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ABSTRACT

RNA sequencing (RNA-seq) is becoming a prevalent approach to quantify gene expression and is expected to gain better insights
into a number of biological and biomedical questions compared to DNA microarrays. Most importantly, RNA-seq allows us to
quantify expression at the gene or transcript levels. However, leveraging the RNA-seq data requires development of new data
mining and analytics methods. Supervised learning methods are commonly used approaches for biological data analysis that
have recently gained attention for their applications to RNA-seq data. Here, we assess the utility of supervised learning
methods trained on RNA-seq data for a diverse range of biological classification tasks. We hypothesize that the transcript-level
expression data are more informative for biological classification tasks than the gene-level expression data. Our large-scale
assessment utilizes multiple data sets, organisms, lab groups, and RNA-seq analysis pipelines. Overall, we performed and
assessed 61 biological classification problems that leverage three independent RNA-seq data sets and include over 2000
samples that come from multiple organisms, lab groups, and RNA-seq analyses. These 61 problems include predictions of the
tissue type, sex, or age of the sample, healthy or cancerous phenotypes, and pathological tumor stages for the samples from
the cancerous tissue. For each problem, the performance of three normalization techniques and six machine learning
classifiers was explored. We find that for every single classification problem, the transcript-based classifiers outperform or are
comparable with gene expression-based methods. The top-performing techniques reached a near perfect classification
accuracy, demonstrating the utility of supervised learning for RNA-seq based data analysis.
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INTRODUCTION

Ever since the intrinsic role of RNAwas proposed by Crick in
his Central Dogma (Crick 1970), there has been a desire to
accurately annotate and quantify the amount of RNA mate-
rial in the cell. A decade ago, with the introduction of RNA
sequencing (RNA-seq) (Mortazavi et al. 2008), it became
possible to quantify the RNA levels on the whole genome
scale using a probe-free approach, gaining insights into cellu-
lar and disease processes and illuminating the details of many
critical molecular events such as alternative splicing, gene fu-
sion, single nucleotide variation, and differential gene expres-
sion (Conesa et al. 2016). The basic assessment of RNA-seq is
focused on utilizing the data for differential gene expression
between the groups of biological importance (Trapnell et al.
2013). However, there are additional patterns that can be elu-

cidated from the same raw sequencing data by extracting the
expression levels of the alternatively spliced transcripts
(Zhang et al. 2013).
Alternative splicing (AS) of pre-mRNA provides an impor-

tant means of genetic control (Chen andManley 2009; Nilsen
and Graveley 2010). It is abundant across all eukaryotes and
even occurs in some bacteria and archaea (Keren et al. 2010;
Barbosa-Morais et al. 2012; Reddy et al. 2013). AS is defined
by the rearrangement of exons, introns, and/or untranslated
regions that yields multiple transcripts (Kelemen et al. 2013).
Furthermore, 86%–95% of multiexon human genes are esti-
mated to undergo alternative splicing (Djebali et al. 2012).
Genes tend to express many transcripts simultaneously,
70% of which encode important functional or structural
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changes for the protein (Djebali et al. 2012). RNA-seq data
encompass expression at both gene and transcript levels:
the gene-level expression amounts to the combined expres-
sion of all transcripts associated with a particular gene. It
has been previously demonstrated that the gene-level expres-
sion is an excellent indicator of the tissue of origin as well as
certain cancer types (Wan et al. 2014; Wei et al. 2014; Achim
et al. 2015; Danielsson et al. 2015; Mele et al. 2015). However,
transcript-level expression has been shown to provide a more
precise measurement of gene product dosage, resulting in the
superior performance in predicting the cancer patient prog-
nosis or survival time, and providing further insights into the
functional transformations driving cancer (Zhang et al. 2013;
Shen et al. 2016; Trincado et al. 2016; Climente-González
et al. 2017). Differential AS depends on many factors, includ-
ing the epigenetic state, genome sequence, RNA sequence
specificity, activators and inhibitors from both, proteins and
RNAs, as well as post-translational modification (Edwards
and Myers 2007; Chen and Manley 2009; Luco et al. 2011;
Gamazon and Stranger 2014). These diverse mechanisms
control AS to obtain developmental, cell-type, and tissue-
specific expression. Furthermore, the patterns driven by AS
and specific to cancer and other diseases have been recently
identified (Cáceres and Kornblihtt 2002; Sebestyen et al.
2015).

Machine learning tools developed over the last several de-
cades have significantly advanced the analysis of the vast
amount of next generation sequencing and microarray
expression data by discovering the biologically relevant
patterns (Tarca et al. 2007; Liu et al. 2013; Neelima and
Babu 2017). Previous studies have utilized unsupervised
and supervised machine learning techniques on the micro-
array gene expression data with variable success rates
(Vandesompele et al. 2002; Libbrecht and Noble 2015).
Along with the individual approaches (Jagga and Gupta
2014), large-scale comparative studies have been carried
out (Costa et al. 2004; Pirooznia et al. 2008). Some studies
evaluated both basic and advanced clustering techniques,
such as hierarchical clustering, k-means, CLICK, dynamical
clustering, and self-organizing maps, to identify the groups
of genes that share similar functions or genes that are ex-
pressed during the same time point of a mitotic cell cycle
(Mudge et al. 2013; GTEx Consortium 2015; Mele et al.
2015). Other studies compared the ability to perform dis-
ease/healthy sample classification tasks by state-of-the-art
supervised methods, such as support vector machines
(SVM), artificial neural nets (ANN), Bayesian networks,
decision trees, and random forest classifiers (Pirooznia
et al. 2008).

