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Abstract

Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range 

coordinated motions known as metachronal waves. Pair synchronization is a fundamental 

requirement for these collective dynamics, but it is generally not sufficient for collective phase-

locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and 

numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating 

above a no-slip plane. Increasing their distance from the wall profoundly affects the global 

dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition 

from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase 

defects. Within the transition between these regimes the system displays behavior reminiscent of 

chimera states.

The ability of ensembles of oscillators to achieve collective motions is fundamental in 

biological processes ranging from the initiation of heartbeats to the motility of 

microorganisms. The emergent properties of coupled oscillators can vary dramatically 

depending on the intrinsic properties of the oscillators and the nature of the coupling 

between them [1]. Flashing fireflies equally and instantaneously coupled to one another [2] 

can support very different behaviors to chemical micro-oscillators, which are coupled only 

locally, and subject to time delays [3].

Eukaryotic cilia and flagella are chemo-mechanical oscillators that generate a variety of 

collective motions, which can be quantified with high-speed imaging in microfluidic 

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further 
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
* M.Polin@warwick.ac.uk. 

Europe PMC Funders Group
Author Manuscript
Phys Rev Fluids. Author manuscript; available in PMC 2018 August 17.

Published in final edited form as:
Phys Rev Fluids. 2016 December 13; 1: . doi:10.1103/PhysRevFluids.1.081201.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://creativecommons.org/licenses/by/4.0/


environments [4–6]. The molecular biology of these internally driven filaments is virtually 

identical in green algae [5], protists [7], and humans [8], and the flows they generate fulfill 

crucial roles in development, motility, sensing, and transport. When close together, the 

mutual interaction between their oscillatory flow fields can cause them to beat in synchrony 

[9], and larger ensembles of flagella demonstrate striking collective motions in the form of 

metachronal waves (MWs) [10–13], akin to the “Mexican wave” propagating around a 

packed stadium. Many surrogate models for flagellar dynamics have been proposed [13–24], 

typically with a set geometry that fixes the range and coupling between oscillators.

Here we relax this condition and study a linear array of colloidal oscillators [25] driven in 

circular trajectories at a controllable height above a no-slip wall. Originally introduced as a 

mathematically convenient minimal model for synchronization at low Reynolds numbers 

[15], colloidal rotors have been experimentally shown to reproduce the time-dependent flow 

field associated with a beating flagellum down to distances comparable to its size (~10 μm) 

[9,26]. When generalized to include waveform flexibility [14,27,28] they are also capable of 

capturing interflagellar synchronization in bulk [9]. The system of colloidal rotors studied 

here can be modified continuously from being primarily coupled through nearest neighbors 

to a regime involving significant long-range interactions. As a function of rotor properties, a 

traveling wave found at small heights becomes either a chevron pattern or is punctuated by 

phase defects at large ones. The transition is not a gradual morphing between the two 

profiles, but rather a process involving generation and propagation of defects along the strip, 

where phase-locked and non-phase-locked subgroups of oscillators can coexist. A behavior 

arising from long-range interactions whose amplitude is modulated by the distance from the 

wall [18], these dynamics are reminiscent of chimera states, in which oscillators split into 

phase-locked and desynchronized clusters [29,30].

In our experiments, silica colloids of radius a = 1.74 μm (BangsLab, USA) suspended in a 

water-glycerol solution of viscosity μ = 6 mPas within a 150-μm-thick sample, are captured 

and driven by feedback-controlled time-shared (20 kHz) optical tweezers (OTs) based on 

acousto-optical deflection of a 1064-nm-wavelength diode-pumped solid-state laser 

(CrystaLaser IRCL-2W-1064) as previously described [31,32]. The OTs describe a planar 

array of circular trajectories [Fig. 1(a)] of radius R = 1.59 μm and center-to-center separation 

ℓ = 9.19 μm, a distance h above the sample bottom, with 4.2(4) ⩽ h ⩽ 51.7(4) μm. This 

configuration, which reflects the capabilities and limitations of our OT setup, is similar to 

arrays of nodal cilia, but differs from another common situation where the ciliary beating 

plane is perpendicular to an organism’s surface.

