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Abstract

Understanding protein-protein interactions (PPIs) in a cell is essential for learning protein 

functions, pathways, and mechanism of diseases. PPIs are also important targets for developing 

drugs. Experimental methods, both small-scale and large-scale, have identified PPIs in several 

model organisms. However, results cover only a part of PPIs of organisms; moreover, there are 

many organisms whose PPIs have not yet been investigated. To complement experimental 

methods, many computational methods have been developed that predict PPIs from various 

characteristics of proteins. Here we provide an overview of literature reports to classify 

computational PPI prediction methods that consider different features of proteins, including 

protein sequence, genomes, protein structure, function, PPI network topology, and those which 

integrate multiple methods.
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INTRODUCTION

Identification of protein-protein interactions (PPIs) is important for understanding how 

proteins work together in a coordinated fashion in a cell to perform cellular functions. PPIs 

are essential for protein function, various cellular pathways, and development of diseases. 

PPIs are also important targets for drug design. Understanding how proteins interact can also 

lead to artificial design of protein interactions.

Individual PPIs are determined by experiments, such as co-immunoprecipitation (A. Guo et 

al., 2005), fluorescence resonance energy transfer (Kenworthy, 2001), and surface plasmon 

resonance (Nikolovska-Coleska, 2015). Ultimately, biophysical methods, such as nuclear 

magnetic resonance spectroscopy (NMR) (Vinogradova & Qin, 2011; Zuiderweg, 2002), X-

ray crystallography (Kobe et al., 2008), and electron microscopy (Dudkina, Kouřil, Bultema, 

& Boekema, 2010), solve the tertiary structure of protein complexes, which can provide 

detailed atomic information about how the proteins interact. Moreover, from the mid 1990’s, 
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PPIs were determined on a large-scale using the yeast-two-hybrid system (Fields & 

Sternglanz, 1994; Rajagopala et al., 2014; Rual et al., 2005; Walhout, Boulton, & Vidal, 

2000), and affinity chromatography combined with mass spectrometry (Boeri Erba & 

Petosa, 2015; Dunham, Mullin, & Gingras, 2012; Guruharsha et al., 2011; Morris et al., 

2014). However, experimental methods have several shortcomings for detecting PPIs. First, 

these experimental methods are time consuming and labor intensive. Second, the 

applicability of experimental methods depends on how effectively assay protocols are 

established in target organisms. Also, a method may not work on some classes of proteins 

(Piehler, 2005; Rao, Srinivas, Sujini, & Kumar, 2014). Third, it is known that experimental 

methods often have difficulty with identifying weak interactions, and leave out many 

transient interactions (Wetie et al., 2013). Fourth, it has been mentioned that results of large-

scale methods often have substantial disagreement with each other, which may be partly due 

to false positives and false negatives (Gingras, Gstaiger, Raught, & Aebersold, 2007; H. 

Huang & Bader, 2009; Serebriiskii & Golemis, 2001).

In Table 1, databases of PPIs are listed. Most of the identified PPIs are from model 

organisms such as Escherichia coli, Homo sapiens, Mus musculus (mouse), Saccharomyces 
cerevisiae (baker’s yeast; yeast), Schizosaccharomyces pombe (fission yeast), Drosophila 
melanogaster (fruit fly), and Arabidopsis thaliana. Although large efforts have been made for 

detecting PPIs, there still exists a huge gap between the experimentally identified PPIs and 

actual PPIs. For example, it was estimated that humans have over 650,000 PPIs based on a 

statistical method that evaluates the number of undiscovered PPIs from the known human 

PPI network (Stumpf et al., 2008) whereas a little over 40,000 interactions have been 

identified based on the HPRD database (Prasad et al., 2009). Even for yeast, which is one of 

the most well studied organisms in terms of PPIs, 91,551 were identified based on the 

BioGrid database (Chatr-Aryamontri et al., 2017) whereas 240,000 PPIs were estimated. For 

Caenorhabditis elegans (roundworm), which is an important model organism, only 5,797 

PPIs were identified among 220,000 estimated. Thus, currently identified PPIs derived from 

experiments only cover a small fraction in the entire all PPI networks. Hence, there is a 

strong need for computational methods for predicting PPIs and indeed many computational 

approaches have been developed to facilitate investigation of PPI networks in organisms.

Computational PPI prediction methods were reviewed in several earlier articles. 

Comparative genomics-based methods were reviewed in 2002; shortly after a couple of 

large-scale PPI networks emerged (Valencia & Pazos, 2002). Skrabanek et al. reviewed 

methods that use comparative genomics and gene expression data, as well as tools for 

visualizing PPIs (Skrabanek, Saini, Bader, & Enright, 2008). A review by Browne et al. 
focused on experimental methods for PPI detection and classified existing methods based on 

underlined machine learning algorithms (Browne, Zheng, Wang, & Azuaje, 2010). A review 

by Liu et al. discussed computational methods by classifying them into two groups, those 

which directly map information of known PPIs onto unknown protein pairs, and approaches 

that employs machine learning methods to classify protein pairs from a dataset of known 

PPIs and non-PPIs (Z.-P. Liu & Chen, 2012). Very recently, Chang et al. focused on methods 

that combine different types of evidence for predicting PPIs (Chang, Zhou, Ul Qamar, Chen, 

& Ding, 2016).
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The current article classifies and reviews computational PPI prediction methods by features 

of proteins considered for prediction, which includes protein sequence-based, comparative 

genomics-based, gene expression-based, function-based, structure-based, and network-based 

prediction methods. This article has some overlaps in its scope with the previous review 

articles, but it is distinct from others by providing extensive discussion on protein sequence-

based prediction methods and network-based prediction methods, and of course, by 

providing up-to-date information in this field. We also discuss applicability of each type of 

methods in genome-scale PPI predictions.