When it comes to the biological classification, the RNA-
seq data present an attractive alternative to microarrays, since
it is possible to quantify all RNA present in the sample with-
out the need of the a priori knowledge.With RNA-seq rapidly
replacing microarrays, it is necessary to assess the potential of
the supervised machine learning methodology applied to the

RNA-seq data across multiple data sets and biological ques-
tions (Byron et al. 2016). Recently, there have been limited
studies that have assessed RNA-seq data with supervised
and unsupervised machine learning techniques (Thompson
et al. 2016). However, these studies utilized RNA-seq data
by leveraging only gene-level expression data rather than
more detailed transcript-level data available for the alterna-
tive splicing transcripts (Chen and Manley 2009). Most re-
cently, a study analyzed the utility of RNA-seq transcript-
level data for the disease/nondisease phenotype classification
of the samples, showing the advantage of the transcript
expression data for the disease phenotype prediction task
(Labuzzetta et al. 2016). However, the question of whether
or not the utility of transcript-level expression presents a
general trend across all main biological and biomedical clas-
sification tasks remains open.
This work aims to systematically assess how well state-

of-the-art supervised machine learning methods perform in
various biological classification tasks when utilizing either
gene-level or transcript-level expression data obtained from
the RNA-seq experiments. The assessment is done from three
different perspectives: (i) by analyzing RNA-seq data from
two organisms (rat and human), (ii) by using the increasingly
difficult data sets, and (iii) by considering different technical
scenarios. The data sets were analyzed using six supervised
machine learning techniques, three normalization methods,
and two RNA-seq analysis pipelines. Altogether, the method
performances on 61 major classification problems that
amounted to 2196 individual classification tasks were com-
pared. We define amajor classification problem as a combina-
tion of the biological class and the data set used. We then
define the “individual classification task” as a combination
of all machine learning methods, normalization techniques,
as well as the major classification problem. The use of multi-
ple data sets allows us to determine if the success of a classi-
fication task is due to the discovery of distinct biological
patterns by a machine learning algorithm, or if it is due to
biologically unrelated patterns such as caused by differences
in library preparation and/or the lab source. Finally, we assess
whether using the information on alternatively spliced tran-
scripts presented in the form of transcript expression data can
provide the higher classification accuracy, compared to the
gene expression data.

RESULTS

The goal of this work is to examine the capabilities of super-
vised machine learning methods in performing biological
classification based on RNA-seq data. Specifically, we ana-
lyzed whether the performance is influenced by (i) the power
of the machine learning classifier, and/or (ii) more detailed
information extracted from the RNA-seq data. In the first
case, we assessed several supervised classifiers, ranging from
the very basic methods to the state-of-the-art supervised clas-
sifiers, across three different normalization techniques. In the
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second case, we compared the same classifiers using either
gene-level or transcript-level expression data. Together, the
study setup utilized three RNA-seq data sets, six supervised
machine learning techniques, and three normalization proto-
cols (Fig. 1). Furthermore, each of the 61 classification prob-
lems was set to use the numerical features generated either
from the gene-level or transcript-level expression data. To
the best of our knowledge, this is the largest comparative
analysis of biological classification tasks based on RNA-seq
data, performed to date.

Classification tasks analyzed

Two categories of classification tasks were considered: nor-
mal phenotype and disease phenotype. In the first category,
we determined whether it was possible to distinguish between
age groups, sex, or tissue types in normal rats based on tran-
scriptome analysis. The second category focused on classifi-
cation tasks associated with breast cancer, with the main
goal to differentiate between the pathological tumor stages.
Both categories were analyzed using RNA-seq data at the

gene and transcript levels. Two types of
classification were considered for each
category of tasks: binary classification
and multiclass, or multinomial, classifi-
cation. These classification types center
around two conceptually different classi-
fication problems. The binary classifica-
tion distinguishes a sample as either
belonging to the class or not. The multi-
class classification distinguishes which
class a specific sample belongs to. For ex-
ample, for a binary tissue classification
task, a sample can be classified as extract-
ed from the brain tissue or not. In the
context of a multiclass classification, the
same sample is classified as extracted
from exactly one of several tissue types.

Data set statistics

Three data sets were used to carry out the
classification tasks: two data sets for the
normal phenotype classification tasks
and one data set for the disease phenotype
classification tasks (Fig. 1). The first data
set was obtained from the Rat Body
Map and is referred to as the RBM data
set. It consisted of 660 normal rat samples
whose transcriptomes were sequenced
from the same rat strain and served as a
reference data set for the community
(Yu et al. 2014). The transcriptomes
were obtained at 40 M reads per sample
on average. The data were evenly split be-
tween the male and female rats, four age
groups, and eleven tissue types (Supple-
mental Fig. S1). The four age groups in-
cluded 2, 6, 21, and 101 wk. The eleven
tissue types included adrenal gland, brain,
heart, thymus, lung, liver, kidney, uterus,
testis, muscle, and spleen. All samples
used the same library preparation proto-
col, sequencer, and were prepared by the
same laboratory. As a result, the data set
was expected to have the least impact

FIGURE 1. Overall computational pipeline used in this work. The samples from each of the
three data sets are collected. The classification tasks are then defined. The expression data are
processed for each sample at the gene and isoform levels using two RNA processing pipelines
and three different count measures. Next, feature preprocessing, scaling, and selection are
done for each classification task. Finally, the binary as well as multiclass supervised classifiers
are trained and tested.

Biological classification with RNA-seq data

www.rnajournal.org 1121

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062802.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.062802.117/-/DC1


from the data inconsistency that arises from the nonbiological
sources, such as utilizing different sequencing protocols, in-
struments, and other parameters.

The second data set, also used in the normal phenotypes
classification tasks and referred to as the NCBI data set, in-
cluded over 1100 samples (Supplemental Fig. S2) with the se-
quencing depth ranging between 6 and 116M reads. This data
set was prepared by analyzing the collection of rat transcrip-
tomes that were sequenced on an Illumina Hi-Seq 2000 plat-
form andwere publicly available from theNCBI SRAdatabase
(Kodama et al. 2012). The data set was obtained from the se-
quencing experiments of 29 research projects (Supplemental
Table 1). It contained highly variable transcriptomes due to
the differences in library preparation, project goals, and rat
strains. The classification tasks for the NCBI data set were
the same as for the RBM data set, but with one modification.
The age classification was modified from the four age groups
into either embryo or adult age groups and is described later in
this section.

The last data set included raw RNA-seq data from 1216 hu-
man breast cancer patients from the Cancer Genome Atlas
(referred to as TCGA data set) and was used in the disease
phenotype classification tasks (Weinstein et al. 2013). At
the preprocessing stage, two RNA-seq data normalization
techniques were implemented and compared. Classification
was performed to distinguish between the pathological can-

cer stages, as defined by the American Joint Committee on
Cancer (AJCC) (Edge and Compton 2010). The AJCC breast
cancer staging is based on size of tumors present within the
breast, presence or absence of detection of metastases that
are not within the breast, and the presence, size, and type
of metastases within the lymph nodes. The patients were dis-
tributed with high variability especially when considering
subcancer stages (Supplemental Fig. S3).

