
Quantifying the effects of hydration on corneal stiffness with 
noncontact optical coherence elastography

Manmohan Singh, BSc, Zhaolong Han, PhD, Jiasong Li, PhD, Srilatha Vantipalli, PhD, 
Salavat R. Aglyamov, MSc, PhD, Michael D. Twa, OD, PhD, and Kirill V. Larin, MSc, PhD
Biomedical Engineering (Singh, Li, Larin) and the College of Optometry (Vantipalli), Mechanical 
Engineering (Aglyamov), University of Houston, and Molecular Physiology and Biophysics (Larin), 
Baylor College of Medicine, Houston, Texas, and the School of Optometry (Twa) and Biomedical 
Engineering (Twa), University of Alabama at Birmingham, Birmingham, Alabama, USA; the 
School of Naval Architecture (Han), Ocean and Civil Engineering, Shanghai Jiao Tong University, 
Shanghai, China; Interdisciplinary Laboratory of Biophotonics (Larin), Tomsk State University, 
Tomsk, Russia

Abstract

PURPOSE—To quantify the effects of the hydration state on the Young’s modulus of the cornea.

SETTING—Biomedical Optics Laboratory, University of Houston, Houston, Texas, USA.

DESIGN—Experimental study.

METHODS—Noncontact, dynamic optical coherence elastography (OCE) measurements were 

taken of in situ rabbit corneas in the whole eye–globe configuration (n = 10) and at an artificially 

controlled intraocular pressure of 15 mm Hg. Baseline OCE measurements were taken by topically 

hydrating the corneas with saline for 1 hour. The corneas were then dehydrated topically with a 

20% dextran solution for another hour, and the OCE measurements were repeated. A finite 

element method was used to quantify the Young’s modulus of the corneas based on the OCE 

measurements.

RESULTS—The thickness of the corneas shrank considerably after topical addition of the 20% 

dextran solution (~680 μm to ~370 μm), and the OCE-measured elastic-wave speed 

correspondingly decreased (~3.2 m/s to ~2.6 m/s). The finite element method results showed an 

increase in Young’s modulus (500 kPa to 800 kPa) resulting from dehydration and subsequent 

thinning.
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CONCLUSION—Young’s modulus increased significantly as the corneas dehydrated and 

thinned, showing that corneal geometry and hydration state are critical factors for accurately 

quantifying corneal biomechanical properties.

The cornea is a crucial part of vision because it provides physical protection to delicate inner 

elements of the eye and approximately two thirds of the total refractive power of the eye.1 

The structural integrity of corneal tissue is vital to its function and subsequent visual health 

by maintaining proper corneal geometry. It is well known that the corneal biomechanical 

properties and corneal geometry are tightly linked.2 Diseases such as keratoconus3 and 

refractive procedures such as laser in situ keratomileusis4 and ultraviolet-A with riboflavin 

corneal crosslinking (CXL)5 can alter corneal biomechanical properties and geometry, 

leading to changes in visual acuity. For example, keratoconus causes degeneration of the 

cornea, leading to a highly irregular corneal geometry that results in distorted vision.6,7 In 

general, keratoconus is diagnosed by techniques that rely on detecting these morphologic 

abnormalities and resulting visual aberrations.7–9 However, techniques that can measure 

corneal biomechanical properties would enable earlier detection of disease onset by 

identifying underlying changes in corneal biomechanical properties before noticeable 

morphologic aberrations develop. Moreover, CXL is intended to stiffen the cornea; thus, 

evaluating corneal biomechanical properties could provide for planning and evaluating 

custom CXL therapies.10,11 However, quantifying corneal biomechanical properties is not a 

simple process. Numerous confounding factors must be considered; these include corneal 

geometry, intraocular pressure (IOP), mechanical anisotropy, and nonlinearity.12–21 Isolating 

and understanding the effects of these parameters is crucial for developing methods to 

accurately quantify corneal biomechanical properties.