PPI PREDICTION METHODS

We classified PPI prediction methods into six large categories based on features of proteins 

considered as input information of the prediction. Below we discuss ideas behind methods 

that fall into each category. Most of the categories are further classified into sub-categories.

To develop a computational prediction method, one needs a dataset of known interacting 

protein pairs (a positive set) and a dataset of non-interacting protein pairs (a negative set), 

because the method needs to maximize its ability to distinguish between positive and 

negative datasets. A positive dataset is constructed from known PPIs stored in existing PPI 

databases (Table 1). On the other hand, constructing a negative dataset is not 

straightforward, because there are only few collections of protein pairs that are 

experimentally directly verified not to interact. To facilitate construction of a negative 

dataset, there is a database named Negatome, which collects protein pairs that are unlikely to 

interact by manual curation of literature and known protein complex structures (Blohm et 

al., 2014). Another commonly used strategy used to construct a negative dataset is to pair 

proteins from different cellular locations and a random pairing of proteins that appeared in 

the positive dataset excluding interacting pairs.

SEQUENCE-BASED METHODS

Many methods have been developed that use the amino acid sequence information of target 

proteins. The obvious advantage of using sequence information is that it is available for all 

proteins in an organism as long as its genome sequence is available.

Motif/Domain-based approach

The most straightforward approach in this category is to predict that two proteins interact 

with each other if they possess known sequence patterns of interacting proteins in their 

amino acid sequences. For example, Becerra et al. predicted PPIs between human 

immunodeficiency virus 1 (HIV-1) and human cells by detecting sequence motifs of protein 

interacting regions that have disordered structures (Becerra, Bucheli, & Moreno, 2017). 

Sequence patterns of known functional regions including PPI sites, which are called motifs 

or domains depending on the sequence length, are stored in public databases, such as ELM 

(Dinkel et al., 2012), InterPro (Finn et al., 2017), PROSITE (Sigrist et al., 2010), PRINTS 

(Attwood et al., 2012), Pfam (Finn et al., 2016), and ProDom (Bru et al., 2005; Corpet, 

Gouzy, & Kahn, 1998).
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Instead of detecting specific motifs that are known as protein interaction sites, Sprinzak and 

Margalit computed the log-odds score of observing two motifs from the InterPro database in 

known interacting yeast protein pairs (Sprinzak & Margalit, 2001). The log-odds value was 

computed as log2(Pij/PiPj), where Pij is the observed frequency of motif pair (i, j) observed 

in interacting proteins, and Pi and Pj are the frequencies of motif i and j in the data, 

respectively. If a query protein pair contains at least one motif pair that has a log-odds value 

above a threshold, they are predicted as interacting. Later, essentially the same approach was 

taken to count motif pairs in interacting proteins in the DIP database (Kim, Park, & Suh, 

2002). Above methods consider only a single motif pair from each protein pair. Chen and 

Liu extended the methods by considering contributions of all the possible pairs of 4293 

Pfam domain combinations (X.-W. Chen & Liu, 2005). Each protein pair was represented 

with a 4293-dimensional vector with 0 indicating absence of a domain in either of the 

proteins, 1 indicating one of the proteins contains the domain, and 2 indicating presence of 

the domain in both proteins. Then protein pairs are predicted to interact or not to interact by 

classifying its feature vector using a machine learning method, random forest, which makes 

a prediction by voting from many decision trees.

Pitre et al. considered sequence similarity rather than detecting exact sequence patterns of 

interacting proteins (Pitre et al., 2006). The algorithm called Protein-Protein Interaction 

Prediction Engine (PIPE) they developed, considers the co-occurrence of all short 

subsequences. In this method, the query protein sequences A and B are fragmented into ai 

and bj using 20 amino acid-long sliding window. Then the fragment ai is compared with 

fragments of proteins in a known PPI network using the PAM120 amino acid similarity 

matrix. Once matched fragment of known proteins similar to ai are found, the known 

interacting partners to the matched proteins are compared with fragment bj using the 

PAM120 matrix. Finally, two proteins A and B are predicted to interact if frequency of 

matched fragment pairs from known PPIs is above a threshold (set to 10). Another similar 

method called D-MIST adopted position-specific scoring matrix (PSSM) to evaluate the 

similarity of motifs in a query protein pair to binding motifs in known PPIs with solved 

tertiary structures (Betel et al., 2007).

Methods that capture sequence features

The motif/domain-based methods described in the previous section examine occurrence of 

known functional sequence motifs/domains in databases or in known interacting proteins. 