The oscillators are imaged using a Nikon inverted Eclipse Ti-E with a 60× Nikon Plan Apo 

VC water immersion objective (NA = 1.20), and recorded for up to 1200 s using an AVT 

Marlin F131B CMOS camera set at 229 fps. The rotor positions are measured using an 

algorithm that correlates the image intensity I (x, y) with a rotationally symmetric kernel 

image K(x, y) constructed from a real colloid. By fitting the two-dimensional (2D) cross-

correlation function C(x0,y0) = ∑(x,y) I (x,y) × K(x − x0, y − y0) with a 2D parabola and 

maximizing this function, the rotor positions (x0, y0) are extracted with subpixel resolution 

and used to track their phases {ϕi(t)} over time [Fig. 1(a)].
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The rapid feedback loop between colloid and trap positions facilitates the arbitrary 

placement of the OTs with respect to the colloidal particles. The trap positions are 

maintained at a constant radius R and fixed angular distance ahead of the colloids. 

Consequently, a colloidal particle on the ith trajectory (i ∈ {0, …, N − 1}) experiences a 

radial harmonic potential with spring constant λ = 2.06 ± 0.06 pN/μm resisting excursions 

from the prescribed radius, and a constant tangential force of magnitude Fi = FdrDi−0.5 

leading to rotation. The period of rotation is therefore not fixed, and it is this degree of 

freedom that permits synchronization of interacting particles. The choice of λ reflects 

estimates of the bending rigidity of flagella, κ ~ 4 × 10−22 N m2, and their length, L. From λ 
= κ/L3 [14], and for typical values of L, values of λ 𝒪 1 – 10 pN/μm should represent 

typical flagella. Unavoidable delays in the OT’s feedback response introduce a mismatch 

between the parameters used in experiments and simulations, which is corrected by 

increasing the simulation value of λ by a constant factor γ relative to the experimental one. 

The previously reported value of γ = 2.21 [32] is adopted throughout this paper, which 

results in quantitative agreement of simulations with the present experiments [see Fig. 1(c)].

Isolated oscillators rotate with a height-dependent angular velocity ωi = Fi/Rζ0ζw, where ζ0 

= 6π μa is the sphere’s bulk drag coefficient, and ζw h = 1 + 9
16

a
h + 𝒪 a3/h3  accounts for the 

presence of the wall [33]. Experimental results are compared with deterministic 

hydrodynamic simulations in which colloids are treated as point-like particles above a no-

slip boundary, and therefore coupled through the so-called “Blake tensor” [11,34]. Before 

each experiment we calibrate Fdr ≃ 2.23 pN (see Supplemental Material [35]; typical 

variation ±2%). D ≠ 1 is used to break left-right symmetry along the chain and induce a 

stable traveling wave for small h [11]. For the detuning adopted here, D = 1.01, the period of 

individual oscillators varies between τ ~ 0.5 s and ~1 s across the explored range of h.

Consider first two rotors separated by a distance ℓ. For rotors with instantaneous positions 

{xi} and velocities {vi}, the hydrodynamic drag on the ith rotor is given by 

− ζ xi ⋅ vi − ∑ j ≠ iG x j, xi ⋅ F j
ext , where F j

ext is the net external force acting on the jth 

sphere and G(xi,xj) is the Green’s function in the presence of the no-slip wall. For identical 

rotors (detuning D = 1), hydrodynamic coupling eventually leads to synchrony provided λ < 

∞, by perturbing the angular velocities of the two rotors so that the leading and lagging 

rotors become slower and faster respectively [13,14]. The timescale for synchronization is 

proportional to the spring constant λ [see Eq. (1)] and also depends on the strength of 

hydrodynamic interactions between rotors, which is a function of height h and spacing ℓ. The 

dynamics become richer if a discrepancy between the rotor’s intrinsic frequencies is 

introduced (D ≠ 1), for then the coupling must be sufficiently strong to overcome the natural 

tendency for the rotor’s phase difference χ = ϕ1 − ϕ0 to drift.