Although the relationship between corneal hydration and thickness has been well studied, 

are fewer studies have assessed the relationship between corneal dehydration and 

biomechanical properties. Previous studies have used atomic force microscopy (AFM),22 

inflation testing,23 uniaxial mechanical testing,24 and compression testing25 to evaluate 

changes in corneal biomechanical properties resulting from altered hydration states. 

However, these modalities are not well suited to in vivo applications because of the 

destructive nature of mechanical and inflation testing, the long imaging times of AFM,26 and 

the complications associated with assessments of compression.27,28 Another reason to study 

the effects of dehydration on corneal biomechanical properties is the traditional CXL 

protocol,5 in which a 20% dextran solution is used. Previous studies have brought the effects 

of tissue dehydration as a compounding factor of the CXL stiffening into question29,30 and 

have shown seemingly contradictory results of the effects of hydration on corneal stiffness.
22–25 Thus, understanding the effects of dehydration is crucial, not only for understanding 

inherent corneal biomechanical properties but also the effects of therapies such as CXL.

Measuring the biomechanical parameters of the cornea presents a challenge because of the 

cornea’s nonlinear viscoelastic behavior31 and noninvasive in vivo measurements are 

required. Traditional uniaxial testing of the cornea is impossible to perform in vivo because 

of its destructive nature and it is difficult to replicate in vivo conditions during such 

measurements.31 Similarly, other mechanical testing techniques, such as inflation testing,23 

are not viable in clinical applications. Clinically available instruments, such as the Ocular 
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Response Analyzer (Reichert Technologies) and Corvis ST (Oculus Surgical, Inc.), use a 

large-force air puff to displace the cornea and quantify various parameters, such as inward 

deflection speed and corneal hysteresis. Although these parameters can be informative for 

disease detection, there is disagreement about their ability to detect changes in corneal 

biomechanical properties resulting from pathology, treatment, or both.4,32–36 Brillouin 

microscopy can also assess the biomechanical properties of tissues noninvasively by 

measuring the Brillouin shift.37,38 However, the link between material parameters and the 

Brillouin shift remains unclear.

Elastography was formalized in the early 1990s to quantify tissue mechanical properties by 

imaging displacements in tissues and then quantifying tissue biomechanical properties by 

linking the imaged displacements to mechanical models. Traditional elastographic 

techniques, such as ultrasound elastography39 and magnetic resonance elastography,40 have 

limited applications for the cornea because of their relatively large displacement amplitudes, 

poor spatial resolution, cost, and/or need for contact-based excitation. Optical coherence 

tomography (OCT)–based elastography,41 which is termed optical coherence elastography 

(OCE),42,43 overcomes these limitations with micrometer-scale spatial resolution, 

nanometer-scale displacement sensitivity,44 and noncontact excitation. Thus, OCE has been 

used to characterize the biomechanical properties of bioengineered tissue,45 prostate cancer 

samples,46 fibrotic mouse skin,47 nephritic mouse kidneys,48 and breast cancer biopsy 

samples,49 among others. In general, the imaging depth of OCT is limited to a few 

millimeters in tissue; however, because the cornea is less scattering than most tissues and is 

usually thinner than 1.0 mm, OCT can image the entire thickness of the cornea. Moreover, 

the high spatial resolution and subnanometer displacement sensitivity make OCE well suited 

for characterizing corneal biomechanical properties.43 Contact-based ocular OCE techniques 

have shown the heterogeneous properties of corneal tissue50 under various conditions.51,52 

However, noncontact techniques are most favorable for corneal OCE because of their ease of 

use, lower risk for damaging tissue, and patient comfort.