Sequence-based approaches can be extended to consider any sequence patterns including 

patterns that are not necessarily known to be involved in PPIs or in any function by simply 

extracting short sequences of a fixed length systematically from query protein sequences. A 

typical method in this category segments an amino acid sequence of a target protein into 

overlapping fragments (n-gram) by applying a small sliding window of a certain length (n), 

and to consider counts of sequence patterns of fragments as a feature vector of the protein 

(Fig. 1). Then, a machine learning method is trained on a dataset of feature vectors of known 

interacting proteins and non-interacting protein pairs so that the method distinguishes 

between the two datasets (Nanni, 2005; Shen et al., 2007). Instead of raw counts of sequence 

patterns, statistical significance of the counts relative to the background frequency of amino 

acids was also used (C.-Y. Yu, Chou, & Chang, 2010). Another variant of the n-gram 
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approach was to consider sequence patterns that skip a certain number of sequence positions 

(L. Wei et al., 2017). Martin et al. used a so-called “signature molecular descriptor”, which 

considers the frequency of adjacent (i.e., preceding and following) amino acids for each 

amino acid, which essentially captures sequence patterns of 3-grams (Martin, Roe, & 

Faulon, 2005). Ding et al. considered both multivariate mutual information of 3-gram and 

mutual information of 2-gram, i.e.,

I (a, b, c) = I(a, b) − I (a, b ∣ c), (1)

where I (a,b,c) is the multivariate mutual information of 3-gram, I(a,b) is the mutual 

information of 2-gram, a, b, c are amino acid classes, and I(a,b|c) denotes the conditional 

mutual information of a and b given that c exists in the 3-gram (Ding, Tang, & Guo, 2016). 

Wong et al. considered amino acid pairs in a protein sequence (every pairs; including non-

adjacent pairs) and represented it as an n*n matrix (n: the length of the protein), where each 

element is the sum of hydrophobicity value of every combination of two amino acids in the 

sequence (L. Wong, You, Li, Huang, & Liu, 2015). PSSM was used to represent a protein 

sequence, which considers similarity of 19 other amino acids at each position of a sequence 

(An et al., 2016). Using PSSM, 2-gram was represented as a 400-dimensional vector 

(=20*20), which was subject to the dimension reduction to 350 vectors.

The number of sequence combinations of n-grams is quite large, for example, there are 

20*20*20 = 8000 combinations for 3-grams for protein sequences that consist of 20 

different amino acids. A large number of combinations will generate unnecessarily long 

feature vectors for proteins and will causes a data sparseness problem when some sequence 

patterns are not well sampled. Therefore, for computing n-grams, it is common to reduce the 

number of letters in sequences by clustering amino acids into a smaller number of groups. 

Shen et al. classified amino acids to seven classes considering their polarity and volume 

(Shen et al., 2007), and several later papers used the classification.

Besides using n-grams and its variants, there are several other ideas for capturing sequence 

patterns that were used for PPI prediction. To capture general characteristics of a protein 

sequence, a combination of three sequence features called the local descriptor was used 

(You, Chan, & Hu, 2015) (Yang, Xia, & Gui, 2010) (Y. Z. Zhou, Gao, & Zheng, 2011) (You, 

Lei, Zhu, Xia, & Wang, 2013) (Fig. 2). The features are the composition of amino acids, 

transition probabilities between two consecutive amino acids, and a feature called the 

distribution. The distribution describes the lengths of sequences from the N-terminus that 

contain the first, first 25%, 50%, 75%, and 100% of each amino acid (class) over the 

sequence (Dubchak, Muchnik, Holbrook, & Kim, 1995).

Guo et al. used a feature called auto covariance (AC) to represent protein sequences (Y. Guo, 

Yu, Wen, & Li, 2008). AC is intended to capture the periodicity of physicochemical 

properties along a protein sequence (Fig. 3). To compute AC of a protein sequence for a 

physicochemical property, amino acids are assigned with a property values, e.g., 
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hydrophobicity, hydrophilicity, side-chain volume, polarity, solvent-accessible surface area, 

or the net charge index of side chain. Then, AC is defined as follows:

AC(lag, j) =
∑i = 1

L − lag Pi, j − 1
L∑i = 1

L Pi, j × P(i + lag), j − 1
L∑i = 1

L Pi j
L − lag , (2)

where lag is the distance between covariant residues to consider, which ranges from 1 to 30, 

j is the j-th physiochemical descriptor, i is the position in the sequence, and L is the length of 

sequence. Thus, AC of a property with a certain lag length will be large if amino acids with 

a large (or small) property value appear periodically with an interval of lag. There is a 

similar value called Moran auto correlation (MAC), which is defined as

MAC(d) = 1
N − d ∑ j = 1

N − d(P j − P) × (P j + d − P)/ 1
N ∑ j = 1

N P j − P 2, (3)

where d is the distance between covariant residues, which ranges from 1 to 30, Pj and Pj+d 

are the physiochemical property of j-th and (j+d)-th amino acid, respectively, N is the length 

of the protein sequence, P =
∑ j = 1

N P j
N  is the average value of the physiochemical property 

(You et al., 2013). Thus, MAC is AC divided by variance of the physiochemical property, 
1
N ∑ j = 1

N P j − P 2
.

