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Abstract

Contrast-enhanced digital mammography (CEDM) is a promising imaging modality in breast 

cancer diagnosis. This study aims to investigate how to optimally develop a computer-aided 

diagnosis (CAD) scheme of CEDM images to classify breast masses. A CEDM dataset of 111 

patients was assembled, which includes 33 benign and 78 malignant cases. Each CEDM includes 

two types of images namely, low energy (LE) and dual-energy subtracted (DES) images. A CAD 

scheme was applied to segment mass regions depicting on LE and DES images separately. 

Optimal segmentation results generated from DES images were also mapped to LE images or vice 

versa. After computing image features, multilayer perceptron based machine learning classifiers 

that integrate with a correlation-based feature subset evaluator and leave-one-case-out cross-

validation method were built to classify mass regions. When applying CAD to DES and LE 

images with original segmentation, areas under ROC curves (AUC) were 0.759±0.053 and 

0.753±0.047, respectively. After mapping the mass regions optimally segmented on DES images 

to LE images, AUC significantly increased to 0.848±0.038 (p<0.01). Study demonstrated that DES 

images eliminated overlapping effect of dense breast tissue, which helps improve mass 

segmentation accuracy. The study demonstrated that applying a novel approach to optimally map 

mass region segmented from DES images to LE images enabled CAD to yield significantly 

improved performance.
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I. INTRODUCTION

Full-field digital mammography (FFDM) and dynamic contrast-enhanced breast magnetic 

resonance imaging (DCE-MRI) are two commonly used imaging modalities in breast cancer 

detection, diagnosis, and prognosis assessment. FFDM has advantages of high image 

resolution, improved image contrast, low operation cost, faster imaging scan and widely 

accessibility. However, as a two-dimensional projection imaging modality, FFDM has 

relatively lower sensitivity and specificity due to the overlap of dense and heterogeneous 

fibro-glandular tissues (FGT) over the suspicious lesions. For example, mammography has 

lower sensitivity among women who are younger19, have dense breasts16, use hormone 

replacement therapy12, and carry certain breast cancer susceptibility genes11. One study 

reported that mammography sensitivity reduced from 87.0% in women with almost entirely 

fatty breasts to 62.9% in women with extremely dense breasts or reduced from 83.3% in 

older women (over 80 years old) to 68.6% in younger women (less than 50 years old)5. 

Mammography also has lower specificity as reported that during a 10-year screening period, 

more than 50% women would receive at least one false-positive recall and 7 to 9% have at 

least one false-positive biopsy21, which can add anxiety with potentially long-term 

psychosocial consequences to many women4.

On the other hand, DCE-MRI has superior sensitivity in detecting and diagnosing invasive 

breast cancer comparing to mammography and other existing breast imaging modalities3. 

However, DCE-MRI has a number of disadvantages including higher cost and longer 

imaging scanning time. It may also have relatively lower specificity, which may generate 

unnecessary breast biopsies and/or over-diagnosis2. As a result, both FFDM and DCE-MRI 

modalities have advantages and disadvantage when they are used in breast cancer imaging.

In order to take advantages of both FFDM and DCE-MRI modalities, while overcome their 

disadvantages, an alternative imaging modality namely, contrast-enhanced digital 

mammography (CEDM), emerges and is quickly gaining momentum in recent clinical trials 

worldwide. When using CEDM modality, contrast agent is injected into breast and two 

series of scans are conducted at two different X-ray energy levels. Since malignant lesions 

are often accompanied by increased blood vessels that have unique permeability as 

compared to benign or normal tissues, use of contrast agent allows analyzing morphology 

and vascular enhancement of the suspicious lesions. Additionally, when logarithmic 

subtraction is performed between two scans taken at different instances after contrast agent 

injection, difference in permeability is further enhanced and overlapping effect of FGT is 

removed. In general, CEDM generates both low energy (LE) images (similar to FFDM) and 

contrast enhanced dual-energy subtraction (DES) images (similar to MRI, but it is ~4 times 

faster than MRI exam). Therefore, the novelty or unique characteristics of using CEDM is 

that it can overcome effect of tissue overlapping in FFDM and enable detection of tumor’s 

neovascularity related functional information similar to MRI, while maintaining high image 

resolution as FFDM8.