In our previous studies,21,53 we used the finite element method combined with OCE 

measurements of elastic-wave propagation to quantify the Young’s modulus of corneal 

tissue. The finite element method was chosen for its ability to easily adjust geometric 

parameters critical for accurately quantifying corneal biomechanical properties, such as 

thickness and curvature,21 and to integrate appropriate boundary conditions. We have also 

shown that the quantification of Young’s modulus of the cornea is strongly affected by the 

presence of the fluid–structure interface at the posterior corneal surface53,54; therefore, the 

finite element method combined with OCE measurements shows potential for quantitatively 

assessing the effects of corneal hydration state on its biomechanical properties accurately.

In this study, we use a focused micro air pulse to induce elastic waves in fresh rabbit corneas 

in the whole eye–globe configuration. The elastic-wave propagation was detected by OCE, 

and the changes in corneal thickness and biomechanical properties, as quantified by OCE 

and the finite element method, during dehydration of the corneal tissue were analyzed.
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MATERIALS AND METHODS

Ten fresh mature (>6 months) whole rabbit eye globes (Pel-Freez Biologicals) were shipped 

overnight on ice. Excess tissues, such as muscles, were removed from the globes, and the 

corneal epithelium was removed with a blunt surgical instrument. Because IOP can have a 

strong effect on the measured corneal biomechanical properties,54,55 it was set with a 

closed-loop IOP control system to a physiologically relevant 15 mm Hg during all 

experiments.56 The globes were placed in a home-built eye holder and were cannulated with 

2 needles. One needle was connected via tubing to a pressure transducer, and the other 

needle was connected via tubing to a micro infusion pump to form the closed-loop IOP 

control system.

The short duration (<1 millisecond), low pressure (<10 Pa) focused micro air pulse was 

directed at the apex of the cornea and induced a low amplitude displacement (<10 μm), 

which then propagated as an elastic wave in the corneal tissue.57 To ensure that the effects of 

corneal mechanical anisotropy were excluded,58,59 all OCE measurements were taken along 

the nasal–temporal meridian. A 0.9% phosphate-buffered saline (PBS) solution was dropped 

on the corneas every 5 minutes, and the OCE measurements were taken every 20 minutes to 

establish a baseline. After the 60-minute measurement, 20% dextran in 0.9% PBS solution 

was dropped on the corneas every 5 minutes to dehydrate the corneas. The OCE 

measurements were then taken every 20 minutes for another 1 hour.

The elastic-wave propagation was detected with a phase-stabilized swept-source OCE 

system, which has been described in detail.60 Briefly, the system has a central wavelength of 

approximately 1310 nm, a scan range of approximately 150 nm, a scan rate of 30 kHz, and a 

phase stability in the cornea of approximately 20 nm. Figure 1 shows a schematic of the 

system. The M-B-mode imaging was performed by synchronizing the air pulse with the 

OCT frame trigger, and 251 M-mode images were taken over an approximate 7.0 mm scan.
61 Before any calculations, the phase data were corrected for the refractive index mismatch 

between the corneal tissue and air62 with the refractive index of the corneal tissue as 

1.376.63 The elastic-wave group velocity was quantified by cross-correlation analysis of the 

elastic-wave temporal displacement profiles. The elastic-wave propagation delays, which 

were determined by cross-correlation, were then linearly fitted to the wave-propagation 

distances, and the slope of the linear fit was used to calculate the velocity.64 This procedure 

was repeated for each imaged in-depth layer, taking the curvature of the cornea into account 

as an accurate distance for the elastic-wave propagation path. The velocity was then 

averaged along the entire depth of the cornea for a given measurement. The central corneal 

thickness (CCT) was measured after the OCT structural image was rescaled to physical 

dimensions, again assuming a corneal refractive index of 1.376.63

Young’s modulus was estimated with the finite element method in the Ansys environment 

software (version 14.0, Ansys, Inc.).21,53 Based on the OCT structural image obtained 

during the OCE measurements, the anterior and posterior surfaces of the rabbit cornea were 

well fitted by a circle. Hence, the finite element model was simplified as a spherical shell, 

with a curvature from an average of all samples. The mean fitted radius of the anterior 