The intention behind computing the local descriptor, MC, and MAC is to capture global, 

long range sequence features of proteins, in contrast to n-gram and its variants, which 

captures local patterns of sequences. As these features are complementary to each other, 

often both types were combined (Ding et al., 2016). For example, in the method by You et 
al., there were four components in the protein sequence feature representation (You et al., 

2013): 1) 3-grams. Amino acids were classified to seven classes and the frequency of 3-

grams was considered as a feature of a protein. Thus, a protein pair is represented by a 

vector of 686 (= 2*7*7*7) features. 2) AC. Six physicochemical properties of amino acids 

were considered: hydrophobicity, side-chain volume, polarity, polarizability, solvent-

accessible surface area, and the net charge of the side chains. For each of the properties, AC 

was computed using 1 to 30 lag values following Eq. 2. Thus, the length of the vector for a 

protein pair was 360 (= 2*6*30). 3) MAC. Similar to AC, a 360-dimension vector was 

constructed for a protein pair. 4) Local descriptors. Amino acids were classified to seven 

classes and the local descriptor, the composition, the transition, and the distribution, were 

computed for each of the seven amino acid classes for ten local regions in a protein. Thus, a 

pair of proteins were represented by a vector of 1260 = 2* 10* (7 compositions + 21 

transitions + 35 distributions) values. Overall, considering all four features, a protein pair 

was represented by a vector of 2666 (= 686 + 360 + 360 + 1260) features.

With these sequence features, predictions of PPIs were made using various machine learning 

algorithms. Algorithms used include support vector machine (SVM) (Bock & Gough, 2001; 
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Y. Guo et al., 2008; X. Liu et al., 2012; Martin et al., 2005; Shen et al., 2007; Y. Z. Zhou et 

al., 2011), relevance vector machine (An et al., 2016), random forest (X.-W. Chen & Liu, 

2005; Ding et al., 2016; You et al., 2015), rotation forest (L. Wong et al., 2015), linear 

discriminant classifier and cloud points (Nanni, 2005), relaxed variable kernel density 

estimator (RVKDE) (C.-Y. Yu et al., 2010), an ensemble classifier (L. Wei et al., 2017), 

extreme learning machine (ELM) (You et al., 2013), and k-nearest neighbors (KNNs) (Yang 

et al., 2010).

These sequence-based methods reported surprisingly high accuracies. For example, Shen et 
al., reported 83.90% accuracy on the HPRD dataset (Prasad et al., 2009; Shen et al., 2007). 

Yang et al. reported 86.15% accuracy on a yeast dataset (Yang et al., 2010). Yu et al. 
achieved 93.7% accuracy on a highly unbalanced HPRD dataset where positive-to-negative 

ratio was 1:15 (C.-Y. Yu et al., 2010). Zhu et al. reported over a 75% accuracy on five 

organisms including yeast, C. elegans, E. coli, human, and mouse (Y. Z. Zhou et al., 2011). 

Wong et al. achieved 93.92% on the S. cerevisiae dataset (L. Wong et al., 2015). You et al. 
achieved 93.46% to 97.01% accuracy on six different organisms including yeast, H. pylori, 
C. elegans, E. coli, human, and mouse (You et al., 2015). Ding et al. achieved 95.01% on the 

yeast dataset and 87.59% on the H. pylori dataset (Ding et al., 2016). An et al. achieved 

94.57% and 90.57% on the S. cerevisiae and the H. pylori dataset, respectively, also 97.15% 

accuracy on an imbalanced yeast dataset (An et al., 2016). Wei showed over 81% accuracy 

using different features on the Negatome and the DIP dataset (Blohm et al., 2014; L. Wei et 

al., 2017; Xenarios et al., 2002). Although the reported accuracy values are high and 

encouraging, it needs to be noted that the datasets on which the methods are tested are 

limited to several organisms.

Using homology

So far we reviewed methods that use partial sequence patterns and statistical features in 

protein sequences. In this section, we introduce methods that use the similarity of entire 

protein sequences. Many functionally important proteins in an organism are conserved 

across species, which is the rationale of sequence similarity search for annotating function of 

genes (Chitale, Hawkins, Park, & Kihara, 2009; T. Hawkins, Chitale, Luban, & Kihara, 

2009; Troy Hawkins & Kihara, 2007). Several databases, such as KEGG Orthology (Tanabe 

& Kanehisa, 2012), OrthoDB (Waterhouse, Tegenfeldt, Li, Zdobnov, & Kriventseva, 2013), 

OrthoMCL-DB (F. Chen, Mackey, Stoeckert, & Roos, 2006), HomoloGene (NCBI, 2016), 

and INPARANOID (Sonnhammer & Ostlund, 2015), contain lists of precomputed 

homologous genes in different species. As interactions with other proteins is a part of a 

protein’s function, it is known that PPIs are often conserved across species. These conserved 

interactions are noted as “interlogs” (Walhout, Sordella, et al., 2000). Matthew et al. mapped 