In current breast imaging, accurate classification between malignant and benign lesions is 

still a major challenge. Studies have shown that performance of breast lesion diagnosis 

varied due to the intra- and inter-reader variability13, and only approximate one in four 
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biopsies are malignant27. Thus, in order to help improve accuracy in classification between 

malignant and benign breast lesions, developing computer-aided diagnosis (CAD) schemes 

aiming to assist radiologists in their decision-making for better assessing risk of lesion 

malignancy has been attracting extensive research interest in medical imaging field for the 

last two decades15,20. Although CEDM is an emerging imaging modality, our recent pilot 

study demonstrated that classification results based on a machine learning classifier that 

fuses the computed quantitative image features extracted from CEDM images might provide 

complementary information to radiologists in particular to help reduce false-positive 

recalls18. Thus, based on the well-developed CAD concept, objective of this study is to 

investigate a novel approach to develop a fully-automated CAD scheme of CEDM images 

and assess CAD performance in classifying between the malignant and benign mass-type 

lesions.

II. MATERIALS AND METHODS

2.1. CEDM Dataset

CEDM images were retrospectively collected from the existing clinical database of Mayo 

Clinic Arizona, USA. All CEDM imaging examinations were performed using the following 

imaging acquisition protocol. In brief, the patient with mammography suite is seated to 

minimize vasovagal episodes and the intravenous line is first flushed with 10mL of saline. 

Next, an iodinated contrast agent of 1.5 mL/Kg of OMNIPAQUE 350 (GE Healthcare, 

Princeton, NJ, USA) is injected using a single lumen power injector at a rate of 3 mL/

second. Last, the intravenous line is flushed again with an additional 10 mL of saline. If 

possible, the injected arm is raised above patient’s head to facilitate contrast drainage from 

the arm, which enables maximum contrast circulation. After 2 minutes of contrast agent 

injection, breast is compressed and image acquisition starts.

In one CEDM imaging procedure, two sequential images on mediolateral oblique (MLO) 

and craniocaudal (CC) view are taken at both low and high X-ray energy levels. The low-

energy (LE) image is acquired at (26–32kVp), which is less than the K-edge of iodine 

(33.2keV) to yield higher image contrast of soft tissue and calcifications similar to the 

regular FFDM. The high-energy (HE) image is acquired at an energy significantly higher 

than K-edge of iodine at (45–49kVp). Figure 1(a) shows the workflow for the CEDM 

imaging acquisition with approximate timestamps at each instance (view and energy). 

Finally, a difference (third) image is obtained by taking subtraction between HE and LE 

image, which is named as dual-energy subtracted (DES) image as shown in Figure 1(b). 

DES image is a single contrast medium-enhanced image that improves visual enhancement 

of neovascularity information in and around the tumors while suppresses the normal breast 

parenchymal tissues in the background. Figure 2 shows several examples in our dataset 

where the lesions are almost invisible or undetectable in LE (or regular FFDM) images, but 

they are clearly visible in DES images with the highly distinguishable lesion boundary 

contour.

In summary, we retrieved and assembled a fully anonymous CEDM image test dataset 

involving 111 women underwent breast cancer diagnosis at Mayo Clinic Arizona. Each case 

depicts one detected suspicious breast mass. Based on the histopathologic test results of the 

Danala et al. Page 3

Ann Biomed Eng. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biopsy samples, 78 masses were confirmed to be malignant and 33 were benign. In this 

dataset, each mass was considered visible in both CC and MLO views of LE images.

Similar to regular FFDM images, size of the original images acquired from CEDM is either 

3328 × 2560 or 4096 × 3328 pixels depending on breast size. Then, based on the 

standardized approach to develop a CAD scheme for detecting and/or classifying breast 

masses10, the original images were subsampled using bilinear interpolation method in which 

output pixel value is a weighted average pixel value from a 5-by-5 neighborhood kernel. The 

subsampled image size was reduced to corresponding 666 × 512 or 820 × 666 pixels, 

respectively. Similar image subsampling process has been commonly used in developing 

previous CAD schemes of FFDM images29.

