

A
a
n

d
R

N
A

vi
-

ru
se

s
sh

e
d

fr
o

m
a

ra
n

g
e

o
f

h
o

st
s,

in
cl

u
d

in
g

a
n

im
a
ls

,
a
rt

h
ro

p
o

d
s,

b
a
ct

e
ri

a
,

fu
n

g
i,

h
u

m
a
n

s,
p

la
n

ts
,

a
n

d
p

ro
ti

st
s

In
d

o
o

r
d

u
st

s
In

d
o

o
r

H
ig

h
th

ro
u

g
h

p
u

t

m
e
ta

g
e
n

o
m

ic
s:

-W
h

o
le

g
e
n

o
m

e
sh

o
t-

g
u

n
se

q
u

e
n

ci
n

g

H
u

m
a
n

;

A
n

im
a
l;

P
la

n
t

(R
o

sa
ri

o
e
t

a
l.

2
0
1
8
)

ss
D

N
A

g
e
m

in
iv

ir
u

s-
re

la
te

d
vi

ru
se

s;

ci
rc

o
vi

ru
s-

re
la

te
d

se
q

u
e
n

ce
s;

n
a
n

o
vi

ru
se

s;
m

ic
ro

p
h

a
g

e
s-

re
la

te
d

g
e
n

o
m

e
s

A
m

b
ie

n
t

a
ir

a
n

d
ra

in
-

w
a
te

r
sa

m
p

le
s

Se
o

u
l,

K
o

re
a

H
ig

h
th

ro
u

g
h

p
u

t

m
e
ta

g
e
n

o
m

ic
s:

-W
h

o
le

g
e
n

o
m

e
sh

o
t-

g
u

n
se

q
u

e
n

ci
n

g

V
ir

a
l

e
n

u
m

e
ra

ti
o

n

P
la

n
t

(W
h

o
n

e
t

a
l.

2
0
1
2
)

In
fl

u
e
n

za
A

A
si

a
n

d
u

st
T
a
iw

a
n

R
e
a
l

ti
m

e
q

P
C

R
H

u
m

a
n

(C
h

e
n

e
t

a
l.

2
0
1
0
)

N
/D

:
N

o
t

D
e
te

rm
in

e
d

.

Behzad et al. GBE

1982 Genome Biol. Evol. 10(8):1970–1987 doi:10.1093/gbe/evy134 Advance Access publication June 29, 2018

Deleted Text: il


Protocols (SOP) would help unify the methodologies used by

all the collaborators involved in the field. These SOPs require

considerable investments of time and resources to develop

and perfect; however, their use by wider research community

could provide long-term benefits that could substantially ad-

vance DSM research. Collaborative work, in particular time-

series studies, should address potential relationships between

global climate changes, expansion of desertification, in-

creased and widespread injection of DSM into downwind

ecosystems, and their human health and ecological

ramifications.

Conclusions

Dust activities are expected to rise globally due to climate

changes and the rise in desertification caused by natural

and anthropogenic events. This could lead to a substantial

increase in transport of foreign, invasive, and potentially

new pathogenic microorganisms that could alter equilib-

rium balance in downwind ecosystems, remodel pristine

environments, and/or affect human and ecosystem

health. Previous attempts to make concrete connections

between DSM and human and environmental health con-

cerns have been largely unsuccessful due to lack of sub-

stantive data. Inadequate knowledge of sandstorm

microbiota limits our understanding of their broader sig-

nificance. In recent years, TAS metagenomic studies have

uncovered a large diversity of microbiota in dust clouds

but the significance of these findings remains unknown

due to the low-resolution power of TAS-based

approaches. To gain a better insight into the phylogenetic

diversity and functional and ecological significance of

DSM, we recommend a combination of high-resolution

strategies including WGS metagenomics, single cell geno-

mics, and multiomic approaches in conjunction with im-

proved culture-based methodologies. Given the increased

prevalence of these highly stress resistant, diverse, and

potentially pathogenic microorganisms in global atmo-

sphere and downwind ecosystems, there is now a clear

need for large-scale collaborative efforts to address po-

tential relationships between the widespread injection of

DSM in global atmosphere, ecosystem alterations, and

global climate changes, through extensive ecological

time-series studies.
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