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Abstract

We demonstrate that a Drosophila Golgi protein, Gorab, is present not only in the trans-Golgi but 

also in the centriole cartwheel where, complexed to Sas6, it is required for centriole duplication. In 

addition to centriole defects, flies lacking Gorab are uncoordinated due to defects in sensory cilia, 

which lose their 9-fold symmetry. We demonstrate the separation of centriole and Golgi functions 

of Drosophila Gorab in two ways: First, we have created Gorab variants that are unable to localize 

to trans-Golgi but can still rescue the centriole and cilia defects of gorab null flies. Second, we 

show that expression of C-terminally tagged Gorab disrupts Golgi functions in cytokinesis of male 

meiosis, a dominant phenotype overcome by mutations preventing Golgi targeting. Our findings 

suggest that during metazoan evolution, a Golgi protein has arisen with a second, apparently 

independent, role in centriole duplication.
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Centrioles are at the core of centrosomes, required for cell-division fidelity, and at the base 

of cilia, fulfilling roles in motility and signalling. Their malfunction is associated with 

diseases ranging from cancer to ciliopathies and microcephaly. Canonical centriole 

duplication pathway components were genetically identified in C.elegans1 and through 

RNAi screens in Drosophila2,3. Centriole duplication requires Polo-like kinase 4, which 

phosphorylates Ana2/STIL enabling its recruitment to the procentriole site4 to interact with 

Sas6 upon procentriole formation5,6. The resulting structure reflects the symmetry of 9 

interacting dimers of Sas6in the centriole’s cartwheel. Cep135 (Bld10) is also required for 

cartwheel formation in Chlamydomonas and Paramecium7,8 and human Cep135 links Sas6 

to Sas4 (CPAP)9, associated with and required for polymerisation of centriolar microtubules 

(MTs)10–12. Although the centriole reaches its full length by the end of G2, it cannot 

duplicate or organize pericentriolar-material (PCM) until it passes through mitosis13,14. 

This requires Cep135 to recruit Ana1 in Drosophila (CEP295 in human cells), and in turn 

Asterless/Cep152and pericentrin-like protein15. This process of centriole to centrosome 

conversion enables the daughter centriole to recruit Plk4, as a partner of Asterless/Cep152, 

and PCM components that organise cytoplasmic MTs.

In interphase, the centrosome is found in the vicinity of the Golgi, the heart of secretory 

pathways and key for vesicular trafficking. Golgi positioning and vesicle trafficking rely on 

cytoplasmic MTs organized by Golgi-associated AKAP450 (counterpart of pericentrin), the 

cis-Golgi protein GM130, the trans-Golgi CLASPs (cytoplasmic-linker-associated-proteins), 

and additional components of a multiprotein complex16–18. Interphase cells can also utilise 

the mother centriole to template cilia formation. The Golgi participates in this process by 

providing membrane for the cilium and the ciliary pocket adjacent to the mother 

centriole19–21. In mammalian cells, this requires golgin GMAP-210, which interacts with 

the intraflagellar-transport complex protein, IFT-20, required for ciliogenesis22,23. Such 

links between centrosome and Golgi are only beginning to be explored and require further 

study.

Although Sas6 adopts a 9-fold symmetrical structure in vitro, Sas6 alone cannot confer 9-

fold symmetry on the centriole in vivo; mutations that disrupt Sas6’ssymmetry in vitro24 or 

that prevent its self-oligomerisation can still result in 9-fold symmetrical centrioles in 
vivo25. This suggests additional, yet unknown factors must help establish symmetry, raising 

the question of whether otherSas6-interacting proteins had been missed by earlier genome-

wide screens. This led us to use proteomic approaches to search for additional Drosophila 
centriole components and the discovery of a new Sas6 partner, the fly counterpart of Golgi-

associated Gorab. Human GORAB is mutated in gerodermia osteodysplastica, characterised 

by non-elastic skin and osteoporosis26. GORAB localises to the trans-Golgi membranes and 

interacts with SCYL1, which participates in the Golgi-ER trafficking of COPI vesicles27–

30. We now show Drosophila gorab null mutants fail to duplicate centrosomes in embryos 

and diploid larval tissues and have defects in the 9-fold symmetry of cilia in neurosensory 

organs resulting in loss of coordination. We have created mutants of Drosophila Gorab that 

cannot localise to the Golgi but can still rescue centriolar phenotypes of the gorab null. We 

also generate a dominant negative Gorab with cytokinesis phenotypes that depend upon its 

Golgi localisation. Together our findings indicate Drosophila Gorab has dual roles at the 

Golgi and centriole.
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Results

Gorab copurifies with Sas6 and is found at centrosomes and Golgi

Aiming to identify proteins recruited to the site of procentriole formation, we affinity 

purified Sas6 complexes from syncytial Drosophila embryos expressing GFP-tagged Sas6 

and from cultured cells following induction of Protein-A-tagged Sas6. Surprisingly, no other 

centriole proteins were enriched in Sas6 pull-downs from embryos but we consistently 

identified the CG33052 gene product (Table 1; Table S1). This complex persisted following 

high salt treatment(440mM NaCl) and was not affected by inhibiting protein phosphatases 

with okadaic acid suggesting it is a stable complex, insensitive to the protein 

phosphorylation state. Similarly, mass spectrometry of Sas6 complexes from cultured cells 

consistently identified CG33052. BLAST searches identified CG33052 as counterpart of 

human GORAB, mutated in the inherited disease gerodermia osteodysplastica, leading us to 

name Drosophila CG33052 as Gorab.

To further confirm that Sas6 and Gorab copurify as a complex, we established flyand cell 

lines expressing GFP-tagged Gorab. GFP-Gorab consistently co-purified with Sas6 as its 

sole centriole associated partner from syncytial embryos (Fig.1d; Table S2). Sas6 also co-

purified with Gorab from cultured cells, irrespective of whether GFP-Gorab was expressed 

constitutively or from the inducible metallothionein promoter. However, in addition to Sas6, 

co-purified proteins also included the αCOP, β’COP and εCOP subunits of the cage-like 

COPI coatomer sub-complex and the γCOP and βCOP subunits of its adaptor subcomplex 

(Fig. 1d; Table S2). We did not detect COPI complex proteins in purifications of Sas6 or of 

GFP expressed in cultured cells. Nor did we detect COPI proteins associated with Gorab 

purified from syncytial embryos (Fig. 1d; Table S2), a stage prior to the onset of Golgi 

assembly31–33.

The centrosomal association of Gorab, suggested by its repeated copurification with Sas6, 

was confirmed in syncytial blastoderm embryos expressing a Ubq-GFP-gorab transgene, in 

which GFP-Gorab co-localised with the centriole protein, Asterless, in interphase (Fig. 1b) 

and mitosis (Fig. 1c). As the Golgi is not assembled at this stage, we did not detect the trans-

Golgi Golgin245. Thus, at least in the absence of the Golgi, Gorab could be a bone fide 

centrosome component in partnership with Sas6.