2.2. Breast Mass Segmentation

CAD scheme is first applied to automatically segment suspicious mass region. Since CEDM 

is a diagnostic imaging modality that applies to the recalled patients who have suspicious 

lesions detected in screening mammograms, locations of each suspicious mass in CC and 

MLO view images are known and can be easily mapped to CEDM images. Figure 3 shows 

the graphical user interface (GUI) of our new interactive CAD scheme. After loading an 

image (either CC or MLO view) of interest, the user can observe and place an initial seed 

point around the mass center to segment mass region. In this study, all region growth seeds 

namely, the mass region center pixels, were automatically placed based on the retrieved 

clinical truth file. In a batched CAD processing, no human intervention is involved. 

Although a large number of mass segmentation algorithms have been reported in the 

literature17, we applied and implemented a multi-layer topographic (MLT) region growing 

algorithm, which has been well-developed and applied in previous CAD schemes9,23.

In brief, the MLT region growing algorithm first applies a conventional region growing 

process using a pre-selected small threshold to segment lesion central region. Second, the 

threshold value is adaptively adjusted based on the pixel intensity difference between the 

initially segmented region and the surrounding region. The next layer of segmentation is 

performed with the adjusted threshold. Two parameters namely, growth rate (an increase of 

size) and center shift (the displacement of centroid) between the prior and current region 

growth layer, are computed. If the current growth layer passes two boundary conditions in 

which the growth rate is less than 100% (double the size), and the shift of the region center 

is less than 10 pixels, this current growth layer is accepted to replace its prior growth layer. 

Third, this region growing process continues to define the new growth layer until it fails to 

pass one of the above two boundary conditions. Then, the growing iteration ends and the last 

“prior” growth layer is selected as the final segmentation output. Figure 3 shows examples of 

the mass segmentation results on both DES and LE images (from the left to right). For a 

comparison, image with radiologist’s marking on the mass region is also displayed in the 

first image from the right.

2.3. Feature Computation

After segmentation of each mass region, the second step of CAD is applied to compute 

image features. In the development phase, CAD initially computes a set of 109 image 
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features, which can be divided into 4 groups as listed in Table 1. The first group includes 4 

mass size and shape related image features, which include mass size, the maximum radius or 

convexity (smoothness) of mass boundary. The second group includes 13 statistical features 

related to heterogeneity of mass density (pixel values). The third group includes 8 features to 

detect variation of density (pixel values) between the mass and its surrounding boundary. 

These features have been defined and used in our previous CAD schemes of different types 

of medical images (including FFDM images and lung CT images) to represent the 

segmented lesions7,25.

Last, the fourth group includes 84 wavelet transform generated image features. Specifically, 

a two-dimensional wavelet transform (using a “Coiflet 1” filter) was applied, which 

decomposes each image into four decompositions. During the decomposition, two-

dimensional filters (low pass and high pass) are applied in both x- and y-direction to 

compute ILL, ILH, IHL, and IHH as represented in Figure 4. For instance, IHL is obtained by 

applying a high pass filter along the x-direction followed by a low pass filter in the y-

direction as described in Equation 1, where L and H indicate low and high pass filters, 

respectively. NH and NL are the length of filters for high and low pass filter, respectively. In 

our study both NH and NL have length of 6. All features in the second and third groups are 

applied individually on each of the four wavelet components to detect density variations in 

the filtered wavelet decompositions.

IHL(i, j) = ∑p = 1
NH ∑q = 1

NL H(p)L(q)I(i + p, j + q) (1)

For non-solid or diffused breast lesions, since there are multiple suspicious masses spread in 

the images without any connectivity between them, the segmented primary (the largest) 

mass region is used for computing shape, morphology, and background related features, 

whereas all the pixels in the diffused suspicious masses are used to compute density related 

image features, which are independent of its corresponding background information.