surface was rant = 7.80 ± 0.05 mm, which indicated a negligible change in the corneal 
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curvature during the experiments. In contrast, the CCT changed significantly, as expected, 

with a mean CCT of all samples at all timepoints of 571 ± 132 μm, where the error is the 

standard deviation (SD). The averaged CCTs from all samples for a given timepoint were 

used in the finite element models. During the simulation, the corneal tissue was assumed as 

linearly elastic and the Poisson ratio, mass density, aqueous humor density, and speed of 

sound in fluid were set at 0.49, 1062 kg/m3,65 1000 kg/m3, and 1500 m/s, respectively. Fixed 

boundary conditions were considered at the corneoscleral limbus, and the OCE-measured 

displacement profile at the corneal apex was applied to the finite element model as an 

excitation, also at the apex. A fluid–structure interface was prescribed at the posterior 

surface to integrate the effect of the aqueous humor on the elastic wave in the cornea.53 In 

the finite element model, a SOLID186-type element was used to mesh the cornea, and a 

FLUID220-type element was applied to the aqueous humor. The mesh sizes were 300 μm. 

The Young’s modulus of the finite element model was incrementally changed until the error 

between the finite element method–calculated velocity and the average OCE-measured 

velocity for that given timepoint was less than 5%.

RESULTS

Figure 2 shows OCT structural images at the indicated times in a typical sample. There was 

a slight swelling resulting from the hydration by PBS in this sample; the cornea swelled 

from 672 μm at the 0-minute measurement to 713 μm at 60 minutes. After the topical 

addition of the 20% dextran solution, the CCT rapidly shrank from 713 μm at 60 minutes to 

387 μm when the measurements were completed at 120 minutes. Figure 3 shows sample 

frames of the air pulse–induced elastic-wave propagating, as in the sample shown in Figure 

2, at the initial 0-minute measurement and at the 100-minute measurement. Video 1 

(available at: http://jcrsjournal.org) shows the propagation of the elastic wave at 1000 times 

slower than real time, with the 0-minute OCE measurement (top) and the 100-minute 

measurement (bottom). The times after excitation are shown at the top of each image in 

Figure 3 and Video 1 (available at: http://jcrsjournal.org). The red region at the apex of the 

100-minute measurement is the result of phase-unwrapping errors and was excluded in 

calculations. The pale blue regions at the periphery of the cornea in Figure 3, c, show that 

the wave had mostly propagated out of the imaged region 2 milliseconds after excitation at 

the 0-minute measurement. In contrast, the wave is still clearly visible 2 milliseconds after 

excitation in the 100-minute measurement (Figure 3, f), showing that the wave was faster 

when the cornea was swollen than to when the cornea was dehydrated. Figure 4, a, plots the 

intersample mean CCT and elastic-wave velocity as a function time for all 10 samples with 

the error bars representing the inter-sample SD. The mean CCT slightly increased from 671 

± 54 μm at the initial 0-minute measurement to 676 ± 49 μm at the 60-minute measurement. 

After the addition of the 20% dextran solution, the thickness rapidly shrank to 367 ± 29 μm 

at the final measurement at 120 minutes. The average elastic-wave velocity decreased from 

3.2 ± 0.2 m/s at the first OCE measurement to 2.6 ± 0.2 m/s at the final OCE measurement 

at 120 minutes.

The finite element method was used to quantify the Young’s modulus of the cornea because 

it can accurately replicate the geometry and boundary conditions of the cornea. 

Quantifications were made on the averaged data shown in Figure 4, a. The mean error 
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between the OCE-measured and finite element method–computed group velocity was 3.1% 

± 5.7%, showing good agreement between the OCE measurements and finite element 

method results. Figure 4, b, plots the changes in CCT as well as the finite element method–

assessed Young’s modulus as a function of time. From 0 to 60 minutes, when the PBS was 

dropped on the corneas, the CCT slightly increased and Young’s modulus decreased slightly 

from 500 kPa to 465 kPa. However, the addition of the 20% dextran solution caused the 

cornea to thin significantly, from approximately 680 μm at 60 minutes to approximately 370 

μm at 120 minutes, which caused a corresponding increase in Young’s modulus from 465 

kPa to 800 kPa.