Feature selection and analysis

The numerical features for this study represented either gene
or transcript expression levels. As a result, the number of fea-
tures ranged from 10,711 to 73,592, depending on the data
set and representation (Supplemental Table S2). Utilizing
all features for a classification task greatly increases the com-
putational complexity. Moreover, not all expressed genes or
transcripts may be important for a given classification task;
using the uninformative features during the training process
could potentially decrease the accuracy of the classifier. To
reduce the dimensionality of the feature space, a feature
selection method (Hall and Smith 1998) was applied in a
classification-specific and data set-specific manner, resulting
in a significant reduction of features ranging from 107 to 735
folds (Fig. 2A; Supplemental Figs. S4–S7; Supplemental
Tables S3).

CA

DB

FIGURE 2. Overview of feature selection and the performance of classifiers using gene and isoform level expression data. (A) Comparison of the
number of features between gene and isoform after feature selection. Each classification task has the same number of features selected for each classifier
at the gen-level and isoform-level. The four selected classes represent the four types of patterns seen between gene-level (green) and isoform-level
classifiers. The brain tissue class is the most common pattern of feature selection. In general, more features are selected for isoform-level classifiers
versus gene-level. (B) Example of the variability of gene and isoform performance determined by f-measure across the six methods ([DT] Decision
Table, [J48] J48 Decision Tree, [LR] Linear Regression, [NB] Naïve Bayes, [RF] Random Forest, [SVM] Support Vector Machine). This example is
from the RBM data set for the Multi Age class without normalization. While there is a high degree of variability in performance, isoform-level clas-
sifiers consistently perform either comparably or better than gene-level classifiers. (C,D) Summary of the performance variability across classes for
gene and isoform f-measure for the most frequent top and bottom performance methods ([RF-G] Random Forest Gene, [RF-I] Random Forest
Isoform, [NB-G] Naïve Bayes Gene, [NB-I] Naïve Bayes Isoform). The data used in C is TCGA data set and in D is NCBI data set. MC stands for
multiclass.
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Regardless of the classification task or data set, the normal-
ization of the RNA-seq data did not make a significant differ-
ence on the choice of the selected features: Variation in the
numbers of selected features was <1% (Supplemental Figs.
S8–S11). An interesting observation, consistent across differ-
ent tissue classification tasks, was that the number of features
selected for themulticlass classification tasks was significantly
greater than for a binary classification task. This observation
should not be surprising, because the binary classification
task is generally simpler than the multiclass classification
task (Supplemental Table S3). However, in our case even if
all features of the binary classification tasks related to a single
multiclass classification task were combined, it would still not
account for all features selected by the feature selection meth-
od for the multiclass task.
In many cases, the overall number of features selected for a

binary classification task was the same or nearly the same,
irrespective of whether the features were gene- or tran-
script-based (Supplemental Figs. S4–S7). Does it mean that
the features from the gene- or transcript-based approaches
correspond to the same genes? Not always: The transcripts
used for the selected features in a transcript-based, or tran-
script-based, classifier did not always originate from the genes
that were selected for the corresponding gene-based classifier.
Indeed, because 70% of transcripts were expected to encode
different functional gene products (Djebali et al. 2012), we ex-
pected cases where the gene expression features were not as
specific as the corresponding transcript features. In general,
there was a large portion of 73,592 transcripts from 20,524
genes that corresponded to the same gene set (70%–100%).
However, there were several classification tasks, including
multiclass tissue classification using the NCBI data set, where
there was a lower percentage of such overlap (30%). Further-
more, there were several classification tasks, including
multiclass age classification using RBM,multiclass tissue clas-
sification using GEO, and stage IIB classification using the
TCGA data set, where the numbers of features that used either
the gene or transcript level of expression were significantly
different, which was usually the case when a multiclass classi-
fication task was considered (Fig. 2A; Supplemental Figs. S4–
S7; Supplemental Tables S2, S3). Another interesting observa-
tion was obtained when comparing the RBM and NCBI Rat
data sets: The number of selected features was much smaller
for the RBM data set rather than for the NCBI Rat data set
(on average 231 versus 588), thus indicating the need for ad-
ditional features to compensate for the increased data variabil-
ity found within the NCBI Rat data set.

Overall performance of classifiers trained
on gene-based versus transcript-based data

Next, we hypothesized that because of the observed specificity
of alternative splicing across tissues, ages, sexes, and between
disease/normal phenotypes, training classifiers with theRNA-
seq data at the transcript level for the biological classification

tasks could increase the classification accuracy (Hall and
Smith 1998; Xiong et al. 2015). Consistent with this hypoth-
esis, the supervised learning classifiers that leverage the tran-
script-based data performed comparably or better than the
classifiers trained on the gene data for all classification tasks
(Figs. 2B, 3). This observation also held true irrespective of
the data sets used, normalization protocols, classification
tasks, or supervised classifiers. Furthermore, the differences
between the gene- and transcript-based classifiers were con-
sistently less than the standard deviation across all 10-folds,
supporting this hypothesis (Supplemental Figs. S12, S13).
The most frequently top performing methods were the ran-
dom forest and logistic regression classifiers, whereas the
worst performing method was typically the naïve Bayes clas-
sifier (Fig. 2B–D). However, the former approaches were
not the most accurate ones for every single classification
task, since in some cases the naïve Bayes classifier was capable
of outperforming all othermethods tested (Stages IIA and IIB,
Fig. 2C). In general, the random forest classifier applied to the
data without any normalization achieved 83%–100% accura-
cy (Fig. 2B–D).
It was also observed that for 63% of classification tasks, the

gene- and transcript-based methods performed with similar
accuracy (within 0.2 difference in f-measure value). For 37%
of the classification tasks, the transcript-based methods per-
formed better than the gene-based (more than 0.2 gain in
f-measure value). The difference between the transcript-
based and gene-based classification accuracies was particular-
ly profound when comparing the classification results of
naïve Bayes, which was one of the less accurate methods an-
alyzed, while being among the fastest classifiers. However, we
did not observe such a drastic difference, and sometimes no
difference at all, when considering one of the most accurate
classifiers, random forest, across all classification tasks. For
instance, when comparing gene- and transcript-based classi-
fiers for stage IA cancer using the raw count expression values
and not performing any normalization protocols, the accura-
cy and f-measure values for the naïve Bayes classifier ranged
between 49.5%–76.4% and between 0.60–0.82, respectively,
while for random forest the ranges were nearly identical
(Fig. 2C,D).
Another potential source of variability in the classifier per-