Bifurcation plots in Fig. 1(b) show, for different h, the average phase drift between two 

oscillators as a function of D. The behavior is typical of a saddle-node bifurcation: the 

oscillators phase-lock until D reaches a critical value D*(h) and then drift with a 

monotonically increasing speed. D*(h) increases with h, reflecting the strengthening of 

inter-rotor hydrodynamic coupling with increasing distance from the wall. The phase-

locking behavior is summarized in Fig. 1(c), where the experimental synchronization 
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boundary is based on a threshold of five slips in the whole experiment ( χ̇av = 0 . 131 rad/s) .

The results of individual experiments are classified based on this threshold, and are 

represented as either red (drift) or blue (synchronized) points in Fig. 1(c). As h is increased, 

the rotor pair moves deeper into the synchronized region: the coupling between the two 

strengthens due to lower hydrodynamic screening from the wall, leading to an enhanced 

stability of the synchronized state. This is reproduced by simulations [Fig. 1(c)] up to small 

shift in D, which could come from the finite value of a/h and experimental noise. In the limit 

a,R ≪ ℓ, the evolution of the phase difference χ = ϕ1 − ϕ0 can be derived by a generalization 

of previous arguments [14,35]. As phase-locking is slow compared to the rotation period, we 

average over this fast timescale and find

χ̇ =
F1 − F0
R0ζ0ζw

− 3a
4ℓ

F0F1
λζ0R0

2 2A β + B β sin χ , (1)

where A β = 1 − X − β2
2 X3, B β = 1 − X3 + 3β2

2 X5, X = 1/ 1 + β2, and β = 2h/ℓ . From Eq. 

(1), the average phase drift χ̇av for non-phase-locked states reads

χ̇av =
F1 − F0
R0ζ0ζw

2
− 3a

4ℓ
F0F1
λζ0R0

2 2A β + B β
2

. (2)

Given the functional form of the frequency detuning, Fi = FdrDi−0.5, Eq. (2) can be solved 

explicitly to yield the critical detuning D*(h) [solid line in Fig. 1(c)]. The theoretical and 

numerical solutions for the boundary in Fig. 1(c) slightly under- and overestimate the data, 

respectively, owing to neglect of temporal variations in the interparticle spacing and the 

finite size of the beads, respectively. Both also neglect thermal fluctuations.

We now turn to the dynamics of a linear array of six rotors, with the ith rotor centered at x = 

(il,0,h). This is the longest controllable chain with our active-feedback-based OTs. Linear 

arrays of colloidal oscillators have been shown to capture the dynamics of two-dimensional 

arrays [13], so this simplified geometry will be the focus here. The dynamics are studied 

experimentally as a function of h, but numerical simulations allow wider exploration of 

parameters, including changes in the radial stiffness λ, which governs the coupling strength 

[9,11,13,14,32] as in Eq. (1). In both experiments and simulations we introduce a mild 

frequency bias D = 1.01, typical also of Volvox colonies [13], which breaks the translational 

symmetry and induces a MW for h ≲ 10 μm. At all heights studied, this value of D is deep 

within the synchronized region of parameter space for two rotors.

Figure 2(a) shows that at h = 6.7(4) μm the rotors phase-lock in a stable MW whose 

direction is set by the frequency bias. With increasing h, defects (phase slips) emerge, giving 

rise to a net drift in the cumulative phase difference between rotors at opposite ends of the 

chain. Phase defects always propagate in the direction of the fastest oscillator. At these 

intermediate heights, the phase profile also displays “wobbles,” perturbations to the MW 
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that are not accompanied by a phase defect. Numerical results shown in Fig. 2(b) capture the 

traveling wave at h = 5 μm, the presence of defects and their propagation direction, and 

wobbles at larger heights. At the largest height, h = 50 μm, defects no longer propagate 

through the chain, and rotors 3–5 remain phase-locked.

The phase dynamics of wobbles and defects are shown in Fig. 3(a) for h = 11.7(4) μm. The 

first 25 seconds of the time series show fluctuations in ϕi − ϕ0 (wobbles), even while the 

system is frequency locked. Fluctuations start at the first oscillator pair and travel 

unidirectionally along the chain [Fig. 3(b)] with a preserved, soliton-like signature [36]. 