In addition, we took two considerations in CAD feature computation. First, each mass is 

segmented separately from CC and MLO view images. Two segmented mass regions from 

two view images often do not have the exactly same computed feature values due to the 

different tissue overlapping in two 2D projection images. Thus, we used average value of 

two feature values separately computed from CC or MLO view image to represent the final 

feature value of a mass of interest. Second, due to the possible difference of mass region 

segmentation results on LE and DES images, GUI of our CAD scheme has a function that 

allows user to select an optimal segmentation result from either LE or DES image, and then 

automatically map the selected segmentation result to the matched DES or LE images if 

necessary in the future clinical applications. Using this mapping method, we are able to 

compute optimal image features from both LE and DES images.
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2.4. Machine Learning Classifier and Performance Assessment

The third step of CAD uses a multi-feature fusion-based machine learning classifier to 

produce a classification score for each suspicious mass under test, which ranges from 0 to 1. 

The higher score represents a higher likelihood of the region being malignant. Although 

many machine learning classifiers have been used in developing CAD schemes, we in this 

study selected a simple and popular classifier namely, a multilayer perceptron (MLP) based 

artificial neural network to classify suspicious breast mass. Specifically, we used Weka data 

mining and machine learning software platform28 to train and test the MLP classifier. In 

order to build a highly performed and robust machine learning classifier, we needed to 

address following 3 issues: (1) a relatively small CEDM image dataset of 111 cases, (2) a 

relatively large pool of initially computed 109 features, and (3) case imbalance in dataset, 

which includes 29.7% (33/111) of benign masses and 70.3% (78/111) of malignant masses.

To minimize the potentially biased impact of above 3 issues, we adopted following 3 

methods. First, we applied a leave-one-case-out (LOCO) cross-validation method to 

maximize learning power while minimizing the case partition and testing bias14. Second, we 

used a correlation-based feature subset (CFS) evaluator to reduce dimensionality of feature 

space by dropping highly correlated, redundant, irrelevant and noisy features, and thus 

produce a subset of optimal features from the initial feature pool22. Specifically, a CFS 

evaluator integrating a BestFirst search method was used with a search termination setting of 

5, which means if the number of non-improving nodes in the forward search is greater than 

5, CFS stops feature selection process. Features selected before the termination were used to 

build an optimal feature set to train classifier. Third, we applied a Synthetic Minority 

Oversampling Technique (SMOTE)6 method to generate synthetic data of benign mass 

regions to produce a more balanced training dataset to minimize the potential classification 

bias towards majority (malignant) cases. By applying SMOTE to double “benign cases” 

from 33 to 66, the dataset becomes more balanced with 45.9% (66/144) benign and 54.1% 

(78/144) malignant cases. The effectiveness of applying similar SMOTE method has been 

reported in previous studies1,24.

After taking these considerations and protection steps, we built 4 MLP classifiers. The first 2 

MLPs used image features computed from the segmented mass regions depicting on either 

DES or LE images, respectively. Since mass segmentation results on DES and LE images 

may vary significantly. Using the GUI tool of CAD scheme (as shown in Figure 3), we also 

mapped the optimal segmentation results from one image to another (i.e., from DES to LE 

or vice versa). Then, after optimal mapping, CAD recomputed image features from the 

mapped mass regions depicting on either LE or DES images.

In training and testing each MLP classifier, we embedded both the CFS evaluator and 

SMOTE algorithm into the LOCO cross-validation process. Thus, in each LOCO training 

and testing iteration, one mass was removed from the training dataset. SMOTE algorithm 

was applied to generate synthetic data to double the number of benign cases. A CFS feature 

selection evaluator was applied to select a set of optimal features. A MLP classifier was 

trained using the training dataset and selected optimal features. After training process, the 

classifier was applied to test one independent testing mass, which was not involved in the 
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training process. The LOCO process repeated 111 times. As a result, each mass in our 

dataset was independently tested and all classification scores were recorded.