formance was the difference in the protocols used by different
studies. To determine whether the difficulty of classification
task increasedwhen using data sets frommultiple laboratories
rather than from a single one, the classification accuracies be-
tween the two rat data sets were compared for each binary or
multiclass classification task. Not surprisingly, we found that
there was a greater difference in the performance accuracies
when relying on the data from one laboratory compared to
the data from multiple laboratories (Fig. 4A,B). With the ex-
ception of a single worst performing classifier, SVM, the clas-
sifiers performed better on the RBM data set, which came
from a single study, then on the NCBI data set, which was ob-
tained by merging multiple independent studies. Moreover,
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this difference held for both the gene- and transcript-based
models. Next, we evaluated if the prediction accuracy depend-
ed on the transcript counting approach. To do so, TCGA ex-
pression values were calculated based on (i) raw counts and
(ii) log2 normalized countswith respect to the gene length and
sequencing depth. The results showed that there was a strong
preference, in terms of accuracy, in raw counts for the gene-
based classifiers, but to a lesser extent for the transcript-based
models. However, the opposite was observed where tran-
script-basedmodels weremore accurate when using log2 nor-
malized counts (Fig. 4C,D). There was less variability (less
than 0.3 in the maximum difference of f-measure values
across all methods for each classification task) when consider-
ing transcript-based versus gene-based models.

Finally, we considered different normalization techniques
across the gene- and transcript-based classifiers. The general
trend observed was little to no difference in performance ac-
curacies using either different normalization protocols or no
normalization at all. The only exception was the performance
of the SVM classifier used by both, the transcript-based and
gene-based, approaches: Differences in the accuracy values
between the various normalization techniques for some clas-
sification tasks were as high as 40.3% and 30.7%, respectively
(Fig. 5).

Normal phenotype classification
tasks: age, sex, and tissue
classification of rat samples

The Rat Body Map (RBM) represents a
data set with the least amount of noise
due to nonbiological variation because
it comes from a single laboratory, which
uses the same sample and library prepa-
ration protocols and a fixed sequencing
depth (Fig. 3A). From this data set we
identified eleven tissue types, four age
groups, and both sexes. We then defined
17 “one-against-all” binary classification
problems. Additionally, we merged the
tissue and age groups and applied a mul-
ticlass classifier.
For the tissue classification, including

multiclass tissue classification, the mod-
els achieved 100% accuracy and 1.0
f-measure based on the assessment pro-
tocol and irrespective of the machine
learningmethod. However, when consid-
ering the normalization technique, SVM
had the accuracy ranged between 75.3%
to 99.8% and 0.39 to 1.00 f-measure.
The age group classification represented
a more challenging task, with the classifi-
cation accuracy ranging between 40.2%
to 100% and f-measure ranging from
0.40 to 1.00. For the 2-wk and 104-wk

age groups, the classifiers again achieved nearly 100% accura-
cy and 1.0 f-measure across all machine learning techniques.
The 6-wk and 21-wk age groups were predicted with over
97% accuracy using random forest, j48, and logistic regres-
sion classifiers, while naïve Bayes could only achieve 81.1%
and SVM with 40.2%. A similar pattern was observed in
sex classification, where logistic regression and random forest
achieved more than 97.3% in accuracy, but naïve Bayes could
reach only 86.1%.
The NCBI data set was expected to result in a greater var-

iation of the feature values, compared with the RBM data set,
since it included the data frommultiple research laboratories
that sequenced different rat samples and even strains using
different library preparation protocols (Fig. 3B). The same
types of classification tasks were considered, including tissue,
age, and sex. Since this data set represents all publicly avail-
able data in rat obtained using the same sequencer model,
it included more tissue types than the RBM data set. For con-
sistent comparison, only those tissue types that were previ-
ously included in the RBM data set were chosen for the
NCBI data set for the binary classification. However, for
the multiclass tissue classification problem, the labels were
determined based on the entire range of organs and tissues
that the samples originated from, thus including more tissue

CA

DB

FIGURE 3. Heat map representation of the difference between Isoform and Gene f-measure
across machine learning methods, classes, data sets, and normalization techniques. For the ma-
jority of classification tasks, using isoform-level rather than gene-level expression data resulted in
a small to substantial increase of the performance accuracy, represented by f-measure values here.
The bottom x-axis represents the machine learning techniques ([DT] Decision Table, [J48] J48
Decision Tree, [LR] Linear Regression, [NB] Naïve Bayes, [RF] Random Forest, [SVM]
Support Vector Machine). The y-axis represents the classes considered. MC stands for multiclass.
The top x-axis represents normalization techniques including Nothing (no normalization),
Standardized, and Normalized. Data sets for each panel are (A) RBM, (B) NCBI, (C) TCGA–
log2 normalized counts, and (D) TCGA–raw counts.
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types than in the RBM data set. In contrast, the age group
classification for the NCBI data set was more limited than
the one for the RBM data set, since some samples in the for-
mer did not include the detailed age information. Therefore,
the age types for the NCBI data sets were reduced to either
adult or embryonic types.
The RNA-seq data normalization did not have an effect on

the classification results for the NCBI data set: The perfor-
mance difference when using the normalized and unnormal-
ized data sets was only observed for the SVM classifier, the
method that performed the worst out of the six supervised
learning methods. The binary tissue-based classification per-
formed well overall, reaching over 99.7% in accuracy and
0.99 in f-measure for the top-performing random forest clas-
sifier. Interestingly, the worst performing classifier, SVM,
achieved the accuracy of only 21.2% and 0.07 f-measure for
the gene-based tissue multiclass. The analysis of method per-
formances for multiclass classification tasks revealed that
classification of several tissue types was particularly challeng-

ing for some of the less accurate methods.
The binary tissue type classification tasks
reporting the lowest accuracies included
brain and liver tissue classification, with
79.1%–94.3% in accuracies and 0.70–
0.94 in f-measure values, depending on
the supervised learning method used.
For the harder problem of multiclass tis-
sue classification, the performance of the
classifiers was highly variable, with the
accuracy ranging from 0.7% to 84.3%
and f-measure from 0.07 to 0.84, and
with the observation that the random
forest classifier was, again, the best per-
forming method. Differentiating be-
tween embryonic and adult samples as
well as between the sexes were easier
tasks compared to the tissue origin. The
age classification accuracy ranged from
83.2% to 98.3% and f-measure from
0.75 to 0.97 across all six supervised
learning methods. The sex classification
task had classification accuracy ranging
between 71.1% and 97.3% and f-measure
between 0.59 and 0.97. Interestingly, the
consistently poor performance of the
SVM classifier was not dependent on
the normalization technique.