Occasionally, they terminate within the chain with a slip [Fig. 3(a)]; these are the phase 

defects observed in kymographs. Both wobbles and defects are characterized by initial 

excursions of amplitude W and recurrence time τ [Fig. 3(c)], which depend on h [Figs. 3(d) 

and 3(e)]. The typical time τ ~ 10 〈T〉 (where 〈T〉 ≃ 1 s is the average period) depends less 

strongly on h than does W, which shows a pronounced growth [Fig. 3(d)], mirroring the 

increased probability that a wobble will terminate in a slip within the chain, causing a defect 

[Fig. 3(f)]. Although their position can vary, defects tend to cluster, in this case at the middle 

of the chain (position i = 2), as seen also in simulations of longer chains [35].

The hydrodynamic coupling between two rotors increases monotonically with h; for an 

isolated pair, this manifests in more robust synchronization at larger heights. For a chain of 

rotors, increasing h has the reverse effect, disrupting the stable MW with wobbles and 

punctuating it with periodic phase defects (Fig. 2). The hydrodynamic coupling between 

every pair of rotors in the chain grows as h is increased. For just two rotors, Eq. (1) shows 

that equivalent changes to the hydrodynamic coupling can be achieved through modification 

of the mean interparticle separation l. For the chain of six rotors, in which longer range 

hydrodynamic interactions also occur, changes to h and l are no longer equivalent.

The peculiar dynamics observed arise from a change in the relative contributions of 

interactions with different neighbors. The no-slip wall has the effect of screening the 

hydrodynamic interactions in a way that qualitatively changes as a function of β = 2h/ℓ. This 

is an important determinant of MW stability, as observed also in simulations of colloidal 

“rowers” [18]. Figure 2(c) shows the magnitude of the coupling of a given oscillator with its 

nth nearest neighbor, estimated with Eq. (1), normalized by the total interaction strength 

with the first five neighbors. Although all pairwise couplings grow monotonically with h, the 

relative magnitude of the nearest neighbor interactions actually diminishes. Conversely, the 

relative importance of all others increases with h. Hydrodynamic disturbances parallel to the 

wall decay as u ~ r−j where j = 1 and 3 represent the far (β ≫ 1) and near (β ≪ 1) asymptotic 

limits [18]. For the end rotor the magnitude of the coupling with the nth nearest neighbor, 

normalized by the total coupling strength, is S n = n− j/∑i = 1
5 i− j . For β ≪ 1 the 

interactions are dominated by nearest neighbor, with S(1) = 0.84, while for β ≫ 1, S(1) = 

0.44 [see the black curve in Fig. 2(c)]. We test the hypothesis that the breakdown of the 

traveling wave is due to long-range hydrodynamic interactions through simulations in which 

interactions are truncated at nearest neighbors, and find the abundance of defects is 

significantly reduced. Importantly, the dynamics are nearly insensitive to h, with a maximum 
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relative variation in end-to-end drift speed of just 3% between h = 5 μm and 1000 μm (Fig. 

4) [35].

Additional numerical simulations permit the wider exploration of parameter space. The 

range of λ values studied here corresponds to the estimated values λ = κ/L3 based upon 

ciliary lengths of L ~ 4−10 μm [14]. Figure 4(a) shows the average end-to-end phase drift 

per beat as a function of λ and h, and enables analysis of many numerical simulations 

without looking at the individual kymographs. The area of solid blue corresponds to specific 

parameter combinations for which complete phase-locking occurs. However, from the drift 

alone, one cannot distinguish between a linear traveling wave ③ and a chevron phase 

profile ①. For this we compute the complex order parameter Z = AeiΨ = 1
N − 1 ∑n = 0

N − 1e
iχn

where χn = ϕn+1 − ϕn [18,37]. Note the use of the pairwise phase differences, not the 

individual rotor phases. Looking at the mean value of Ψ̄  [see Fig. 4(c)], the region of 

parameter space corresponding to complete phase-locking can be decomposed into chevron 

( Ψ̄ ≈ 0) and MW ( Ψ̄ > 0) regions. Using the average values Ā and Ψ̄ for t > 200 s [Figs. 

4(b) and 4(c)], we see that as h is increased at the experimental value of λ (white dotted 

line), the stable traveling wave at small h shifts to a profile with defects and wobbles, 

initially along the whole chain, and then localized to one-half of the chain with the 

remaining three oscillators constantly phase-locked.