Finally, classification performance of each MLP classifier was evaluated using the following 

two steps. First, a receiver operating characteristic (ROC) method was used. Each ROC 

curve and the area under ROC curve (AUC) were computed using a maximum likelihood 

based ROC curve fitting program (ROCKIT, http://www-radiology.uchicago.edu/krl/, 

University of Chicago). Second, we applied an operating threshold (T=0.5) on the 

classification scores to divide masses into two classes (or groups) of malignant and benign 

cases. From the results, we generated a confusion matrix and computed overall classification 

accuracy, as well as the positive and negative predictive values (PPV and NPV). The 

evaluation results of 4 MLP classifiers were tabulated and compared.

III. RESULTS

Figure 5 to 7 show examples of comparing the results of applying CAD scheme to segment 

regions of the same breast masses depicting on both DES (the 1st row) and LE (the 2nd row) 

images, respectively. Results show that due to the large heterogeneity of breast masses and 

surrounding parenchymal tissue background, mass segmentation results vary between using 

LE and DES images as compared to the regions of interest (ROIs) marked by the 

radiologists (as shown in the third row of Figures 5 to 7). In general, for masses that are 

partially occulted under the surrounding dense fibro-glandular tissues, it is often difficult for 

CAD to generate satisfactory segmentation results using LE images due to the mass 

boundary fuzziness.

For illustration purpose, Figure 5 shows 6 examples in which segmentation failed in LE 

images (the middle row) as compared to the better segmentation results yielded using DES 

images (the top row). On the other hand, some masses may be invisible or only partially 

visible on DES images due to the lack of enhancement or large necrosis. In these cases, 

CAD segmentation results on LE images may more accurately represent real mass regions 

(see Figure 6). Figure 7 shows examples of the mapped “optimal” segmentation results on 

both LE and DES images. The 3rd row of Figures 5 to 7 also shows the lesion bounding 

boxes placed by radiologists. By comparing with CAD-generated segmentation results (as 

shown in the 1st and 2nd rows of these figures), we can observe that CAD-segmented lesion 

boundary are often more accurate than the results of manually drawing.

Table 2 lists the highly performed image features, which were selected more than 90% of 

LOCO training and testing iterations. From the Table, several interesting observations can be 

made. For example, (1) although lesion shape or boundary margin features (i.e., F1 to F4 as 

shown in Table 1) are commonly considered as the most important image features in many 

of previous CAD schemes, this type of features were largely removed or not selected by the 

classifiers trained using LE images, which indicates that the lesion boundary features can 

only play important role when the lesions are more accurately segmented. (2) The density 

heterogeneity features computed from both inside a lesion and its surrounding background 

can contribute to the CAD scheme to classify between malignant and benign lesions. (3) 

Extracting optimal density heterogeneity features can also expand to the filtered images (i.e., 

Danala et al. Page 7

Ann Biomed Eng. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www-radiology.uchicago.edu/krl/


using wavelet transform as done in this study). From the filtered images, CAD can detect 

and select optimal features to build the machine leaning classifiers.

Figure 8 shows 4 ROC curves that are generated using 4 sets of CAD classification scores 

computed by 4 MLP classifiers. Since in this dataset, 7 masses were not enhanced in CEDM 

images (i.e., one mass region as shown in the first ROI of the top row of Figure 6) and thus 

they cannot be segmented, the first MLP classifier was trained and tested using the 

remaining 104 cases (27 benign vs. 77 malignant masses). Other 3 MLP classifiers were 

trained and tested using all 111 masses. The computed AUC values are 0.759±0.053 and 

0.753±0.047 for the first two MLP classifiers trained and tested using mass regions 

originally segmented from DES and LE images, respectively. By mapping the optimal 

segmentation results from LE images to DES images, AUC=0.739±0.048, which did not 

show classification performance improvement. However, when mapping the optimal 

segmentation results from DES images to LE images, AUC value of using the new MLP 

classifier significantly increases to 0.848±0.038 as compared to all other 3 MLP classifiers 

(p<0.01).