DISCUSSION

In this study, we used a focused micro air pulse to induce low-amplitude elastic waves in the 

cornea; the waves were detected by a phase-stabilized OCE system. The OCE-measured 

elastic-wave velocity and OCT-measured corneal geometry were then used in finite element 

models to quantify the Young’s modulus of the cornea while it was dehydrated with a 20% 

dextran solution. The Young’s modulus of the cornea increased significantly as the corneas 

dehydrated and thinned. The main advantages of our work are that we (1) induced very 

small displacements (micrometer scale) to avoid global eye globe deformation during the 

OCE measurements,31 (2) used a constant IOP to eliminate variations in OCE-measured 

corneal biomechanical properties resulting from IOP changes,31,54,55, 66 (3) performed all 

measurements in the whole-globe configuration to avoid ambiguities resulting from different 

corneal tissue preparation methods,22 and (4) quantified the Young’s modulus of the cornea 

with a widely used engineering technique.36–38,54

The corneas were topically hydrated with a 0.9% PBS solution, which is hypotonic to the 

corneal stroma and causes slight swelling. Normally, rabbit corneas are approximately 400 

μm thick67; however, they were approximately 670 μm after storage and hydration with PBS 

and deepithelialization. Previous studies22,23 found positive correlations between corneal 

thickness and stiffness. Kling and Marcos23 used inflation testing and found that the slope of 

the change in corneal thickness versus IOP was flatter in corneas stored in a 20% dextran 

solution than in untreated corneas, indicating a decrease in stiffness after storage in 20% 

dextran and subsequent thinning. However, inflation testing requires large changes in IOP 

that induce nonlinear biomechanical responses and no material parameters were quantified. 

Dias and Ziebarth22 used AFM to perform indentation testing and found that a 15% dextran 

solution thinned the corneas and caused the smallest increase in corneal stiffness compared 

with saline solutions. In contrast, Cherfan et al.68 used mechanical extensiometry and found 

that riboflavin 0.1% in 20% dextran solution increased the Young’s modulus of the cornea 

by more than 2 times. Hatami-Marbini and Rahimi24,69 showed that the tangential elastic 

modulus of corneal strips increased as thickness decreased (ie, the corneas were dehydrated) 

using mechanical extensiometry and that the in-plane and out-of-plane Young’s moduli 

increased as corneal tissue hydration decreased with mechanical compression testing.25 The 

differences in the spatial and temporal scales of the measurement can bring about seemingly 

contradictory results. Cancer is the most notable example. Macrostructural elastography has 

shown that tumors are stiffer than surrounding tissue70,71; however, microscale and 

nanoscale measurements have shown that malignant cells are softer than healthy cells.72,73 
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Thus, the assessments of Dias and Ziebarth22 using AFM are not actually contradictory to 

the work by others showing that the bulk corneal stiffness increased when the cornea was 

dehydrated. Therefore, future study will require multiscale evaluation of corneal 

biomechanical properties to understand the changes at the tissue, cellular, and subcellular 

scales as a function of hydration.