Disease phenotype classification
tasks: breast cancer versus healthy
and stage classification of human
samples

Based on the promising results for the
normal phenotype classification tasks,

we further increased the difficulty of classification task by
predicting different pathological stages of breast cancer using
gene-based and transcript-based data. To evaluate if this clas-
sification task could benefit from additional information, we
assessed the method performances based on the RNA-seq
data with log2 normalization in addition to the three types
of normalization used in the two previous classification prob-
lems. The classification performance was heavily dependent
on the supervised learning method with accuracies ranging
from 20.2% to 99.8% and f-measure ranging from 0.21 to
1.00, and with naïve Bayes and SVM classifier being the worst
performing classifiers (Fig. 3C,D). Furthermore, when con-
sidering all classes and log2 normalization, the accuracies de-
creased by as much as 60%, and the only method that
benefited from the normalization was the poorly performing
SVM classifier.
For each stage of breast cancer, we were able to achieve at

least 78.3% in accuracy and 0.77 in f-measure. However,
there is a significant variability within all parameters tested

CA

DB

FIGURE 4. Heat map representation showing the influence of different factors on the accuracy
performance. Panels A and B represent the difference in performance accuracies, calculated with
f-measure, between RBM (single-lab) and NCBI (multi-lab) data sets for gene-based (A) and iso-
form-based (B) classifications, respectively. Panels C and D represent the difference in f-measure
between the classifiers trained on the TCGA expression values, quantified as either raw counts or
log2 normalized counts with respect to gene length and sequencing depth. Shown are f-measure
differences for gene-based (C) and isoform-based (D) classifications, respectively. The bottom
x-axis represents the machine learning techniques ([DT] Decision Table, [J48] J48 Decision
Tree, [LR] Linear Regression, [NB] Naïve Bayes, [RF] Random Forest, [SVM] Support Vector
Machine). The y-axis represents the classes considered. MC stands for multiclass. The top
x-axis represents normalization techniques including Nothing (no normalization), Standardized,
and Normalized.
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(Figs. 2C, 3C,D). Similar to the analysis for the RBM and
NCBI data sets, random forest had the highest performance
across all stages of breast cancer based on 71.3% to 99.8% ac-
curacy and 0.64 to 1.00 f-measure. Themost difficult stages to
classify were stages IIA and IIB, with the average difference in
accuracy between 21.3% accuracy and 0.29 f-measure. Unlike
the RBM and NCBI data sets, there were classes, such as Stage
IIB, where naïve Bayes and SVM outperformed random for-
est by 5% in accuracy and 0.11 in f-measure. The easiest stag-
es to classify were stages II and III with 99.8% accuracy and
1.00 f-measure.

In contrast to the RBM and NCBI data sets, the worst per-
forming models for each class were highly variable, depend-
ing on the parameters chosen. For example, for stage IIA, the
logistic regression classifier was the best performing model at
78.2% accuracy and 0.77 f-measure. However, the worst per-
forming model was J48 at 60.1% accuracy and 0.60 f-mea-
sure. Similarly, for stage I the worst performing classifier
was naïve Bayes with 53.7% accuracy and 0.63 f-measure,

while the best performing classifier was
random forest with 91.4% accuracy and
0.84 f-measure. On the other hand, for
stage III binary classification the perfor-
mance was 99.5%–99.8% accuracy and
0.996%–0.998 f-measure across all classi-
fiers and parameter sets. These results
demonstrated that no single method
and parameter set was able to always out-
perform all others.

DISCUSSION

This work achieves two aims. The first
aim is to broadly assess how well the su-
pervised machine learning methods per-
form in various biological classifications
by utilizing exclusively the RNA-seq
data. This aim is supported by our ratio-
nale that the key biological patterns
should be recoverable from the transcrip-
tomics data. Our second aim is to inves-
tigate whether relying on the transcript-
level expression, which provides details
on the alternatively spliced transcripts,
can increase the accuracy of biological
classification compared to the gene-level
expression. Since the data patterns de-
tected by the machine learning tech-
niques during their training stage are
highly dependent on the type of biologi-
cal classification problem, we wanted
our assessment to cover multiple aspects.
Specifically, we evaluated the perfor-
mance of six widely used supervised clas-
sifiers across different RNA-seq data sets,

organisms, and normalization protocols, totaling in 61 clas-
sification problems and 2196 individual classification tasks.
The different RNA-seq data sets were selected based on the
increasing difficulty of classification tasks due to the back-
ground noise. The RBM data set represented the “easiest”
data set as the level of background noise was expected to be
low due to using a single data source and well-defined biolog-
ical classification problems: tissue-, age-, and gender-based.
The assumption of a single data source implies a well-defined
animal model, with the genetically identical specimina, and
the same RNA-seq library protocol. The NCBI data set
increases the background noise by including multiple
RNA-seq protocols and different genetic backgrounds, but
keeping the classification the same, to allow for comparison
with the RBM data set. The TCGA data set further increases
the background noise due to increasing genetic and environ-
mental variability by switching from amodel organism to hu-
man, from the normal to disease-specific phenotype, and by
relying on a potentially biased definition of the biological