Two confusion matrices in Table 3 show distribution of the classification scores computed 

by two MLP classifiers trained using the originally segmented mass regions, while two 

confusion matrices in Table 4 show distribution of the classification scores computed by two 

MLP classifiers trained using the optimally mapped mass regions depicting on DES and LE 

images, respectively. Then, from these 4 confusion matrices, the overall classification 

accuracy, positive predictive values (PPV) and negative predictive values (NPV) of 4 MLP 

classifiers were computed and compared as shown in Table 5. Results indicated that using 

the fourth MLP classifier trained and tested using LE images after mapping the optimal mass 

region segmentation results from DES images to LE images yielded the highest 

classification accuracy including both the highest PPV and NPV values. For example, when 

comparing to the second MLP classifier trained and tested using the originally segmented 

mass regions depicting on LE images, the overall classification accuracy of the fourth MLP 

increased 8.7% (from 72.1% to 78.4%).

IV. DISCUSSION

In this study, we proposed and tested several novel approaches aiming to optimally develop a 

fully-automated CAD scheme of CEDM images to classify between malignant and benign 

breast masses. The novelty (or difference) of this study as comparing to the previous CAD 

schemes of FFDM images include to (1) optimally map the segmentation results between the 

LE and DES images, (2) compute and add more lesion density heterogeneity features to the 

machine learning classifier, (3) develop a case-based scheme using the average image 

features computed from both CC and MLO views, and (4) implement an interactive visual 

aid tool for CAD scheme of CEDM images. Thus, the study has following unique 

characteristics and/or observations.

First, in breast cancer imaging, accurate classification between malignant and benign breast 

lesions remains a challenging task to date. Although CAD schemes of FFDM and breast 

MRI images have been developed aiming to assist radiologists in classifying between 
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malignant and benign breast lesions in previous studies, these CAD schemes have not been 

accepted and used in the clinical practice. One of the primary difficulties is the lack of 

capability of accurately segmenting breast lesions depicting on images, in particular, using 

FFDM images due to the fuzzy lesion boundary caused by tissue overlapping. Segmentation 

of breast lesion is not only difficult for CAD, but also for radiologists, which generates large 

intra- and inter-reader variability. Thus, inaccurate lesion segmentation reduces accuracy and 

robustness of the computed image features used to develop machine learning classifiers. In 

CEDM imaging modality, DES images enable to enhance breast lesion regions, while 

removing or suppressing normal parenchymal tissues that overlap or surround the lesions. 

Thus, segmentation of lesion regions from DES images becomes much more accurate and 

robust. This is a unique contribution of including DES images in CAD schemes. This study 

demonstrated that by mapping the optimal lesion segmentation results on DES images to LE 

images, CAD scheme yielded significantly higher performance in mass classification than 

using the CAD scheme applying to the originally segmented mass regions depicting on LE 

images.

Second, although using DES images enhances lesion boundary and makes lesion 

segmentation easier and more accurate than using LE images, it also has potential 

disadvantages in developing CAD schemes. For example, we observed that after contrast 

enhancement, lesions depicting on DES images become more homogeneous, which lose 

much density heterogeneity information of the lesions depicting on LE images. Thus, when 

using density heterogeneity and texture related image features computed from the segmented 

lesions to train and develop machine learning classifiers, CAD classification performance 

using DES images does not yield significantly higher performance than using LE images. It 

seems that the advantage of more accurate lesion segmentation using DES images is 

partially cancelled out by its disadvantage of losing density or texture heterogeneity 

information. As a result, if we want to improve CAD classification results using the lesion 

regions segmented from DES images, different strategy or image features need to be 

explored and used in future studies.

Third, unlike the most of previous CAD schemes of FFDM images, which are region-based 

schemes to independently classify two suspicious mass regions based on the image features 

computed from one (i.e., either CC or MLO) view image26, we in this study developed and 

tested a unique case-based scheme that computes average image features extracted from two 

corresponding mass regions detected on CC and MLO view images and fuse the average 

image features to develop or train the machine learning classifier. In order to demonstrate the 

advantages of this new fusion approach, we also did a comparison experiment. The 

comparison results shown in Table 6 demonstrate that CAD schemes developed using the 

averaging features yield the higher performance, which also indicates that using this new 

case-based CAD approach enables to reduce the impact of image feature difference due to 

the variation of tissue overlap in the 2D projected CC and MLO view images.