We then determined the sub-cellular localisation of Gorab in cultured D.Mel-2 cells that 

have well established Golgi. Using antibodies against Gorab (Material and Methods) and 

counterstaining for markers of the cis- (GM130) and trans-Golgi (Golgin245), we found the 

greater part of all Gorab was associated with the trans-Golgi,like its human counterpart30 

(Fig. 1e). However, Gorab was also associated with dPLP punctae indicating its presence at 

the centrosome independent of Golgin245 (Fig. 1f). Moreover, Gorab persisted at the 

centrosome in mitosis, when Golgi components become dispersed throughout the cell(Fig. 

S1a). Simlarly in cells of larval wing imaginal discs and central nervous system, transgenic 

GFP-Gorab was abundant on the trans-Golgi becoming dispersed during mitosis with a 

smaller fraction being stably associated with the centrosome (Fig. S1b and c).
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Gorab directly binds Sas6 at the centriole core

The co-purification of Gorab and Sas6 and their centrosomal colocalisation raised the 

question of whether they interact directly. To address this, we expressed and purified GST-

tagged Gorab from E.coli on Glutathione Sepharose 4B beads, which we incubated with 
35S-Met-labelled full-length Sas6, synthesised by coupled transcription-translation. This 

revealed direct binding of Sas6 to immobilized Gorab (Fig. 2a). To narrow down the 

interacting region, we made N- and C-terminally truncated S35-labelled Sas6 peptides for 

use in similar binding experiments (Fig. 2b; Fig. S2). These experiments identified the 351 

to 462 amino-acid segment of Sas6 as able to interact directly with Gorab.

Gorab’s direct binding to Sas6 and its centrosomal localization suggested it should be 

associated with the centriole. Indeed, structured illumination microscopy (SIM) revealed 

Gorab co-localised with Sas6 in centriole zone I at the center of a ring of dPLP, which 

surrounds the mother centriole throughout the cell cycle. This dPLP ring is completed 

around the daughter centriole during mitosis in centriole to centrosome conversion. Gorab 

and Sas6 co-localised at mother and daughter centriole throughout the centrosome cycle and 

were recruited to the site of procentriole formation once mother and daughter disengaged in 

telophase (arrowheads in Fig. 2c). Thus Gorab and Sas6 associate at the core of the centriole 

from the very onset of its duplication.

gorabnull-derived embryos display mitotic defects due to centrosome loss

The above findings suggested a possible new function for this Golgi-associated protein that 

we addressed by generating gorab null mutants. We used CRISPR/Cas9 mutagenesis to 

simultaneously target the 5' and 3' ends and exon1 of the gorab gene (Online methods) and 

generated gorab1 (NT_037436.4:g.33_507del) and gorab2 (NT_037436.4:g.1_1097del), 

eliminating significant coding sequence and the ATG initiation codon (Fig.3a). We were 

unable to detect any Gorab protein in Western blots of whole fly extracts (Fig. 3c) of 

homozygotes of either allele leading us to consider both mutant alleles to be nulls.

Surprisingly, both homozygous gorab1 and gorab2 animals developed to adulthood. 

However, flies emerging at 25°C moved slowly and were uncoordinated and when raised at 

29°C, were unable to climb or fly (Fig. 3d, video S1). Furthermore, embryos derived from 

gorab mutant females raised at 25°C failed to develop even when homozygous mutant 

mothers were mated to wild-type males (Fig. 3e). In contrast, gorab1 males were fertile 

suggesting the mutation did not affect spermatogenesis. A similar extent of female sterility 

and uncoordination was observed in flies trans-heterozygous for the two alleles, or when 

heterozygous to a large chromosomal deficiency, suggesting the defects result from the loss 

of Gorab function (Fig.3b). Accordingly, female fertility and coordination were restored by 

ubiquitous expression of a wild-type gorab transgene in the gorab1 mutant background (Fig. 

3d, e). Thus, the primary consequences of loss of Gorab are female sterility and 

uncoordination.

Coordination defects have previously been attributed to defective neurosensory cilia of the 

femoral chordotonal organs (fChOs)34,35. Accordingly, we could rescue coordination 

defects but not the female sterility of gorab1 fliesby expressing UAS-gorab only in the 
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nervous system using the pan-neural driver elav-GAL4. This allowed us to recover 

coordinated adult females that generated sufficient embryos to analyse their development. 

Wild-type syncytial embryos undertake 13 rapid rounds of synchronous nuclear division 

cycles over a period of 2 hours. In contrast, only 50% of gorab1-derived embryos showed 

any nuclear division but not beyond 5 or 6 rounds. Centrosomes, revealed by anti- 

centrosomin (Cnn) or anti-Asterless (Asl) staining, were dramatically reduced in number in 

gorab1-derived embryos and were absent from the majority of mitotic spindle poles (Fig. 3f, 

g). The extensive disorganisation of gorab1-derived embryos accords with the known 

requirement for centrosomes in the syncytial cycles. Thus, maternally provided Gorab is 

required for centrosome duplication and thereby the nuclear division cycles of the embryo. 

We also observed centrosome loss ingorab1 imaginal discs indicating Gorab is required for 

centrosome duplication in other diploid tissues (Fig. 3h).

Coordination defects of gorab flies reflect absence of daughter centrioles and loss of 9-
fold symmetry in ciliary organs

As flies defective for centriole duplication lose coordination, we examined the fChOs whose 

ciliated neurons have basal bodies derived from centrioles (Fig. 4a). Wild-type fChOs have 

Drosophila pericentrin-like protein (dPLP) in mother and daughter centriole-derived 

structures, of which the mother forms the ciliary basal body. Transgenic GFP-rootletin 

identifies the ciliary rootlet connecting the basal bodies to the cell body and phalloidin 

staining reveals actin enveloping the two cilia of each scolopale. gorab1 mutant fChOs had 

highly disorganised ciliary rootlets often disconnected from basal bodies (Fig. 4a,b). dPLP 

associated structures were also disorganized in gorab1 mutants but ciliary structures were 

still present in the scolopale rods (Fig. 4a, b).

The two fChObasal bodies can be distinguished because only the proximal one 

(corresponding to a daughter centriole) has associated Centrobin36. However, 79.3 % 

(115/145) of basal bodies in gorab1 cilia had no Centrobin (Fig. 4c) and in the remaining 

20.7 % (30/145)anti-Centrobin staining was very weak. This suggests a failure of centriole 

duplication prior to basal body formation. These defects were restored in gorab1 flies 

expressing a GFP-Gorab transgene (Fig. 4d).

To determine whether basal bodies of gorab1 ciliated neurons had other abnormalities we 

examined them in longitudinal and transverse section by electron microscopy (EM) (Fig. 4e, 

f). Longitudinal sections of fChOs revealed mother centrioles present in all distal basal 

bodies investigated (n=11)whereas proximal basal bodies were absent or reduced in accord 

with the lack of Centrobin signal (Fig. 4e).Transverse sections revealed striking defects in 

the radial symmetry of the remaining mother centriole-derived basal body in gorab1 fChOs 

(Fig. 4f). Only 3 of the 16 centrioles observed showed a normal 9-fold symmetrical 

arrangement of the microtubules, whilst the rest had symmetries ranging from 6-fold 

(n=5/16), 8-fold (n=6/16) to 10-fold (n=2/16). The defective symmetry extended from the 

basal body through the transition zone to the distal part of the cilium (Fig.4f). This 

phenotype is strikingly similar to defects in centriole symmetry of Drosophila Sas6 
mutants37.
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Thus, loss of coordination in gorab mutants reflects the abnormal anatomy of the fChO 

resulting from absence of daughter centrioles and the abnormal symmetry of the remaining 

mother centriole-derived basal body.