At values of λ smaller than the experimental one, however, we observe qualitatively 

different dynamics. For λ ≲ 2.5 pN/μm, the pattern morphs continuously between different 

types of complete synchronization as h is increased, going from a MW ③ to a chevron-like 

pattern ①. These transitions happen without the emergence of defects [11]. For 2.5 < λ < 3 

pN/μm the system shows reentrant behavior with defects only at intermediate heights, 

separating a MW region from a chevron-like region. The order parameter angle Ψ̄  [Fig. 

4(c)] identifies clearly the stable MW (yellow/orange) and chevron (dark blue) regions of 

parameter space. For a fixed h ≳ 50 μm, increasing λ results in a monotonic decrease in Ā 
owing to the reduced rotor compliance. Conversely, the end-to-end phase drift exhibits a 

strong peak around λ = 4.5 pN/μm, where the rotors slip approximately one beat in every 

five, despite an intrinsic frequency difference of just 5%. These nontrivial dynamics emerge 

due to the combination of phase slips induced by long-range interactions, and rapid healing 

of phase defects through orbit compliance. The complete absence of these features from the 

simulations with nearest neighbor coupling alone [Fig. 4(d)] highlights the role played by 

competition between interactions at different ranges. Changing h is then a simple and 

accessible way to modulate their relative strength (see Fig. 2).

Large arrays of cilia are synonymous with no-slip boundaries, and in many cases, the 

spacing between these organelles is comparable to their length [13], so that effectively h/ℓ ~ 

1 [see Fig. 4(a)]. Our results suggest that flagella of Volvox may then be balancing the need 

to extend out into the fluid enough to generate a vigorous thrust, with the screening of long-

rage hydrodynamic interactions necessary to stabilize MWs on the colony surface. As a 

result, ensembles of flagella in Volvox [11] (but see also numerical simulations [22]) may 

operate in a regime naturally prone to the emergence of metachronal phase defects, which 

are indeed observed experimentally [13].
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Fig. 1. 
Experimental setup and results. (a) Microspheres of radius a = 1.74 μm, situated at a 

distance h above a no-slip boundary are driven by time-sharing optical tweezers in circular 

trajectories of radius R = 1.59 μm and center-to-center separation ℓ = 9.19 μm. (b) Average 

phase drift χ̇ = ϕ̇1 − ϕ̇0 for a rotor pair vs detuning D for h = 4.2 ( ), 6.7 ( ), 11.7 ( ), 16.7 ( ), 

31.7 ( ), 51.7 ( ) μm. (c) Phase diagram showing experimental regions of synchrony (blue) 

and drift (red), the boundary from hydrodynamic simulations (dashed), and theory from Eq. 

(2) (solid).
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Fig. 2. 
Results for the linear array of driven colloidal oscillators, shown schematically in grey (not 

to scale). (a) Kymographs showing sin ϕi at three heights above the wall. With increasing h, 

the traveling wave becomes frustrated, with the introduction of wobbles (arrows) and phase 

defects (circles). (b) Numerical results from model. (c) Fraction of total coupling 

corresponding to interacting with different neighbors, as a function of h. The shaded red 

region represents the experimental parameter regime.
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Fig. 3. 
Experimental phase dynamics. (a),(b) Phase difference relative to the first rotor, ϕi − ϕ0, at h 
= 11.7 μm. (c) Wobbles are characterized by their magnitude W (radians) and timescale τ/
〈T〉 (normalized by rotor period), shown as a function of h in panels (d) and (e). (f) 

Probability that a propagating wobble ends at rotor i, resulting in a slip.
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Fig. 4. 
(a) Average phase drift per beat between end oscillators (measured in beats) as a function of 

height above the wall and radial spring stiffness. Shown also are four representative 

kymographs. (b) Time-averaged amplitude Ā and (c) angle Ψ̄  of the complex order 

parameter Z = AeiΨ. The axes are the same as in (a). (d) Same as (a) but with hydrodynamic 

interactions truncated to nearest neighbor. Parameters used include a = 1.74 μm, ℓ = 9.19 μm, 

R = 1.59 μm, and viscosity μ = 6 mPas. Simulations correspond to 0 ≤ t ≤ 2000 s. The 

dashed white line shows the value of λ corresponding to Fig. 2. Note the different color 

scales used throughout.
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