Fourth, CAD performance depends on the difficult and diverse levels of testing datasets. For 

example, our previous study reviewed 8 published CAD studies conducted by different 

research groups in classifying breast mass-type lesions, which reported AUC values ranging 

from 0.70 to 0.87 due to use of different datasets26. Thus, although it is not feasible to 
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directly compare lesion classification performance between our new CAD scheme of CEDM 

images and other previously developed CAD schemes of FFDM images, we conducted a 

specific comparative analysis. In brief, we compared performance of two CAD schemes 

applying to LE images only and the complete set of CEDM images, respectively. In order to 

avoid or minimize the bias in comparison, two CAD schemes used the same lesion 

segmentation algorithm, image feature computation and selection method, and machine 

learning classifier training and testing approach. Comparative results showed that CAD 

scheme of CEDM images yielded the significantly higher performance (AUC=0.848±0.038) 

than CAD scheme of LE images with AUC=0.753±0.047 based on the same study cases (as 

shown in Table 5), which supports advantages of developing CAD schemes of CEDM 

images.

Fifth, this study took three measures namely, (1) a leave-one-case-out (LOCO) cross-

validation method, (2) a correlation-based feature subset (CFS) evaluator based feature 

selection method and (3) a synthetic minority oversampling technique (SMOTE) method, to 

overcome limitation of a relatively small and unbalanced dataset with 111 cases (33 benign 

vs. 78 malignant cases). Both CFS and SMOTE were embedded into LOCO cross-

validation. In order to support advantage of this embedded approach, we also tested CAD 

performance by removing SMOTE and CFS. Table 7 shows the performance changes and 

we observed that (1) when SMOTE was not applied to balance the dataset (33 benign, 78 

malignant), the performance reduced as comparing to the embedded method used in this 

study, and (2) when the CFS feature selection step was also removed, the performance 

further decreased.

Sixth, besides a MLP classifier, we also applied the same CFS evaluator and SMOTE 

algorithm embedded with LOCO training and testing iteration method to build several other 

popular machine learning classifiers including logistic regression (LR), Bayesian belief 

network (BNN), k-nearest neighbor (KNN), RandomForest (RF) and RandomCommittee 

(RC) algorithms, which are available in Weka data mining software platform28, to classify 

between malignant and benign masses using DES and LE images. Although performance 

levels of different classifiers vary (i.e., ranging from AUC=0.735±0.047 for logistic 

regression to AUC=0.895±0.030 for BNN when using LE images after mapping the optimal 

lesion segmentation results from DES images), the performance change trend in each 

classifier maintains consistent. This supports the results produced using the MLP classifier 

as reported in the Results section of this paper. The additional testing results using different 

machine learning classifiers clearly indicate when using the original lesion segmentation, 

classification performance levels on DES and LE images are quite comparable. However, 

when mapping the optimal lesion segmentation results generated on DES images to LE 

images, all classifiers using different machine learning models yielded the highest 

classification performance.

Last, this study also has a number of limitations. For example, the size of dataset remains 

small. Thus, the performance and robustness of our CAD scheme of CEDM images need to 

be further optimized and validated using new large and diverse image dataset in the future 

studies. In addition, we used a well-developed CAD pipeline with new lesion segmentation 

mapping methods and the computed image features mainly focusing on density 
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heterogeneity of lesion and its surrounding background. Thus, more studies in developing 

new CAD approaches also need in future studies.