Golgi and Centriole localisation domains of Gorab overlap

To address Gorab’s functions at the centrosome and Golgi, we first wished to define 

domains responsible for its localisation to these sites. We began by defining the Gorab 

domain responsible for binding Sas6. We immobilised GST-tagged Sas6 on Glutathione 

Sepharose 4B beads and determined if it would bind 35S-Met-labelled Gorab and or its 

fragments synthesised in vitro (Fig. 5a,b; Fig. S3a). We narrowed down strong binding of 

Sas6 to the 191-318 amino-acid interval of Gorab. The 244-338 amino-acid Gorab fragment 

also bound Sas6 but more weakly (Fig. S3a).Three non-overlapping smaller Gorab deletions 

(amino-acids 260-266, 267-281,and 282-286) also permitted Sas6 binding which was 

abolished by deletion of amino-acids 260-286, thus defining a Sas6-interacting-domain 

(SID) within this interval (Fig. 5c,d) To confirm that the in vitro interactions were reflected 

in vivo, we transiently transfected cultured Drosophila cells with myc-tagged Sas6 and either 

full-length GFP-Gorab or GFP-Gorab∆SID(NP_788523.1:p.Cys260_Asn286). Western blots 

of GFP-pulldowns from cell extracts showed that Sas6 interacted with Gorab but not 

Gorab∆SID (Fig. S3b) confirming the in vitro binding results.

The SID domain lies within a predicted coiled-coil region (approximately amino-acids 

190-320; Fig. 5e) in an analogous position to similar predicted domains of human GORAB 

(Fig. 5f). A previous study of human GORAB identified a fragment able to bind Arf5 and 

Rab6 in a yeast 2-hybrid system and in pull-down experiments; the IGRAB domain, amino-

acids 99-27730. This same work identified a Golgi Targeting Domain (GTD) ofamino-acids 

200-27730, corresponding to amino-acids 246-323in Drosophila Gorab. A missense 

mutation within the GTD, p.Ala220Pro occurring in gerodermia osteodysplastica patients, 

was found sufficient to disrupt Golgi localisation30,38. Sequence comparisons indicate 

Drosophila and human GORAB proteins are 70% similar and 40% identical in the GTD 

(Fig. 5g) and within Drosophila Gorab’s putative GTD we could identify a conservative 

amino acid change to Valine at position 266 corresponding to Ala220 in the human GORAB 

sequence,. Thus, the parts of Gorab required for interactions with Sas6 and with the Golgi 

overlap; the site of the Golgi mislocalizing mutation lies within the Sas6-interacting-domain, 

which lies in turn within the putative GTD.

Gorab variants unable to localise to Golgi retain centriolar function

The overlapping nature of the SID with the potential site for Golgi localisation led us to ask 

whether mutations in this region would affect both functions. We asked whether the 

equivalent p.Val266Pro in Drosophila Gorab would disrupt its Golgi localization in the fly, 

and if so, how this might affect Gorab’s centrosomal localisation and function. In addition 

we also generated transgenes having deletions corresponding to the SID 

(NP_788523.1:p.Cys260_Asn286), the putative GTD (NP_788523.1:p.Ala246_Ser323del), 

an N-terminal part of the GTD (N-GTD) (NP_788523.1: p.Ala246-Ala259del), and a C-

terminal part (C-GTD) (NP_788523.1: p.Ala287_Ser323del) (Fig. 6a). We introduced these 

gorab variants into flies under the control of constitutive or inducible promoters and 
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integrated into the same genomic location using a site-specific integrase system allowing 

each to be expressed at a similar level (Online methods). An N-terminal eGFP tag on the 

mutant proteins allowed us to determine their subcellular localisation in larval imaginal disc 

cells. As above, the vast majority of wild-type eGFP-Gorab colocalized with Golgin245 in 

trans-Golgi and a small fraction was recruited to centrosomes. By contrast, Gorab mutants 

lacking the SID, the GTD and the N-terminal part of the GTD were diffusely distributed 

throughout the cytoplasm and did not accumulate at either Golgi or centrosomes (Fig. 6b). 

However, both the p.Val266Pro missense mutant and C-terminal GTD deletion retained their 

centrosomal localization despite losing their ability to localise to the Golgi (Fig. 6b).

To address whether centrosomally localized p.Val266Pro and ΔC-GTD mutant Gorab were 

still functional, we introduced transgenes expressing these Gorab mutant variants into a 

gorab1 null mutant background. This revealed that the gorabV266P and gorabΔC-GTD 

transgenes could restore the climbing ability of gorab1 flies raised at 29 °C to a similar 

extent as gorabWT whereas gorabΔGTD, gorabΔN-GTD and gorabΔSID failed to do so (Fig. 6c). 

In addition, Gorab p.Val266Pro localized to the basal bodies in femoral chordotonal organs 

(Fig.S4). The female sterile phenotype of gorab1 was similarly rescued by gorabV266P and 

gorabΔC-GTD but not by the other mutant transgenes (Fig. 6d). Thus, the centriole 

duplication defect of gorab1 is corrected by gorabV266P and gorabΔC-GTD. This separates the 

functions of Gorab showing that ability to localize to the centrosome and fulfil centriole 

duplication is distinct from any function of Gorab at the Golgi. By contrast, the ΔGTD, ΔN-

GTD and ΔSID Gorab mutants could localize neither to the Golgi nor centrosomes and 

could not rescue the mutant phenotypes suggesting that they have completely lost both 

functions.

C-terminally tagged Gorab exerts Golgi dependent cytokinesis failure in the male germline

As golgins make functional interactions with Golgi membranes through their C-terminal 

sequences39, we attempted to disrupt the Golgi function of full-length Gorab by blocking its 

C-terminus. To this end we generated fly lines ubiquitously expressing C-terminally GFP-

tagged Gorab. Males carrying a single copy of this gorabWT-GFP transgene were sterile 

reflecting cytokinesis defects in male meiosis (Fig. 7a, b). Each wild-type spermatocyte 

undergoes meiosis to generate 4 haploid spermatids, each containing a mitochondrial 

derivative, the Nebenkern, visible as a phase-dense sphere of similar size to the haploid 

nucleus. By contrast, most gorabWT-GFP spermatids had four nuclei and a single large 

Nebenkern indicative of cytokinesis failure (Fig. 7b). Immunostaining revealed C-terminally 

tagged Gorab formed string-like aggregates linking trans-Golgi compartments in mitotically 

dividing cells near the apex of the testes (Fig. 7c) and persisting into spermatocytes (Fig. 

7d). In late anaphase, gorabWT-GFP-expressing spermatocytes developed abnormal central 

spindles having irregularly shaped annilin rings with multiple protrusions that failed to 

constrict in telophase (Fig. 7d). These mutant spermatocytes strongly resembled those in 

COPI deficient flies40 leading us to hypothesise that expression of Gorab-GFP leads to 

Golgi associated defects.