Our previous work with OCE and the finite element method showed that as the thickness of 

agar phantoms increased, the OCE-measured and finite element method–simulated wave 

speeds increased when Young’s modulus was held constant.21 The results in this study show 

the same trend; however, Young’s modulus followed the opposite trend, indicating that wave 

speed alone is not truly indicative of the cornea’s material properties. If the Young’s 

modulus of the cornea were to remain constant, the changes in wave speed would perhaps be 

more dramatic. Additional simulations were performed by changing the thickness of corneal 

finite element models within the range observed in this study (~400 μm to ~800 μm) at a 

fixed Young’s modulus of 500 kPa (data not shown). These results showed a much more 

pronounced change in wave speed (~2.5 m/s at ~400 μm to ~4.5 m/s at ~800 μm) than the 

OCE-measured wave speed in the in situ porcine corneas. Thus, there was a change in the 

Young’s modulus of the cornea that compensated for the significant change in CCT. At the 

same IOP, a decrease in CCT could increase the stress on the corneal tissue. Because the 

cornea has a characteristic J- shaped stress–strain curve,31 the additional stress could cause 

an increase in Young’s modulus. Although the radius of curvature can also affect the 

measured wave speed,21 an analysis of variance test showed no significant variation in the 

radius of curvature as a function of CCT (P = .234); thus, no further analysis was performed.

An additional outcome of our results is the error that can be introduced when quantifying 

corneal biomechanical properties without accounting for the thickness. We performed finite 

element method simulations in which Young’s modulus and the thickness were altered so 

that the group velocity was equal (data not shown). The finite element method simulations 

matched results from our previously developed modified Rayleigh-Lamb wave model for the 

cornea54,74 with the same parameters. Here, a small change in thickness of 80 μm resulted in 

a large difference in Young’s modulus of 210 kPa when the velocity was equal (at ~2.8 m/s). 

Therefore, even though a similar velocity is measured in the cornea, the Young’s modulus 

can be quite different for a different thickness.

The absolute values of Young’s modulus quantified in this study is higher than in our own 

previous work with rabbit corneas.53,75 In fact, the reported values of Young’s modulus of 

the cornea vary by several orders of magnitude,76 from a few kilopascals as assessed by 

AFM77 to tens of megapascals as measured by tensile testing.78 Multiple factors can account 

for this wide range of values, including the nonlinear stress–strain curve of the cornea,31 the 

testing conditions that can artificially raise the “equivalent IOP”31 and the temporal and 

spatial scale of the measurement.

In a live animal, the endothelial pumps, which help control corneal hydration and thickness, 

are still functioning. In ex vivo conditions, the pumps cease to function and various solutions 

have been tested to maintain corneal thickness.22,79,80 In our future work, we will evaluate 

such solutions and their ability to control corneal thickness and their subsequent effects on 
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corneal biomechanical properties as well as in vivo testing of how the corneal hydration state 

alters biomechanical properties. Moreover, the corneal hydration state and mass density are 

tightly linked.81 In this study, we kept the density constant, assuming its influence on the 

results would be minimal because of the relatively small influence of density on the Young’s 

modulus in many wave models.54,82,83 We will integrate the changes in density to our future 

calculations.

A major limitation of this study is the quantification of corneal viscoelastic properties. At 

present, our combined technique of air-pulse OCE and the finite element method can only 

provide Young’s modulus but not the viscosity. We have shown that the elastic-wave group 

velocity depends on the thickness of the material, even when all other parameters, including 

the Young’s modulus, are equal.21 Group velocity has often been used to quantify the 

Young’s modulus of the cornea with simple models, primarily the shear-wave and surface-

wave models. However, those models assume the sample is an infinitely thick plate,83 which 

the cornea is not. We have developed a modified Rayleigh-Lamb wave model that uses the 

spectral dispersion of the elastic wave, considers the thickness of the sample, and integrates 

the fluid–structure interface at the corneal posterior surface to quantify the Young’s modulus 

and shear viscosity of the cornea, but this model assumes the cornea is a flat thin plate.54,74 

Hence, the finite element method was used because it can accurately replicate the corneal 

geometry, including curvature, which is an advantage of the finite element method over most 

analytical wave models. However, the OCE and finite-element method technique we present 

is based on group velocity only and cannot be used to obtain the viscosity of the cornea 

tissue because there would be 2 unknowns (Young’s modulus and viscosity) with only 1 

known parameter (elastic-wave group velocity). The next step of our work is to integrate the 

OCE-measured elastic-wave spectral dispersion84–86 into the finite element method 

simulations to obtain the viscoelasticity; however, this will increase the finite element 

method simulation time significantly.