In summary, we investigated and tested a new approach to develop the first fully-automated 

CAD scheme of breast lesion classification using CEDM images. Study results demonstrated 

that LE and DES images generated from CEDM contain complementarily valuable 

information. Using DES images helps more accurately segment suspicious lesions if the 

lesions are enhanced. Then, by mapping the optimal lesion segmentation results (lesion 

boundary contour) from DES images onto LE images, the density heterogeneity and texture 

based image features can be more accurately computed from LE images. Thus, the lesion 

classification performance of using this new CAD scheme that combines these two types of 

images can be significantly improved. As a result, new knowledge learned from this proof-

of-concept study helps establish a new foundation for us and/or other researchers in CAD 

related medical imaging informatics field to continue develop and optimize novel CAD 

schemes of CEDM images with improved performance in future studies.
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Figure 1. 
(a) Illustration of the workflow of a CEDM imaging acquisition procedure and (b) an 

example of 4 images from left to right: High energy (HE) image, Low energy (LE) image, 

dual energy subtraction (DES) image displayed at same window and level as HE image, and 

the DES image displayed at an adjusted window and level for improving visibility, 

respectively.
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Figure 2. 
A few samples in which mass-type lesions are clearly visible in DES images (the 1st row), 

but almost invisible in LE (or regular FFDM) images (the 2nd row).
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Figure 3. 
Illustration of graphical user interface (GUI) of the CAD scheme.

Danala et al. Page 15

Ann Biomed Eng. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Illustration of the image decomposition using a wavelet transformation (one-level, un-

decimated two-dimensional wavelet transforms using "Coiflet 1" filter), where L is a low 

pass filter and H is a high pass filter.
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Figure 5. 
Sample cases illustrating failed segmentation in LE images (2nd row) as compared to DES 

images (1st row). The 3rd-row shows the lesion bounding boxes placed by the radiologists.
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Figure 6. 
Sample cases illustrating failed segmentation in DES images (1st row) as compared to LE 

images (2nd row). The 3rd-row shows the lesion bounding boxes placed by the radiologists.
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Figure 7. 
Sample cases showing optimal segmentation mapping on both DES (1st row) and LE (2nd 

row) images. The 3rd-row shows the lesion bounding boxes placed by the radiologists.
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Figure 8. 
Comparison of four ROC curves generated using 4 MLP classifiers using the original and 

optimally mapped mass segmentation results on DES and LE images to distinguish between 

malignant and benign breast masses.
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Table 1

Summary of 109 features separated by feature class.

Feature class Feature number Feature description

Shape 4 (F1–F4) Mass size, convexity, maximum radius, standard deviation (STD) of all radii.

Tumor Density related 13 (F5–F17) Mean, STD, energy, entropy, maximum intensity, mean absolute deviation, median, 
minimum, range, rms, uniformity, skewness, and kurtosis of a segmented mass region.

Tumor background Density 
related

8 (F18–F25) gradient mean, gradient STD, ISO-intensity, fluctuation mean, fluctuation STD, mean 
contrast, contrast, STD ratio of mass to boundary.

Wavelet 84 (F26–F109) Apply the density features on the four wavelet components
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Table 3

Two confusion matrices generated when applying MLP classifier to the originally segmented breast mass 

regions depicting on LE and DES images.

Actual LE Images (Total: 111 masses) DES Images (Total: 104 masses)

Prediction Malignant Benign Malignant Benign

Malignant 56 (0.5) 9 (0.08) 53 (0.51) 9 (0.09)

Benign 22 (0.2) 24 (0.22) 24 (0.23) 18 (0.17)
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Table 4

Two confusion matrices generated when applying MLP classifier to the optimally mapped segmented breast 

mass regions depicting on LE and DES images.

Actual LE Images (Total: 111 masses) DES Images (Total: 111 masses)

Prediction Malignant Benign Malignant Benign

Malignant 63 (0.57) 9 (0.08) 55 (0.49) 12 (0.11)

Benign 15 (0.13) 24 (0.22) 23 (0.21) 21 (0.19)
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Table 5

Summarization and comparison of classification performance using 4 MLP classifiers.

MLP Classifier
Original segmentation Optimally mapped segmentation

DES images LE images DES images LE images

Overall accuracy 68.3% 72.1% 68.5% 78.4%

AUC±STD 0.769±0.053 0.753±0.047 0.737±0.048 0.848±0.038

PPV 85.5% 86.2% 82.1% 87.5%

NPV 42.9% 52.2% 47.7% 61.5%
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