We argued that if the C-terminal tag interfered with Gorab’s Golgi function, then inclusion 

of either the p.Val266Pro or ΔSID mutations into a similar construct should relieve these 
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Golgi defects and restore male fertility. Indeed, transgenic flies expressing C-terminally GFP 

tagged p.Val266Pro and ΔSID mutant Gorab were fully fertile and showed no signs of 

cytokinesis failure (Fig. 7a, b). Interestingly, although gorabWT-GFP resulted in cytokinesis 

defects in male germline, it was still able to rescue the coordination and female fertility 

defects of gorab1 mutants (Fig. S5). Thus, a C-terminal tag interferes with Gorab’s Golgi 

function in meiotic spermatocytes without affecting its function at centrioles.

Discussion

Here we identify a tissue specific role for Golgi-associated Gorab in centriole duplication in 

Drosophila. Gorab physically interacts with the centriole cartwheel component, Sas6, with 

which it colocalises from the onset of procentriole formation. Centrosomes fail to duplicate 

in gorab mutant-derived embryos and in diploid tissues of gorab null Drosophila, which lose 

coordination through defects in their mechanosensory cilia. Such cilia have a single, mother 

centriole-derived basal body with between 6 to 10 sets of microtubules, the abnormal 

symmetry extending into the ciliary axoneme.

Loss of 9-fold symmetry in gorab mutant centrioles is reminiscent of Sas6 mutants37. It 

suggests the Gorab- Sas6 partnership is required for both centriole duplication and 

symmetry. The formation of centrioles with correct symmetry can still be directed around 

Sas6 variants that are themselves unable to establish9-fold symmetry24,25. This suggests 

other components of the centriole, in addition to Sas6, also contribute to its symmetry. 

Gorab could be one such contributing molecule, at least in part. However, this cannot be 

universally true because centrioles and axonemes in the gonads of fully fertile gorab null 

males have correct9-fold symmetry (not shown). This could be either because maternal 

Gorab protein perdures sufficiently in male germ cells to permit centriole duplication or 

because Gorab is substituted by another molecule in spermatogenesis. These possibilities, 

either of which could reflect the distinctive morphology of Drosophila’s spermatocyte 

centrioles, require further study.

The trans-Golgi localization of human GORAB30 is mirrored in multiple Drosophila tissues 

including salivary glands, imaginal discs, the central nervous system, and in the male and 

female germ lines but not in syncytial embryos, where Golgi has yet to form. Accordingly, 

Gorab’s association with COPI coatomer components in cultured cells suggests involvement 

in retrograde vesicle transport from Golgi to ER consistent with its resemblance to a golgin. 

The rod-like golgins, which bind Rab, Arf, or ADP-ribosylation family GTPases, are 

tethered to Golgi membranes by their C-termini and protrude outwards to capture vesicles at 

their N-termini39. Overlapping specificity in vesicle targeting provides redundancy of 

function. Thus, both golgins GMAP-210 and GM130 can capture ER-derived carriers; both 

GMAP-210 and Golgin-84 can capture cis-Golgi derived vesicles; and so on41. Such 

redundancy might account for the lack of any Golgi phenotype in gorab null mutants. 

However, Gorab’s functional relevance at the Drosophila Golgi is indicated by the 

cytokinesis defects in male meiosis caused by expression ofC-terminally tagged Gorab, 

which are strikingly similar to those following disruption of COPI-mediated vesicle 

trafficking40. This accords with Gorab’s association with COPI proteins and reinforces 
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suggestions that integrity of ER and other membraneous structures is interdependent with 

astral and spindle microtubule function in male meiosis.

By generating the counterpart of a gerodermia osteodysplastica missense mutant that 

prevents human GORAB from localising to Golgi30, we can separate Drosophila Gorab’s 

Golgi and centriole functions. Thisp.Val266Pro mutation prevents Gorab from associating 

with Golgi but fully rescues centriole duplication defects of gorab null mutants and restores 

their ciliary function. A proline residue at this site could strongly influence structure of the 

Golgi-interacting region because of its side chain’s rigidity and ability to undergo cis-trans 

isomerisation. The mutation does not, however, interfere with Gorab’s ability to bind Sas6. 

Moreover, introducing p.Val266Pro into C-terminally tagged Gorab prevents its localization 

to Golgi and so relieves the cytokinesis defect. Thus the male sterility resulting from a C-

terminal GFP tag is mediated through Gorab’s Golgi association. Gorab’s precise Golgi 

functions in Drosophila, most likely redundant with other golgins, must await further genetic 

and molecular studies.

Gorab is not required for centriole duplication or Golgi function in unicellular organisms 

such as ciliated eukaryotes. Its evolutionary appearance in metazoans may reflect increased 

proximity and functional interactions between the Golgi, centrosomes and cilia (see 

Introduction). Such co-evolution could have facilitated the emergence of proteins with dual 

functions allowing a component of one organelle to “moonlight” in its neighbor. However, 

Gorab is not present in all metaozoans; it is absent, for example, from C.elegans. This could 

possibly reflect the assembly of C. elegans SAS6 into a spiral rather than the ring-shaped 

oligomers characteristic of the centriole cartwheels in most species42, which may obviate 

the need for interactions with a Gorab-like protein. Moreover, even within a single species, 

Gorab may be required for centriole duplication in some tissues and not others, as we find in 

Drosophila. Such tissue specificity might account for findings with a GORAB mutant 

mouse, which has few primary cilia in dermal condensate cells responsible for Hedgehog 

signaling in hair follicles but does have primary cilia on keratinocytes43. This could reflect 

tissue specific failure of centriole duplication in the null mouse even though there is 

currently no evidence to support this notion.

Although the above defects in cilia development in the GORAB null mouse require 

molecular analysis, they suggest a possibility of conserved roles for GORAB. Both fly and 

human proteins are not only found at the trans-Golgi (this study;30) but also at the centriole 

(Figs. 1,2; Fig. S6a,b). We expressed GFP-tagged GORAB in U2OS cells and found it at 

both centrosomes and Golgi. The Golgi localization was abolished by the p.Ala220Pro 

mutation but centrosome association remained (Fig S6a). We also found anti-GORAB 

antibodies could detect human GORAB at the centriole albeit not always together with Sas6 

as in Drosophila(Fig. S6b). This might reflect different requirements for GORAB and Sas6 

at the centriole in the two organisms; Sas6 remains centriole associated throughout the 

Drosophila duplication cycle whereas it is first recruited and then is later absent from the 

lumen of the mother centriole for a substantial part of the human duplication cycle44,45. It 

will be of future interest to track the precise behaviors of SASS6 and GORAB throughout 

the centriole duplication cycle in human cells.