Another limitation is the OCE acquisition time, which is tens of seconds. The extended 

acquisition time and need for multiple excitations would not be satisfactory for patient 

comfort. In additional, M-mode imaging means that corneal laser safety limits were 

exceeded. We developed an ultrafast technique capable of detecting the elastic-wave 

propagation within milliseconds, with only 1 excitation, and within corneal laser safety 

exposure limits.66,87 However, the transverse spatial resolution is still limited. Nevertheless, 

this technique might be sufficient when combined with the finite element method or an 

accurate analytical wave model to quantify the biomechanical properties of the cornea 

within milliseconds in a completely noninvasive and safe manner.

In conclusion, this study found that the thickness of in situ rabbit corneas decreased along 

with the air pulse–induced elastic-wave velocity after the corneas were dehydrated with a 

20% dextran solution. Quantification of Young’s modulus by the finite element method 

showed that the cornea stiffens as it dehydrates and reduces in thickness. The results indicate 

that the hydration state of the cornea plays a noticeable role in corneal biomechanical 

properties, which is particularly important for therapies such as CXL in which dextran 

solution is used.
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WHAT WAS KNOWN

• Corneal hydration alters the geometry and biomechanical properties of the 

cornea.

WHAT THIS PAPER ADDS

• Young’s modulus of the cornea increased as the cornea thinned as a result of 

dehydration.
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Results show that Young’s modulus of the cornea is a factor of the thickness and 

hydration states that should be taken into account for proper quantification of the 

cornea’s biomechanical properties.
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Figure 1. 
Schematic of the experimental setup (ADC = analog-to-digital converter; AP = air-pulse 

port; APC = air-pulse controller; AS = air supply; BPD = balanced photodetector; DAC = 

digital-to-analog converter; FBG = fiber-Bragg grating; GS = galvanometer-mounted mirror 

scanners; IOP = intraocular pressure; MIP = microinfusion pump; PC = polarization 

controller; PD = photodetector; PG = pulse generator; PT = pressure transducer; RM = 

reference mirror; TTL = transistor–transistor logic).
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Figure 2. 
Optical coherence tomography structural images of the central region of approximately 2.0 

mm a typical cornea after rescaling to physical dimensions. Topical PBS was dropped for 

the first 60 minutes, after which a 20% dextran solution was dropped on the corneas for an 

additional 60 minutes (PBS = phosphate-buffered saline).

Singh et al. Page 18

J Cataract Refract Surg. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Air pulse–induced elastic-wave propagation in a typical sample at the initial 0-minute 

measurement (a to c) and the 100-minute measurement (d to f) (see Video 1, available at: 

http://jcrsjournal.org). The time after the air-pulse excitation for each frame is shown above 

the corresponding image.
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Figure 4. 
a: The CCT and elastic-wave group velocity of all 10 samples plotted as a function of time. 

The CCT is represented in black, and the elastic-wave group velocity is represented in blue. 

Each sample is coded by the shape of the datapoints plotted alongside the corresponding 

box-and-whisker plot. The boxes are the interquartile range, the central line is the median, 

the whiskers are the 5th and 95th percentiles, and the small inscribed box is the mean. b: 

Averaged CCT and Young’s modulus quantified by the finite element method. The CCT is 

represented by the black squares and solid black line, and the Young’s modulus is 

represented by the blue circles and dotted blue line. The error bars are the intersample SD. A 

0.9% PBS solution was dropped on the corneas for the first 60 minutes, and a 20% dextran 

solution was dropped on the corneas for an additional 60 minutes (CCT = central corneal 

thickness; Grp. Vel. = group velocity; PBS = phosphate-buffered saline).
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