PPIs in the yeast interaction map to predict PPIs in C. elegans, and identified 257 potential 

interlogs (Matthews et al., 2001). Further experimental validation performed on 72 predicted 

interactions gave 19 positive results, which were roughly 25% among tested. The POINT 

web service provides human PPIs inferred from interlogs with mouse, fruitfly, yeast, and C. 
elegans (T.-W. Huang et al., 2004). Taking advantage of an increasing number of 

experimentally identified protein interactions, Lee et al. then expanded orthologous pairs to 

consider those from 18 eukaryotic species (Lee et al., 2008). The idea of interlogs was also 
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applied to predict PPIs in the plant, A. thaliana, by considering homologs with yeast, fruitfly, 

human, and C. elegans (Geisler-Lee et al., 2007) (De Bodt, Proost, Vandepoele, Rouzé, & 

Van de Peer, 2009) and to a second plant, Oryza sativa (Asian rice), by considering interlogs 

with the six species including the same four species with E. coli and A. thaliana (Gu, Zhu, 

Jiao, Meng, & Chen, 2011). Dutkowski et al. developed a statistical model, which represents 

specification and duplication events of genes along an evolutionary tree, on which known 

interacting protein pairs in seven eukaryotic organisms were mapped and used for predicting 

PPIs (Dutkowski & Tiuryn, 2009). Interactome3D is a database that provides the tertiary 

structure models of protein complexes built based on known structure information of 

interlogs (Mosca, Pons, Céol, Valencia, & Aloy, 2013). Wang et al. merged prediction 

results from an interlog-based method and a motif-based method to cover a larger number of 

predicted PPIs in the pig proteome (Wang et al., 2012).

Codon usage

Interestingly, it was shown that the codon usage of genes can be used to predict PPIs. Using 

the difference of codon usage of protein pairs, Najafabadi et al. predicted PPIs in E. coli, 
yeast, and Plasmodium falciparum with reasonably good accuracy (Najafabadi & Salavati, 

2008). For a pair of genes i and j the difference in usage of codon c among 64 codons is 

simply defined as

di j(c) = ∣ f i(c) − f j(c) ∣ (4)

where fi(c) is the usage of codon c of gene i. Then, dij of each codon is binned into 50 

intervals, and the likelihood ratio of the fraction in interacting and non-interacting proteins 

in a training dataset was computed. A PPI prediction for a protein pair is performed with a 

naïve Bayes approach using the likelihood ratio. Zhou et al. used SVM with the codon usage 

difference and applied to the yeast genome (Y. Zhou, Zhou, He, Song, & Zhang, 2012). One 

may wonder why codon usage is related to PPIs. But it is reasonable considering that codon 

usage is known to be correlated with gene expression levels (Jansen, Bussemaker, & 

Gerstein, 2003) and also that neighboring genes have similar codon usage. As we discuss 

later in this review, both gene expression level and conserved neighboring genes (gene order) 

have been successfully used to predict PPIs.

COMPARATIVE GENOMICS-BASED METHODS

The last level of sequence information that can be used for PPI prediction is from genome 

sequences from various species. Since important features in a genome sequence are 

conserved during evolution, identifying such conserved features in genomes can be a clue 

for identifying proteins that are functionally related. Under this category, which we call the 

comparative genomics-based methods, we discuss four approaches, the phylogenetic tree 

topology analysis, the phylogenetic profile, considering gene fusion events, and conserved 

gene orders (Fig. 4). An important point to note is that these methods are not aimed toward 

predicting physical PPIs directly but for identifying functionally related proteins. Quite 

often, however, functionally related proteins do physically interact with each other. A strong 
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advantage of the comparative genomics-based approaches is that, due to the increasing 

number of determined genome sequences, many proteins can now find related (and maybe 

interacting) proteins through these approaches (Huynen, Snel, von Mering, & Bork, 2003).

Phylogenetic tree topology analysis

It has been observed that the phylogenetic trees between interacting proteins are more 

similar than a general divergence between the corresponding species (Goh, Bogan, 

Joachimiak, Walther, & Cohen, 2000; Goh & Cohen, 2002; Pazos & Valencia, 2001). The 

similarity between the phylogenetic trees of interacting proteins was explained as 

maintenance of the complex functionality and suffering similar evolutionary pressure.

The sequence signal of the coevolution is strong at the binding interface of proteins, but can 

also come from other regions of proteins (Kann, Shoemaker, Panchenko, & Przytycka, 

2009).

The tree topology similarity can be measured as the correlation between the evolutionary 

distance matrices used to build the trees. The algorithm to calculate similarity of distance 

matrices is called the mirror tree method (Pazos & Valencia, 2001). It contains following 

steps (Fig. 4A): 1) To construct a multiple sequence alignment for each protein against a list 

of reference organisms; 2) To construct a phylogenetic tree for the proteins; 3) Then, for a 

pair of proteins in question, distances against orthologous proteins in different species are 

computed (distance matrices) and the correlation coefficient between two distance matrices 

is obtained. A protein pair is predicted to be interacting if the coefficient value is above a 

cut-off value, which is determined to distinguish known interacting and non-interacting 

proteins.