Kovacs et al. Page 9

Nat Genet. Author manuscript; available in PMC 2018 December 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Currently, however, it remains uncertain whether GORAB functions in centriole duplication 

in human cells as in insects (Fig. S6). Because mammalian cells lacking centrosomes are 

prevented from cell cycle progression by a p53 dependent pathway25,46,47, we attempted to 

assess the consequences of GORAB depletion upon centrosome number in a human 

osteosarcoma (U2OS) line expressing dominant negative p53 (U2OS p53DD)48. In our 

experience, some more stable centriole proteins require more rounds of knockdown before a 

duplication phenotype can be observed and, unfortunately, GORAB RNAi led to cell death 

before depletion was complete. This was possibly due to compromised Golgi function, 

making it difficult to assess the effect upon centriole duplication. However, GORAB RNAi 

enhanced the centrosome loss seen following depletion of SASS6 alone suggesting the 

possibility of a co-operative role between the two proteins (Fig. S6c). We also found that 

depletion of human GORAB abolished the centrosome overduplication that occurs in 

U2OScells held in S-phase following Aphidicolin and Hydroxyurea treatment (Fig. S6d,e). 

However, because Golgi function is also compromised by these treatments, we cannot be 

certain that human GORAB is required for centrosome duplication as in flies.

We note that thep.Ala220Pro mutation results in a comparable disease phenotype to null 

mutations26,38. As GORAB p.Ala220Pro can still associate with the centrosome, this 

suggests the gerodermia osteodysplastica phenotype is likely to result predominantly from 

defective Golgi functioning. However, it remains of future interest to re-examine cells from 

different tissues of patients with GORAB null mutations for potential additional defects in 

centriole duplication and/or formation of primary cilia. It will also be important to examine 

GORAB -/- mice further to determine whether the reported loss of cilia could arise through 

failure of centriole duplication rather than a secondary consequence of Golgi malfunction.

To conclude, our findings bring insight into the dual life of a protein with Golgi and 

centriole functions but also raise new future questions. An understanding of the precise role 

of Gorab at the Golgi awaits a greater knowledge of Gorab’s Golgi partners and redundancy 

with other golgins. Moreover, full understanding of Gorab’s centriole duplication function in 

Drosophila awaits future studies of its precise structural interactions with Sas6 and other 

centriole proteins.

Online Methods

In vivo ProteinA and GFP-trap purification from Drosophila cells and embryos for mass 
spectrometry

To identify protein complexes in vivo, a combination of single step ProteinA affinity or GFP 

trap purification and Mass Spectrometry was performed as previously described49,50.

In vitro binding assay

In vitro binding assays between 35S-Methionine-labelled proteins produced by coupled 

transcription and translation in vitro and GTS-tagged bacterially expressed protein 

immobilised on resin were carried out as described5.
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Structured illumination microscopy

Structured illumination microscopy of D.Mel-2 cells was carried out as described in 51. For 

3D-SIM in human U-2 OS cell, cells were fixed in ice-cold methanol, washed with PBST 

and blocked in PBST containing 10%FCS for 30 min. The following primary antibodies 

were used diluted in PBST containing 10%FCS: rabbit anti-Gorab (1:200, Atlas, 

#HPA027250, specificity also tested in this study, fig. S6f,g), rabbit anti-Pericentrin (1:200, 

Abcam,#ab4448, directly labeled with Alexa594), mouse monoclonal anti-Sas6 (1:100, 

Santa-Cruz Biotechnology, #sc-81431). An OMX-V3 system was used with a 63x/1.4NA oil 

Olympus lens to acquire super-resolution images (512x512ppi). Images were reconstructed 

and registered using the SoftWorx Linux package and processed to obtain maximum 

intensity projections.

Fly stocks

Gorab deletion null mutants were generated using an optimized CRISPR/Cas9 mutagenesis 

tool for Drosophila genome engineering52. All guide RNAs were cloned into pCFD3 (guide 

RNA expressing vector Addgene, Cat. No. 49410). Transgenic flies were generated using 

site-specific transformation via φC31 integrase-mediated cassette exchange53,54. Guide 

RNAs targeting the 5' end of gorab were integrated on the 2nd chromosomal attP40 landing 

site, whilst internal and 3' end guide RNAs were integrated on the 3rd chromosomal attP2 

landing site. Afterwards, 5' and 3' end targeting guide RNA transformants were combined in 

crosses. The guide RNA-mediated double strand breaks were induced by crossing these flies 

to a strain expressing Cas9 via a germline specific nanos promoter (nos-Cas9, Bloomington 

ID: 54591). The emerged G0 (cut starter) flies were individually crossed to third 

chromosomal balancer lines. In total, 215 mutant candidates from the next generation were 

subjected to PCR. We identified two deletion alleles, gorab1(NT_037436.4:g.33_507del)and 

gorab2(NT_037436.4:g.1_1097del), and their precise breakpoints were determined by 

sequencing. Primers used for mutagenesis experiment are described in Supplementary Table 

S3.

For the rescue and localization studies, all transgenes were integrated into the same, attP2 

landing site to achieve the same level of expression. In order to make the pPGW, pUGW and 

pUWG Drosophila Gateway™ (Thermo Fisher Scientific) destination vectors able to 

integrate into attP sites by φC31 mediated recombination, we integrated an attB site into 

these vectors. First, a 275 bp sequence containing the 51 bp core Streptomyces lividans attB 

recombination site was amplified by PCR from pUASTattB54. The PCR product was than 

blunted and ligated into the AfeI site of pPGW, pUGW and pUWG vectors. The AfeI site in 

these vectors is a single cutter site and does not affect any functional components of the 

vectors. The integration and orientation of the attB site was verified by sequencing. 

Gateway™(Thermo Fisher Scientific) compatible gorab entry clone was generated by 

amplifying the gorab coding seqeunce from the RE68977 cDNA clone (Drosophila 

Genomics Resource Center) and introduced into pDONR221 entry vector by a BP reaction. 

Wild type and gorab mutant coding sequences generated by site-directed mutagenesis were 

recombined by Gateway™ LR recombination into pPGWattB and pUGWattB vectors. The 

resulting transgenes were injected into flies carrying the attP2 landing site and expressing 

φC31 integrase. Although the LR reaction generates two shorter attB sites (attB1 and attB2), 
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our experience is that these sites are not interfering with the appropriate integration of the 

constructs via the attB site we included at the AfeI site. In fact, every transformant of 19 

different transgenic constructs expressed the transgene properly, as tested by 

immunofluorescence and western blot.

The pUASp-GFP-Root transgenic fly line was kindly provided by Timothy L. Megraw. The 

Ubq-YFP-Centrobin transgenic fly line was obtained from Cayetano Gonzalez.

An Oregon-R stock was used as wild type control. All flies in the described experiments 

were maintained on standard Drosophila medium and at 25 °C unless otherwise indicated.

Detailed genotypes of fly stocks used in this study:

y M{w+mC=nos-Cas9.P}ZH-2A w (Chr X, BDSC 54591; Cas9 source for gorab 
mutagenesis)

w; gorab1/ TM6B, Tb Hu (Chr 3, this study)

w; gorab2/ TM6B, Tb Hu (Chr 3, this study)

P{w+mC.hs=GawB}elavC155(Chr X, BDSC 458; driver line used for neuronal expression)

y w P{y+t7.7=nos-phiC31\int.NLS}X #12;P{y+t7.7=CaryP}attP2 (Chr X and 3, BDSC 

25710; landing site used for all gorab transgenes)

w; pUASp-GFP-Root (Chr 2, from Timothy L. Megraw)

w; pWR-Ubq-YFP-Cnb (Chr 2, from Cayetano Gonzalez)

Fertility test

To test the fertility of wild type, gorab mutant and transgenic females, virgin females were 

collected and individually mated with two Oregon-R males (age 2-4 days). The crosses were 

kept at 25 °C for 6 days and the adults then removed. The numbers of eclosed progeny in 

each vial were recorded and statistically analysed. Vials in which any adults died, were not 

considered. 15 crosses were evaluated per genotype. To test the fertility of wild type, gorab 
mutant and transgenic males, 1-2 days old males were crossed to individual Oregon-R virgin 

females (aged 4 days before mating, to test their virginity). The crosses were kept at 25 °C 

for 6 days before adults were then removed. The numbers of eclosed progeny in each vial 

were recorded and statistically analyzed. Vials in which any of the adults died, were not 

considered. 15 crosses were evaluated per genotype.