CA

DB

FIGURE 5. Heat map representation of the difference between maximum f-measure and mini-
mum f-measure across normalization techniques. To demonstrate the variability attributed to the
machine learning normalization technique, the intensity of the color represents the difference be-
tween the maximum and minimum f-measures achieved for a specific classification task and spe-
cific classifier across all three normalization protocols. The upper x-axis reflects if the difference is
from gene or isoform expression values. SVM is the only method that has significant changes due
to normalization. The lower x-axis represents machine learning techniques ([DT] Decision Table,
[J48] J48 Decision Tree, [LR] Linear Regression, [NB] Naïve Bayes, (RF) Random Forest, [SVM]
Support Vector Machine). The y-axis represents the classes considered. MC stands for multiclass.
Data sets for each panel are (A) RBM, (B) NCBI, (C) TCGA–log2 normalized counts, and
(D) TCGA–raw counts.
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classes (breast cancer pathological stages are not defined from
the molecular perspective, but by a pathologist). Each task
separately utilized the gene-level and transcript-level expres-
sion data sets. The main purpose behind our study was to de-
monstrate the importance of enriching RNA-seq data with
the differentially expressed transcripts for the biological clas-
sification tasks, suggesting that limiting the RNA-seq analysis
to the differentially expressed genes would, in turn, limit the
capabilities of machine learning algorithms. As a result, sev-
eral important conclusions were made.
First, we found that the accuracy of machine learning

classifiers depended on how much data variation associated
with the type of sequencers, library preparation, or sample
preparation was introduced. Our rat data sets were specifi-
cally selected to compare the differences in data variation
and in classification accuracies. The first data set (RBM)
was chosen because it included samples representing multi-
ple age groups, tissue types, as well as sex (Yu et al. 2014),
while these data were generated by only one research group
and using the same sequencer. Thus, possible variation due
to the type of sequencers or preparation protocols was ex-
pected to be minimal. Furthermore, we downloaded and
processed the raw RNA-seq reads using our in-house proto-
col and thus excluding possible variation due to different
RNA-seq analysis techniques. Our second data set (NCBI)
incorporated all publicly available RNA-seq data for rat us-
ing the same sequencer model, thus minimizing possible
sequencer-based bias, a well-documented source of varia-
tion (Schirmer et al. 2016). The NCBI data set included
29 studies from multiple laboratories and represented the
same classes as in the RBM except for the age groups. As ex-
pected, higher variation negatively affected the accuracy
across predominantly all machine learning methods, nor-
malization protocols and classification tasks. On the other
hand, even for the NCBI data set, the accuracies for all
top-performing binary classifiers were never below 90% ei-
ther for gene-level or for transcript-level expression data,
suggesting minimal influence of the batch effect on the su-
pervised classifiers.
Second, our study suggested that the standard data nor-

malization techniques were not needed for RNA-seq data,
except when using the poor-performing SVM classifiers.
Random forest and logistic regression classifiers performed
consistently well with each of the normalization techniques
but also without them, regardless of the classification task.
However, there are several normalization techniques specific
to RNA-seq data, including RPKM (reads per kilobase per
million reads), FPKM (fragments per kilobase per million
reads), and TPM (transcripts per kilobase per million reads)
(Conesa et al. 2016). Assessing whether these normalization
techniques have an effect on classification accuracy should
be considered for future studies.
Third, we found that the overall performance of the most

accurate machine learning classifiers was very strong, with a
few exceptions. In fact, for several classification tasks includ-

ing all tissue classes, 2 wk, and 104 wk from the RBM data set,
stage I from the TCGA data set, and the top-performing clas-
sifiers achieved a perfect 1.0 f-score, while for the majority of
other tasks, the accuracy and f-measure were no less than 0.9
and often achieved by more than one classifier. From the bi-
ological perspective, it was surprising to see howwell the clas-
sifiers performed on the normal phenotype data sets, in spite
of significant variations in the sample and library prepara-
tion by different labs as well as the difference in rat strains.
Intuitively, the expression values should have high variability
due to these differences. The few exceptions in excellent per-
formance were the multiclass age group classification for the
normal phenotype data sets and classifications of clinical stag-
es I, IIA, IIB, and IIIA for the disease phenotype data set, with
stages IIA and IIB performing significantly worse. The clinical
definition of IIA and IIB are based on the size of the tumor as
well as evidence of cancermovement, and the reduced perfor-
mance on each of these stages suggests that while there is a
phenotype difference there may not be a strong molecular ex-
pression difference, whichwould cause a higher error rate by a
classifier. The results also suggested that, from the diagnostic
perspective, amore accurateAJCCclassificationmethodology
to distinguish those two phenotypes might be required to im-
prove the stage prediction accuracy. The most consistent
in the overall performance across all tasks were the random
forest classifiers, which had been previously shown to per-
form exceptionally well for a number of bioinformatics tasks
(Boulesteix et al. 2012) and can be suggested as a reliable first
choice for a biological classification task. Overall, our findings
provided strong evidence that the supervised learning ap-
proach is readily available for the majority of the biological
classification tasks.
Finally, we found that the classifiers that leveraged the

transcript-level expression never performed worse and often
outperformed the classifiers that used the gene-level ex-
pression data. This observation was consistent across data
sets, normalization techniques, RNA-seq pipelines, and clas-
sification tasks. For the normal phenotype tasks, the most
profound difference was when considering the most chal-
lenging classification task—the multiclass classification of
age groups. For the disease phenotype tasks, the most signifi-
cant difference in performances of the classifiers that used
gene-based and transcript-based expression data was again
for the most challenging classes, the clinical stages IIA and
II B of breast cancer. The better performance for the classifi-
ers on the transcript-level data seems to be the expected result
because the methods are trained on the enriched data, from
the biological point of view. However, we note that the tran-
script-level data provide a significantly higher number of ini-
tial features, which could result in adding more noise to or
potential overfitting of a classifier. Hence the importance of
the feature selection and thorough model evaluation, which
in this work suggests that the transcript-level information is
a better choice when developing a biological classifier.
Given that the transcript extraction methods continue to
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improve (Alamancos et al. 2015; Goldstein et al. 2016), we
expect further improvement in the accuracy of transcript-
level based classifiers.

In summary, this study demonstrates that a supervised
learning method leveraging transcript-level RNA-seq data is
a reliable approach for many biological classification tasks.
We conclude that an appropriate general purpose pipeline
for building a RNA-seq based classifier should use (i) tran-
script-based expression data, (ii) feature selection prepro-
cessing, (iii) Random Forest classification method, and (iv)
do not use normalization. The proposed pipeline is compu-
tationally fast and can be fully automated for the projects that
involve massive volumes of sequencing data and/or high
number of samples. However, it is important to note that
(i) there are some cases where Random Forest can be outper-
formed and (ii) the protocols and methods used for data
gathering may have an effect on the classifier. With the rapid
advancements of RNA sequencing technologies as well as
with continuous improvement of the transcript prediction
methods, the accuracy of the machine learning approaches
will only increase. We also expect for these methods to tackle
more challenging tasks such as cell type classification, disease
phenotype classification of common and rare complex dis-
eases, and clinical stage classification across all major cancer
types. Finally, we expect for advanced machine learning ap-
proaches, such as semisupervised learning (Zhu 2005),
deep learning (LeCun et al. 2015), and learning under privi-
leged information (Vapnik and Vashist 2009) to step in.