The mirror tree method was modified for improvement in several different ways. The 

method was extended to handle interacting protein families, such as a ligand family and a 

receptor family, to be able identify interacting specific protein pairs from the two families 

(Ramani & Marcotte, 2003). Sato et al. removed a background tree similarity that arises by 

the overall evolutionary distance of organisms from distance matrices of individual proteins, 

which yielded improvement of PPI prediction accuracy (Sato, Yamanishi, Kanehisa, & Toh, 

2005). They further considered partial correlation of distance matrices that can more 

effectively remove background organism-level similarity from the tree similarity of a query 

protein pair, where the background organism-level similarity was represented by a linear 

combination of distance matrices of many proteins in the organisms (Sato, Yamanishi, 

Horimoto, Kanehisa, & Toh, 2006). Besides the background similarity of organisms, another 

source of noise in the mirror tree method is that a protein coevolves with multiple interacting 

proteins. Instead of evaluating tree similarity of a query protein pair, Juan et al. considered a 

network of similarities between all pairs of proteins simultaneously (Juan, Pazos, & 

Valencia, 2008). In the mirror tree method, selection of reference genomes is a key for 

successful prediction. Effective ways to select organisms for building trees were examined 

by Herman et al. (Herman et al., 2011). Instead of using correlation coefficient, SVM was 

also used to make predictions from distance matrices (Craig & Liao, 2007).
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Phylogenetic profiles

Phylogenetically related and thus possibly interacting protein pairs can be identified in a 

simpler way of using comparative genomics. In the approach called the phylogenetic 

profiling co-presence and co-absence of orthologous proteins across organisms are examined 

rather than comparing phylogenetic trees of protein pairs as discussed in the previous section 

(Pellegrini, Marcotte, Thompson, Eisenberg, & Yeates, 1999). If two proteins are needed for 

realizing a certain biological function, an organism needs to possess both proteins if the 

function is required while both are not needed if it does not need the function. Coding one of 

the proteins only in its genome is meaningless.

There are three major steps to perform this method (Fig. 4B). The first step is to identify 

orthologous proteins for all the proteins in a query genome against other reference genomes 

by a sequence similarity search. Then, construct a phylogenetic profile for each protein in 

the query genome, which has binary values with 1 indicating the presence of an orthologous 

gene and 0 for the absence of the ortholog in a reference genome. Thus, the dimension of the 

profile is the number of reference genomes used. Finally, protein pairs that have similar 

profiles are predicted to be interacting (more precisely, functionally related). Similar to the 

phylogenetic tree topology methods, the choice of reference genome is crucial for this 

approach (J. Sun, Li, & Zhao, 2007). Also, a threshold value (E-value) in sequence 

similarity search for detecting orthologous proteins strongly affects the profiles, and thus the 

prediction performance of the method (Jingchun Sun et al., 2005). To accommodate the 

strong dependency of the performance to the threshold value in the similarity search, real 

value vectors of an alignment score was used for constructing profiles rather than binary 

values (T.-W. Lin, Wu, & Chang, 2013). In the method by de Vienne and Azé a combination 

of the phylogenetic tree topology and profile was used as features in a machine learning 

framework (de Vienne & Azé, 2012).

Gene fusion events

A gene fusion refers to an event in the comparative genomics where two individual genes in 

one organism fuse as a continuous sequence in another organism (Snel, Bork, & Huynen, 

2000) (Fig. 4C). Fused genes are usually functionally related and further implies physical 

interactions between the proteins (Enright, Iliopoulos, Kyrpides, & Ouzounis, 1999; 

Marcotte et al., 1999; Yanai, Derti, & DeLisi, 2001). Computationally, fused genes can be 

found by gene sequence similarity search between genomes. It was reported that metabolic 

enzymes are frequently involved in gene fusions (Tsoka & Ouzounis, 2000).

Conserved gene orders

Through evolution, genomes undergo various rearrangements and transfers; therefore 

locations of genes in a genome tend to be shuffled unless an evolutionary pressure keeps the 

order of some genes together (Suyama & Bork, 2001) (Fig. 4D). Thus, conservation of gene 

orders, i.e., common local clusters of genes in genomes, indicates that there is a requirement 

or an advantage to keep the gene order for the organisms, and in fact in many cases, genes in 

a conserved cluster are involved in the same function (Tamames, Casari, Ouzounis, & 

Valencia, 1997). In bacterial and archaeal genomes, operon structures are conserved across 

many species, which code genes in the same pathways or complexes (Dandekar, Snel, 
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Huynen, & Bork, 1998). After initial findings of the conserved gene orders, more systematic 

studies have been done (Fujibuchi, Ogata, Matsuda, & Kanehisa, 2000; Overbeek, Fonstein, 

D’souza, Pusch, & Maltsev, 1999). Similar to the other comparative genomics-based 

methods, a key for successful application of this analysis is to choose an appropriate set of 

reference genomes, which should not be too evolutionarily distant but not too close to each 

other, so that only clusters of functionally related genes are conserved. A related work was 

done by Kihara & Kanehisa where transmembrane protein complexes were predicted from 

genomes by identifying gene clusters that have predicted transmembrane domains (Kihara & 

Kanehisa, 2000).