Testing coordination

To quantitatively evaluate coordination, wild type, gorab mutant and transgenic flies were 

raised at 29°C. This temperature was chosen as it accentuates the uncoordinated phenotype 

of gorab1. Pupae grown at this temperature were removed from their original vial and 

transferred into a vial without media to prevent the uncoordinated flies from sticking to the 

media. The day before the experiments, cohorts of 15 flies were transferred into fresh vials 

with media. Immediately before the assay, flies were transferred without anaesthesia into a 
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clear empty testing vial. For the assay, vials were illuminated from above, flies gently tapped 

down to the bottom of the vial, and then given 1 min to climb up the vial. Numbers of flies 

crossing the 5 cm mark were then recorded. The climbing assay was repeated three times for 

each cohort with similar results. 3 independent cohorts of 15 flies were tested per genotype.

For startle response experiments, flies raised at 29 °C were placed into empty 3cm diameter 

plastic Petri dishes, which were gently shaken 3 to 5 times sideways (the startle). 30 sec long 

videos were then captured to demonstrate the state of coordination of the flies after the 

startle.

Transmission electron microscopy

Cross- and longitudinal sections of antenna of flies was fixed and imaged as described in 36.

RNA interference in cultured cells

Human bone osteosarcoma epithelial U-2 OS and U-2 OSp53DDcells were cultured, 

transfected and analyzed as described in 55. U-2 OS were stated mycoplasma free upon 

receive by were not tested by authors for mycoplasma contamination. Combination of three 

different Silencer Select siRNAs for Gorab (Thermo Fisher Scientific, #s40927, s40928, 

s40929) and Sas-6 (Thermo Fisher Scientific, #s225787, s46485, s46486) were used with 

Lipofectamine RNAi Max (Thermos Fisher Scientific) to achieve efficient knockdown.

Antibody generation

Two polyclonal antibodies were generated against the respective N- (1-169 amino acids) and 

C- (177-338) terminal parts of the Drosophila Gorab protein. His-tagged N- and C-terminal 

Gorab fragments were expressed in DH5α E.coli bacterial strain under the control of T7 

promoter by induction with 1 mM IPTG for 4 h at 37 °C. The proteins were purified on a 

Ni-NTA column (Qiagen) with standard urea containing buffers according to the 

manufacturer’s instructions. The purified proteins were used to immunise Guinea pigs by 

Moravian Biotech according to standard protocols. The specificities of the purified 

antibodies were tested on wild type and gorab silenced D.Mel-2 cell lines by 

immunostaining (fig. S1d) and in gorab null mutant flies by western blot (Fig.3c). A dilution 

of 1:5000 was used for western blots and 1:500 for immunostaning experiments.

Immunohistochemistry and confocal microscopy

For immunostaining of D.Mel-2 cells, cells were fixed either with chilled methanol (when 

staining for centrosome markers) or 4% formaldehyde, for 30 min. After fixation, cells were 

washed in PBS containing 0.1% TritonX100 (PBST) for 5 min, followed by blocking in 

PBST containing 10% FCS for 30 min. The following primary antibodies were used 

following dilution in PBST containing 10%FCS: chicken anti-dPLP (1:1000, ref.37), rat 

anti-Sas6 (1:1000, ref.5), guinea pig anti-Gorab(1:1000, this study), goat anti-Golgin245 

(1:500, ref.56, provided by Sean Munro), rabbit anti-GM130 (1:500, Abcam, #ab30637). 

After 1h incubation, cells were washed 3 times for 5 min with PBST, followed by a 1h 

incubation with appropriate secondary antibodies diluted 1:300 in PBST containing 

10%FCS. After three 5 min PBST washes, cells were mounted in Vectashield containing 

DAPI.
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To immunostain human cell lines (U-2 OS and U-2 OSp53DD) for centrosome counting, cells 

were fixed in ice-cold methanol, washed with PBST and blocked in PBST containing 

10%FCS for 30 min. The following primary antibodies were used diluted in PBST 

containing 10%FCS: mouse anti-gamma-tubulin (1:200, Sigma, #T6557, clone GTU-88, 

ascites fluid), rabbit anti-CENP-J (1:200, Abcam, #ab221134). After 1h incubation, cells 

were washed 3 times for 5 min with PBST, followed by a 1h incubation with appropriate 

secondary antibodies diluted 1:300 in PBST containing 10%FCS. After three 5 min PBST 

washes, cells were mounted in Vectashield containing DAPI.

To immunostain U-2 OS cells transiently expressing GFP-Gorabwt or GFP-GorabA220P, cells 

were fixed in 4% formaldehyde for 20 min to preserve the Golgi structures. After fixation, 

cells were washed with PBST and blocked in PBST containing 10%FCS for 1 hour. The 

following primary antibodies were used following dilution in PBST containing 10%FCS: 

rabbit anti-Pericentrin (1:4000, Abcam, #ab4448), mouse anti-Golgin 97 (1:200, Abcam, 

#ab169287). After 1h incubation, cells were washed 3 times for 5 min with PBST, followed 

by a 1h incubation with appropriate secondary antibodies diluted 1:300 in PBST containing 

10%FCS. After three 5 min PBST washes, cells were mounted in Vectashield containing 

DAPI.

For the immunostaning of syncytial Drosophila embryos, 0-2h synchronized embryos were 

dechorionated and fixed in 4% formaldehyde for 30 min. Following a 30 min wash in PBS, 

embryos were manually devitellinised, permeabilized for 30 min in PBST, and then 

incubated in PBST containing 10% FCS for 1h to block the fixative. Embryos were then 

incubated overnight at 4 °C in following primary antibodies: mouse anti-α-tubulin (1:200, 

Abcam, ab7291), rabbit anti-CNN (1:200, ref.57), rabbit anti-asterless (1:400, ref.58), goat 

anti-Golgin245 (1:100). After three 20 min PBST washes, the appropriate secondary 

antibodies were applied for 4h at room temperature. After three 20 min PBST washes, 

embryos were mounted in Vectashield+DAPI.

Larval brains and imaginal discs were dissected from third instar wandering larvae and fixed 

in 4% formaldehyde for 30 min, followed by three 20 min PBST washes. Staining was then 

carried out as above. The following primary antibodies were used: chicken anti-dPLP 

(1:200), goat anti-Golgin245 (1:200). The same protocol was applied for testis preparations 

stained for dPLP and Golgin245. Testes were stained with antibodies against α-tubulin and 

anillin as described in 59.