MATERIALS AND METHODS

The methodology used in this study compares three RNA-seq data
sets, six supervised machine learning methods, three normalization
techniques, two RNA-seq analysis pipelines, and 61 classification
problems in order to assess if the features derived from the expres-
sion data at the alternative splicing level (i.e., transcript-based) can
result in a higher classification accuracy than the features derived
from the gene-based expression levels. Our approach attempts to
systematically evaluate the classifiers that relied on these features
from multiple perspectives, with a goal to provide a comprehensive
analysis. We use the increasingly difficult biological classification
tasks to assess the performances of classifiers in the presence of noise
due to the difference in the biological sources, sequencers, and prep-
aration protocols. The analysis is based on three RNA-seq data sets,
two from rat and one from human. The six supervised machine
learning methods tested in this work include support vector ma-
chines (SVM), random forest (RF), decision table, J48 decision
tree, logistic regression, and naïve Bayes. The three normalization
protocols used include (i) pipeline-specific RNA-seq count with
no post-normalization, (ii) pipeline-specific RNA-seq count with
normalization from 0 to 1, and (iii) pipeline-specific RNA-seq count
protocol with standardization with respect to standard deviation.
The two RNA-seq analysis pipelines in this work, each using differ-
ent RNA-seq count methods were the standard Tuxedo suite and
RSEM. The 61 classification problems include binary and multiclass
classifications of tissue types, age groups, sex, as well as clinical stages
of breast cancer.

Data sources

Three data sets are used to demonstrate the usability of the transcript-
level expression data for the supervised classification. The first two
data sets are from rat samples of normal phenotype; the raw RNA-
seq data for both data sets is processed using our in-house protocol.
The last data set consists of already processed RNA-seq data fromhu-
man breast cancer samples (Zhu et al. 2014). The first, RBM, data set
is obtained from theRatBodyMap and includes 660 samples from12
different rats from the F344 rat strain (Yu et al. 2014) covering four
different age groups, 11 tissues, and both male and female rats.
Publicly available raw mRNA RNA-seq data from the Rat Body
Map (http://pgx.fudan.edu.cn/ratbodymap/) is downloaded and
processed for the gene and transcript levels of expression. The second
data set, NCBI, includes all publicly available rawRNA-seq data from
rat samples that are sequenced using IlluminaHi-Seq 2000 and avail-
able from the NCBI GEOData sets collection (http://www.ncbi.nlm.
nih.gov/gds, Supplemental Table S3). In total, 1308 samples are used,
which represents 29 different projects. In contrast to the processing
of the data for the first data set, these 29 projects used a variety of li-
brary preparation protocols and adapters to process their samples.
The third, TCGA, data set is obtained from The Cancer Genome
Atlas data repository (Zhu et al. 2014) and includes 1216 breast can-
cer patients diagnosed with different pathological cancer stages (as
defined by the American Joint Committee on Cancer, AJCC [Edge
and Compton 2010]). The class distributions for all data sets are
shown in Supplemental Figures S9–S11.

RNA-seq pipeline

RNA-seq analysis encompasses three main stages: preprocessing,
alignment, and quantification. There are a number of methods to
perform each of these three basic steps, while the debate on the
most appropriate methodology continues (Conesa et al. 2016). In
this work, we expect for the variation due to data processing to be
minimal, since the same processing pipeline is used for each data
set. Two different RNA-seq pipelines are implemented and applied
to each data set for both gene and transcript levels of expression.
These two pipelines leverage different algorithms and different met-
rics (Engström et al. 2013). For the RBM and NCBI data set, all raw
RNA-seq data are downloaded from the SRA repository (https://
www.ncbi.nlm.nih.gov/sra) using unique project IDs (Supplemental
Table S3). SRA file formats are then converted into fastq format.
These files are used as input for the preprocessing stage. The prepro-
cessing is done using Fastx Toolswith the settings that removed reads
shorter than 20 bp. All nucleotides with quality scores of less than 20
are converted into N’s (http://hannonlab.cshl.edu/fastx_toolkit/
index.html). The alignment is done against the rat genome version
rn5 (NCBI Resource Coordinators 2013) using Tophat v2 and its de-
fault settings (Kim et al. 2013). Quantification for both gene- and
transcript-based expression levels is performed using Cufflinks v2
(Trapnell et al. 2012) and Ensembl transcript annotation v75 (Flicek
et al. 2012). The Cufflinks is set to use the transcript annotation for
quantification with other settings being default. For the TCGA data
set, MapSlice (Wang et al. 2010) is used for alignment and RSEM
(Li andDewey 2011) for quantification. The final output includes ex-
pression levels for each sample at both gene and transcript levels. We
note that the gene-based expression values are the summation of all
transcripts determined to be associatedwith the corresponding gene.
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Supervised learning classifiers

The quantified expression values obtained from Cufflinks are then
used to train and assess six supervised classifiers for each task. Two
types of classification tasks are considered: one-against-all andmulti-
class. Our classification approach leverages feature-based supervised
learning methods. Each post-processed RNA-seq sample is repre-
sented as a feature vector, where each feature represents the tran-
script- or gene-level expression value for a specific gene or AS
transcript corresponding to this gene. Expression samples may
vary in length, thus to generate feature vectors of the same length,
we compute the intersection of all samples in terms of the feature
set that represents each sample. We next rank the importance of
each feature and select subsets of the features that best describe their
respective classes using the Best First (BF) feature selection method
(Hall and Smith 1998). The BF method is driven by the property
that the subsets of important features are highly correlated with a
specific class and are not correlated with each other. The method is
described as a greedy hill climbing algorithmaugmentedwith a back-
tracking step, where the importance of features is estimated through
one-by-one feature removal. All machine learning methods are im-
plemented using the Weka package version 3.7.13 (Hall et al. 2009).
Due to a large number of gene-based and an even greater number

of transcript-based features (∼20,000–73,000) using the base classi-
fication or even BF method was not computationally feasible, and
the original methodology was modified allowing to reduce the
processing time. The modifications include introducing multiple
splits of the features followed by two rounds of feature selection.
Specifically, we split the data into 1000 subsets and performed fea-
ture selection on each subset independently. After feature selection
is performed on all splits, the selected features are merged, and an-
other round of feature selection is performed. Our solution reduces
the time needed to compute from several weeks to hours and still
able to successfully select a reduced feature set that allows for accu-
rate classification.