FUNCTION-BASED METHODS

Since interacting proteins belong to the same pathway and share function, functional 

similarity of proteins can be a clue for predicting PPIs. Functional similarity of proteins are 

usually quantified by a similarity score of Gene Ontology (GO) terms (Consortium, 2017) 

that annotate the proteins. Similarity of GO terms are defined by the closeness of the terms 

on the GO hierarchy tree and/or the frequency of the GO terms in gene annotations observed 

in an protein annotation database, e.g., UniProt (D. Lin, 1998; Resnik, 1995; Schlicker, 

Domingues, Rahnenführer, & Lengauer, 2006) (Wu, Pang, Lin, & Pei, 2013). Interestingly, it 

was shown that considering common children terms of GO terms in addition to common 

parental GO terms, which are not used in the aforementioned functional similarity scores, 

improved PPI prediction accuracy (S.-B. Zhang & Tang, 2016). Jain and Bader defined a GO 

similarity score by considering the distance to the leaf nodes in order to reduce the influence 

of imbalanced branch depths in the GO hierarchy (Jain & Bader, 2010).

GO term similarity (or relevance) can be also defined by counting frequency of co-

occurrence of GO term pairs in biological contexts, in gene annotation or PubMed abstracts 

(Chitale, Palakodety, & Kihara, 2011) or in known PPIs (Wei, Khan, Ding, Yerneni, & 

Kihara, 2017; Yerneni, Khan, Wei, & Kihara, 2015).

Since PPI prediction is a suitable and handy application of GO term similarity scores, all the 

GO term scores above have been tested and compared for their performance of PPI 

predictions (X. Guo, Liu, Shriver, Hu, & Liebman, 2006; Jain & Bader, 2010; Wu et al., 

2013; Yerneni et al., 2015). Maetsche et al. showed that when using GO terms for PPI 

prediction in machine learning framework, induced GO term sets, e.g., common parental 

terms of annotated GO terms, performed better rather than using the original GO annotations 

of proteins (Maetschke, Simonsen, Davis, & Ragan, 2012).

GENE CO-EXPRESSION-BASED METHODS

Gene co-expression data such as microarray and RNA-sequencing data are valuable 

experimental data that can be used to infer PPIs. Intuitively, interacting protein pairs are 

expected to have similar gene expression levels across different conditions. Indeed 

significant correlation between the gene co-expression level and PPIs was shown in 

bacteriophage T7 (Grigoriev, 2001), yeast (Ge, Liu, Church, & Vidal, 2001; Jansen, 

Greenbaum, & Gerstein, 2002), human, mouse, and E. coli (Bhardwaj & Lu, 2005). Fraser 
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et al. showed that gene expression level of interacting proteins co-evolve using four closely 

related yeast species, where the expression level was estimated by the codon usage (Fraser, 

Hirsh, Wall, & Eisen, 2004). Databases that provides large-scale gene co-expression 

information include GEO (Barrett et al., 2013), ATTED-II (Aoki, Okamura, Tadaka, 

Kinoshita, & Obayashi, 2016), and COXPRESdb (Okamura et al., 2014). ATTED-II and 

COXPRESdb are pre-calculated gene co-expression databases of plant organisms and animal 

species, respectively.

Although gene expression is shown to have significant correlation to PPIs, a major challenge 

is that co-expression data is noisy due to various types of systematic and stochastic 

fluctuations. Soong et al. adopted principle component analysis (PCA) and independent 

component analysis (ICA) to filter out noise in microarray data before feeding the data to 

SVM classifier (Soong, Wrzeszczynski, & Rost, 2008). As we see later in the section for 

integrated methods, gene expression is used frequently as one of the input features for 

proteins.

PROTEIN TERTIARY STRUCTURE-BASED METHODS

The tertiary (3D) structure of proteins can be important information to predict PPIs if 

available, or if the structures can be computationally reliably modelled. There are many 

computational methods developed that “docks” two protein structures to provide the tertiary 

structures of a protein complex from individual protein structures, which include LZerD 

(Esquivel-Rodriguez, Filos-Gonzalez, Li, & Kihara, 2014; Esquivel- Rodríguez, Yang, & 

Kihara, 2012; Peterson, Roy, Christoffer, Terashi, & Kihara, 2017; Venkatraman, Yang, Sael, 

& Kihara, 2009), GRAMM-X (Tovchigrechko & Vakser, 2006), ZDOCK (Pierce et al., 

2014), RosettaDock (Lyskov & Gray, 2008), HADDOCK (Geng, Narasimhan, Rodrigues, & 

Bonvin, 2017), SwarmDock (Torchala & Bates, 2014), HEX (Ritchie & Kemp, 2000), and 

ClusPro (Kozakov et al., 2017). These docking methods build structure models of a protein 

complex given individual protein structures, which provide structural insights of the PPI. 

However, it should be noted that these docking methods do not predict whether a protein 

pair actually interacts or not.