To immuno-stain femoral chordotonal organ (fChO), flies were raised at 29 °C until the 

pharate adult stage. The pupal case was removed in PBS and whole pharate adults were 

fixed in 4% formaldehyde for 30 min, followed by washes in PBST. The fine dissection of 

fixed legs was performed in PBS using superfine edged Dumon 5SF tweezers. The part of 

the femur containing the fChO was cut out and the cuticle opened up to facilitate penetration 

of the antibodies. The immunostaining was then performed as with larval brains and 

imaginal discs.

All microscopic preparations were imaged using a Leica SP8 confocal laser scanning 

microscope and processed with ImageJ.
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Statistics

For female and male fertility tests and for climbing assays we estimated the sample size 

based on literature60,61 except that we increased the sample size from at n= 6 individuals 

per genotype used by Zhong and Belote to n=15 individual flies thus increasing the 

statistical power and reduce the standard deviation. All fertility tests were independently 

repeated once with n=15 individual flies. In the climbing assay, Chen et al used 10 

individuals per genotype whereas we increased the sample size to 15 individuals. The 

experiments were done in three independent replicates, n=15 individual flies in each replica. 

The indistinguishable appearance of Drosophila individuals of the same genotype ensures 

that the flies were blindly and randomly collected for fertility and coordination tests. Flies 

dying during the assays were excluded from analysis and the test was repeated. For counting 

centrosomes in human cell lines, replicates consist of cells independently treated with 

siRNA/Aphidicoline+Hydroxyurea as indicated in figure legends. Each treated replica was 

mounted and imunostained on an idependent coverslip. Centrosomes in randomly selected 

cells (n=100) were counted in each replica. Number of replicates (N), mean and standard 

error of mean (s.e.m) are indicated in corresponding figure legends. Online Shapiro-Wilk 

test (http://sdittami.altervista.org/shapirotest/ShapiroTest.html)was used to test for normal 

distribution. Data collected from coordination assays, fertility tests and centrosomes counts 

were analyzed with two-tailed unpaired t-testinitially in Microsoft Office Excel (version 

2007) and subsequently verified by GraphPad Prism (version 5.01)p values for each analysis 

are indicated in corresponding figure legends. 99% confidence interval was applied in all 

statistical tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Gorab associates with both Centrosomes and Golgi
(a,b) Syncytial embryos expressing poly-Ubiquitin-GFP-Gorab and stained to reveal 

Asterless (Asl) and the trans-Golgi Golgin245 in a field of interphase (a) and mitotic (b) 

nuclei. Experiments repeated 3 times with similar results. Main scale bar, 5 µm; Inset scale 

bar, 1 µm(c) Cultured D.Mel-2 cells immuno-stained to reveal Gorab, GM130 (cis-Golgi), 

and Golgin245 (trans-Golgi).Experiment repeated 3 times with similar results. Main scale 

bar, 5 µm; Inset scale bar, 0.5 µm.(d) Cultured D.Mel-2 cells immunostained to reveal 

Gorab, dPLP (centrosome), and Golgin245 (trans-Golgi). Arrowheads indicate centrosomes. 

Experiment repeated 4 times with similar results. Main scale bar,5 µm; Inset scale bar, 0.5 

µm.
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Fig. 2. Gorab directly interacts and colocalises with Sas6.
(a)In vitro assay of the Gorab-Sas6 interaction. GST-Gorab was incubated with 35S-

Methionine-labelled Sas6 and resulting complexes subjected to SDS-PAGE and 

autoradiography. Experiment repeated 3 times with similar results (b) Schematic of Sas6 

indicating fragments interacting (blue) or not interacting with Gorab (yellow). Arrow, 

minimal interacting fragment (GIR: Gorab Interacting Region). (c) 3D-SIM localization of 

endogenous Gorab (green) and Sas6 (red) throughout the D-Mel2 cell cycle relative to zone 

III marker, dPLP (blue). Arrowheads, site of procentriole formation. Experiment repeated 2 

times with similar results. Scale bars,250 nm.
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Fig. 3. gorab null mutant flies show female sterility and coordination defects.
(a) Schematic of gorab gene showing guide RNA binding sites (red) for CRISPR/Cas9 

mutagenesis and primer binding sites for detection and sequencing of indicated gorab1 and 

gorab2 deletion mutants (blue). (b) Complementation tests for female fertility and 

coordination. 200 individuals tested per genotype. (c) Western blot of extracts from 5 adult 

females of indicated genotypes. Gorab revealed by antibody raised against its N terminal 

fragment (see Online Methods). α-tubulin, loading control. Experiment repeated once with 

similar result. (d) Climbing ability of wild type, gorab1and rescued (N-terminal-GFP-tagged 
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gorabWT cDNA expressed from ubiqutin promoter in gorab1 background) flies raised at 

29 °C. Cohorts of 15 flies scored for number climbing 5 cm in 1 min.); Means ± s.e.m are 

shown for N=3 independent experiments, n= 15 flies/genotype investigated in each 

experiment. p values of two tailed unpaired t-tests are shown. p value in blue indicates 

significant difference (99% confidence interval) (e) Fertility of wild type, gorab1and rescued 

(as in d) females individually mated with wild type males at 25°C over 6 days. Data points 

represent number of progeny of individual females. Means ± s.e.m are shown for n=15 

females per genotype. p values of two tailed unpaired t-tests are shown. p value in blue 

indicates significant difference (99% confidence interval). Experiment repeated once with 

similar result. (f) Embryos from wild-type and gorab1mutant mothers stained to reveal α-

tubulin (green), centrosomin (CNN, red), and DNA (blue).; n=100 embryos were observed 

per genotype in two independent replicate experiments with similar results. Arrowhead, 

single centrosome of monopolar spindle. Scale bar, 100 µm (upper panel); 35 µm (lower 

panel). (g) Embryos from elav>gorabWT,gorab1 mothers stained to reveal α-tubulin (green), 

asterless (Asl, red), and DNA (blue). Arrowhead, third pole of a multipolar spindle; 

asterisks, spindle poles lacking centrioles. Scale bar, 10 µm. (h) Wing discs from wild type 

and gorab1 larvae immunostained against dPLP to reveal centrosomes (red).Experiment 

repeated 3 times with similar results. Dashed lines, mitotic cells; Arrows, mitotic 

centrosomes. Scale bar,10 µm.
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Fig. 4. Loss of daughter centriole and asymmetrical mother centrioles in gorab mutant ciliated 
neurons
(a)Schematic of femoral chordotonal organs (fChO) and stained, in wild type and gorab1 

mutant, to reveal transgenic Rootletin-GFP (green), dPLP in basal bodies (red), and actin in 

scolopale rods (white). Experiment repeated twice with similar results. Scale bar,10 µm. (b) 

Detail of basal body organisation in wild-type and gorab1 stained as in a).Experiment 

repeated twice with similar results. Scale bar,10 µm. (c) Localisation of daughter centriole 

specific YFP-Centrobin (Cnb, green) in wild-type and gorab1fChO basal bodies also stained 
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to reveal dPLP (red) and Actin (grey). Experiment repeated twice with similar results. Scale 

bar, 10 µm. (d) Localization of GFP-tagged Gorab expressed in gorab1 mutant background. 