Machine learning technique rationale

A broad range of supervised learning approaches was implemented
to test whether performance could be improved, depending on the
method tested. The machine learning methods have different as-
sumptions on how the data are structured; the methods also vary
in their treatment of the class outliers and convergence w.r.t number
of training examples.
The first two classifiers, naïve Bayes and logistic regression, are of-

ten regarded as the baseline methods due to their simplicity and ro-
bustness. Naïve Bayes classifier is a probabilistic method that has
been used in many applications including bioinformatics and text
mining (McCallum and Nigam 1998; Rish 2001; Liu et al. 2002;
Li et al. 2004; Kim et al. 2006). It is a simple model that leverages
the Bayes rule and describes a class of Bayesian networks with as-
sumed conditional independence between the numerical features.
The use of this “naïve” assumptionmakes themethod computation-
ally efficient during both the training and classification stages.
Furthermore, while the probability estimation by naïve Bayes is re-
ported to be not very accurate (Niculescu-Mizil and Caruana 2005),
a threshold-based classification performance is typically very robust.
In our implementation, the numeric estimator precision values are
chosen based on analysis of the training data and is set to 0.1 The
batchSize parameter that specifies the preferred number of instances

to process during training if batch prediction is being performed is
set to 100. “Logistic regression” is another type of a simple machine
learning classifier that has been compared with naïve Bayes in terms
of accuracy and performance (Ng and Jordan 2002). Different ver-
sions of logistic regression models are often used in bioinformatics
applications (Shevade and Keerthi 2003; Liao and Chin 2007; Sartor
et al. 2009;Wang et al. 2013). In this work, we implemented a boost-
ing linear logistic regression method without regularization and
with the optimal number of boosting iterations based on cross
validation.
The next three classifiers, decision tables, J48, and random forest,

are the decision tree based algorithms. A “decision table” is a rule-
based classifier commonly used for the attribute visualization and
less commonly for classification. The rules are represented in a tab-
ular format using only an optimal subset of features that are includ-
ed into the table during training. The decision table is a less popular
approach for bioinformatics and genomics classification tasks, how-
ever it has showed a superior performance in some bioinformatics
applications (Asur et al. 2006), and therefore is included into the
pool of methods. The decision table model is implemented as a sim-
ple majority classifier using the Best-First method for searching. J48
is an open source implementation of perhaps the most well-known
decision tree algorithm, C4.5 (Quinlan 1993), which is, in turn, an
extension of the Iterative Dichotomiser 3 (ID3) algorithm (Quinlan
1979). C4.5 uses the information-theoretic principles to build deci-
sion trees from the training data. Specifically, it leverages the infor-
mation gain and gain ratio for a heuristic splitting criterion with a
greedy search that maximizes the criterion. Furthermore, the algo-
rithm includes a tree pruning step to reduce the size of the tree
and avoid the overfitting. In this work, the implementation of J48
was done with the default confidence threshold of 0.25 and mini-
mum number of instances per leaf set to 2. “Random forest” is an
ensemble learning approach, where many decision trees are gener-
ated during the training stage, with each tree based on a different
subset of features and trained on a different part of the same training
set (Breiman 2001). During the classification of unseen examples,
the predictions of the individually trained trees are then agglomer-
ated using the majority vote. This bootstrapping procedure is found
to efficiently reduce the high variance that an individual decision
tree is likely to suffer from. The random forest methods have been
widely used in bioinformatics and genomics applications due to
their versatility and high accuracy (Breiman 2001). In this work,
due to a large but highly variable number of features the number
of attributes, K, randomly selected for each tree is dependent on
the classification task and is defined as K = [log 2 n + 1], where n
is the total number of features. The number of sampled trees per
each classifier is set to 100.
The last method, SVM represents yet another family of the super-

vised classifiers, the kernel methods (Vapnik 1998). It is among the
most well-established and popular machine learning approaches in
bioinformatics and genomics (Hirose et al. 2007; Zhao et al. 2011;
Dou et al. 2014; Libbrecht and Noble 2015). SVM classifiers range
from a simple linear, or maximum margin, classifier where one
needs to find a decision boundary separating two classes and repre-
sented as a hyperplane, in case of a multidimensional feature space,
to a more complex classifier represented by a nonlinear decision
boundary through introducing a nonlinear kernel function. For
our SVM model training, radial basis function (RBF) was used, a
commonly used kernel. The two parameters, Gamma and C, were
set to 0.01 and 1, respectively.
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Training, testing, and assessment of classifiers

To evaluate each of the classifiers, a basic supervised learning assess-
ment protocol is implemented. Specifically, the training/testing
stages are assessed as a 10-fold stratified cross validation to eliminate
the sampling bias. This protocol is implemented using Weka (Hall
et al. 2009). The reported result of assessment is based on the aver-
age f-measure for the 10-folds for the testing data set. f-measure in-
corporates recall (Rec, also called sensitivity) and precision (Pre) into
one reported metric:

Acc = TP + TN

TP + FP + TN + FN
; Pre = TP

TP + FP
; Rec = TP

TP + FN
;

f -measure = 2× Pr × Re

Pr + Re
,

where TP is the number of true positives (correctly classified as class
members for a specified class), TN is the number of true negatives
(correctly classified as not class members), FP is the number of false
positives (incorrectly classified as class members), and FN is the
number of false negatives (incorrectly classified as not class mem-
bers). While each of the above four measures are commonly used
to evaluate the overall performance of a method, we primarily focus
on the most balanced metric, f-measure, due to a high number of
classification tasks to be reported.

DATA DEPOSITION

The supervised machine learning methods were implemented using
the Weka platform (http://www.cs.waikato.ac.nz/ml/weka/). Data
used are publicly available from the Rat Body Map (http://pgx.fudan.
edu.cn/ratbodymap/), Geo Datasets (http://www.ncbi.nlm.nih.gov/
gds), and the Cancer Genome Atlas (https://portal.gdc.cancer.gov/).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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