Arrowheads, GFP-Gorab at basal bodies. Experiment repeated with similar result. Scale bar, 

10 µm. (e) EM images of longitudinal sections wild-type and gorab1fChOs. n= 11 ciliated 

cells were scored. Arrowheads, distal (DBB) and proximal (PBB) basal bodies. Scale bar, 

0.2 µm. (f) Transverse sections of basal bodies, transition zones and cilia in wild-type and 

gorab1imaged by TEM. n=16 ciliated cells were scored.Scale bar, 0.1 µm.
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Fig. 5. Domain structure of Gorab.
(a)In vitro interaction of GST-Sas6 and 35S-Methionine-labelled Gorab. Experiment 

repeated 2 times by different investigators with similar result. (b) Identification of minimal 

Sas6 interacting region (SIR) in Gorab (upper panel). Green bars, Gorab fragments 

interacting with Sas6. Red bars, Gorab fragments not interacting with Sas6. Green and red 

stripes, weak interaction. Arrow indicates minimal interacting fragment. Minimal Gorab 

deletion that abolishes Sas6 interaction (lower panel). Green bars, Sas6 interacting Gorab 

constructs; red bars, non-interacting constructs. Arrow, minimal deletion abolishing the 
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interaction with Sas6, the Sas6 interacting domain (SID). (c) Sas6 interaction with 35S-

Methionine-labelled full length (FL) Gorab and indicated deletion variants. Experiment 

repeated independently by different investigator with similar result.(d) Prediction of coiled-

coil region in Gorab, by Coils server by scanning windows of 14, 21 and 28 residues.(f) 
Comparison of domain topologies of Drosophila and human Gorab. Sas6 interacting domain 

(SID, purple), Golgi targeting domain (Goldi TD, green), and IGRAB domain are indicated. 

(g) Alignment of predicted coiled-coil region of Drosophila Gorab and five vertebrate 

species homologues. Pink, amino acids conserved between all; grey, similar amino acid 

groups; dark grey, single divergent amino acids; and yellow, a single divergent amino acid in 

Drosophila. Alignment generated with Clustal Omega. Purplebox, SID.
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Fig. 6. Functional Domains of Gorab.
(a)Schematic of mutant gorab transgenes used in localization and rescue experiments. 

Asterisk, position of Val266 to Pro substitution. Gaps connected with thin line indicate 

extents of deletions. Tables summarizes rescue and localization experiments alongside 

indicated mutant forms. (b)Intracellular localization of Gorab mutant transgene products, 

Wing discs from larvae expressing the indicated GFP-tagged Gorab mutant protein stained 

to reveal dPLP (red) and Golgin245 (grey). White dashed lines, mitotic cells; yellow dashed 

lines, interphase cells with assembled Golgi. Experiments repeated 3 times with similar 
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results. Arrowheads, centrosomes of mitotic cells. Scale bar, 5µm. (c) Rescue of climbing 

ability by ubiquitous expression of indicated N-terminally GFP-tagged transgene in gorab1 

flies raised at 29 °C. Means ± s.e.m for N=3 experiments, n= 15 flies/genotype per 

experiment. p values of two tailed unpaired t-tests are shown. p value in blue indicates 

significant difference (99% confidence interval) (d) Rescue of female sterility by ubiquitous 

expression of indicated N-terminally GFP-tagged transgenes in gorab1 background.Data 

points represent the number of progeny of individual females. Mean ± s.e.m are shown for 

n=15 females per genotype. p values of two tailed unpaired t-tests are shown. p value in blue 

indicates significant difference (99% confidence interval). Experiment repeated once with 

similar result.
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Fig. 7. Dominant male sterility and cytokinesis defects upon expression of C-terminally GFP 
tagged Gorab.
(a) Fertility of wild type, gorab1 males and males expressing indicated transgenes. Data 

points represent the number of progeny of individual males. Means ± s.e.m are shown for 

n=15 males per genotype. p values of two tailed unpaired t-tests are shown. p value in blue 

indicates significant difference (99% confidence interval). Experiment repeated once with 

similar result(b) Phase contrast micrographs of spermatids from males expressing indicated 

transgenes. Arrowheads indicate nuclei; asterisk, the mitochondrial derivative Nebenkern. 
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Experiment repeated 3 times with similar results. Scale bar, 10 µm. (c) Apical parts of testes 

from males expressing N- or C-terminally GFP-tagged Gorab and stained to reveal dPLP 

(red) and Golgin245 (grey). Experiment repeated 2 times with similar results. Scale bars, 20 

µm and 5µm (inset). (d) Spermatocytes in meiotic telophase from of males expressing N- or 

C-terminally GFP-tagged Gorab (red) and stained to reveal tubulin (green), anillin (white) 

and DNA (blue). Experiment repeated 2 times with similar results. Scale bar, 10 µm.
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Table 1
Copurification of Drosophila Sas6 and Gorab.

(top) Co-purification of Gorab with GFP-Sas6 from polyUbiquitin-Sas6-GFP Drosophila embryos or Protein 

A-Sas6 expressed from metallothionein promoter in D.Mel-2 cells. Extracts made in isotonic or high salt 

(440mM NaCl) buffer and with okadaic acid (OA) and MG132 as indicated (Materials and Methods). Proteins 

commonly identified in control purifications of GFP or other GFP-tagged proteins are excluded but given in 

tables S1A-E. Scores (Mascot) and numbers of peptides detected by mass spectrometry are indicated. (bottom) 

Affinity purification of tagged Gorab from poly-Ubiquitin-GFP-Gorab Drosophila embryos or D.Mel-2 cells 

stably transformed with poly-Ubiquitin-GFP-Gorab or p-metallothionein (pMT)-GFP-Gorab (induced with 

1mM CuSO4 for 22h). Co-purifying Sas6 and COPI complex proteins selected from the full list of co-purified 

proteins in tables S2 A-E.

Proteins identified

Syncytial embryos Cultured cells

pUb-Sas6-GFP pUb-Sas6-GFP
(+440mM NaCl)

pUb-Sas6-GFP
(+440mM NaCl;OA)

pMT-PrA-Sas6
(+MG132)

pMT-PrA-Sas6
(+MG132; OA)

Score Peptides Score Peptides Score Peptides Score Peptides Score Peptides

Sas6 13751 272 5900 123 4677 131 4576 281 4606 280

Gorab 6514 105 1641 27 1380 27 69 5 55 2

Proteins identified

Syncytial embryos Cultured cells

pUb-GFP-Gorab pUb-GFP-Gorab pUb-GFP-Gorab (+ OA) pMT-GFP-Gorab pMT-GFP-Gorab (+ OA)

Score Peptides Score Peptides Score Peptides Score Peptides Score Peptides

Gorab 2764 50 18036 290 61897 766 16669 253 24140 337

Sas6 752 18 159 4 1961 37 253 2 337 7

αCOP - - 1106 26 606 13 72 2 329 11

β'COP - - 322 8 212 3 336 4 441 6

βCOP - - 1263 19 582 9 259 4 590 12

γCOP - - 1792 29 1171 22 109 3 488 8

δCOP - - - - - - - - - -

εCOP - - 96 2 92 2 - - 138 1

ζCOP - - - - - - - - - -
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