Then how does one use structure information for predicting PPIs? There are two approaches 

explored. The first approach is to detect energetic characteristics of interacting protein pairs 

observed in protein docking prediction. A protein docking program generates typically over 

tens of thousands of different docking poses for a pair of input protein structures. Wass et al. 
reported the score distribution of docking poses of interacting protein pairs can be 

distinguished from those of non-interacting proteins, because the former distribution is 

skewed toward favorable scores (Wass, Fuentes, Pons, Pazos, & Valencia, 2011). This is an 

intriguing observation because a docking pose distribution include both near-native (i.e., 

almost correct) and incorrect poses, therefore, the report implies that even incorrect docking 

poses have relatively favorable scores (i.e., more favorable geometric complementary) in 

cases of interacting proteins. In MEGADOCK, a protein docking method aimed for fast, 

large-scale protein docking screening, a protein pair is predicted to be interacting if a pool of 

docking poses generated by the algorithm include clusters of similar poses that have 
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significantly favorable docking scores in comparison with the rest of the poses (Ohue, 

Matsuzaki, Uchikoga, Ishida, & Akiyama, 2014).

The second approach to use protein structure information for PPI prediction is, for two query 

protein structures, to find similarity in known protein complexes. PRISM, developed by 

Keskin and his colleagues, is one of the first to take this approach (Aytuna, Gursoy, & 

Keskin, 2005; Tuncbag, Gursoy, Nussinov, & Keskin, 2011). PRISM takes two protein 

structures as input, and examines if surface shapes of the proteins have similarity to docking 

interfaces from known protein complexes structures. To perform this comparison, PRISM 

has a database of docking interface regions of known protein complexes extracted from the 

PDB database (Rose et al., 2017). Identified potential interface regions in the two query 

proteins that are identified by comparison to known interface regions are examined for 

structural similarity to the template, sequence conservation, and the binding energy. 

Although the prediction power of PRISM relies on the coverage of template dataset, the 

method will be able identify interactions between proteins that are globally dissimilar but 

have similar local interface regions to known protein complexes. PrePPI takes a similar 

approach PRISM (Q. C. Zhang et al., 2012). One difference is that PrePPI takes sequences 

of the query proteins and models their structures by homology modeling. Subsequently, the 

two structures are mapped to known protein complex structures, which are then evaluated by 

structure and sequence similarity scores to the known complex structures. Final prediction is 

made by a composite score that integrates five other features, gene co-expression, 

essentiality of the proteins, functional similarity, and the phylogenetic profile. Similarly, 

Coev2Net models a complex structure of two query proteins by mapping their sequences to 

a known complex structure with a threading method, and then evaluates the complex model 

by a logistic regression classifier that considers structural and sequence features taken from 

its interface (Hosur et al., 2012). In a recent method, InterPred, a similar approach is taken 

(Mirabello & Wallner, 2017): for a query protein sequence pair, structures are modelled, 

then known protein complexes are sought by structure comparison. Finally, the feasibility of 

the model is evaluated using a random forest classifier that considers interface structure and 

sequence features as well as overall structure similarity between individual models to the 

template complex structure.

Although protein structures can provide unique features for PPI prediction, a drawback is 

that not many proteins have known structures. In Table 2, the number of protein genes with 

GO terms, gene expression data, and experimentally determined/computationally-modelled 

protein structures for ten genomes are shown. Compared to GO terms and gene expressions, 

proteins with known structures are substantially fewer. This is more evident for genomes that 

are less studied. On the other hand, as shown in the right-most column, most of the protein 

structures can be computationally modelled (Kihara & Skolnick, 2004). Thus, there is room 

for new structure-based approaches that use modelled protein structures.

PPI NETWORK TOPOLOGY-BASED METHODS

Methods in this category start from an existing PPI network of an organism, and predict new 

interactions between proteins by evaluating their network topology features. In the IRAP* 

method, a missing interaction is predicted if a protein pair has a high score that reflects the 
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number of common neighbors between them in the current PPI network (J. Chen, Hsu, Lee, 

& Ng, 2006). Another idea by Yu et al. is to predict a PPI if two proteins are neighbors of a 

clique, a fully-connected graph, in the PPI network of the organism and connecting them 

would complete a larger clique, because most probably the two proteins are subunits of a 

protein complex (H. Yu, Paccanaro, Trifonov, & Gerstein, 2006). In the work by L. Wong 

and his colleagues, a prediction of a PPI is made using a combination of two scores, a score 

for capturing local network topology of proteins that is based on the number of common 

neighbors and a global topology-based score that accounts for the memberships of the 

proteins in protein groups where member proteins interact with each other (G. Liu, Li, & 

Wong, 2008). Kuchaiev et al. applied Multi-Dimensional Scaling (MDS), a dimension 

reduction method in statistics, to a PPI network, where distances are based on edge distances 

between proteins (Kuchaiev, Rašajski, Higham, & Pržulj, 2009). New PPIs are predicted if 

proteins are closer than a threshold in the projected space by MDS. Lei and Ruan applied a 

random walk-based approach, where the probability of reaching each node from each of the 

other nodes in the network is computed by assuming a random walk (Lei & Ruan, 2012). 

The resulting probability matrix contains information of the topology of the PPI network. 

Based on the probability matrix, protein pairs are connected if they are similar in their 

probability vectors to reach the other nodes.

INTEGRATION OF MULTIPLE FEATURES

PPIs can be predicted from different perspectives as discussed above. Naturally, there are 

methods that use multiple features to be able to combine strengths of different features and 

to increase the prediction confidence and coverage. Features can be combined using machine 

learning methods, such as random forest, Naïve Bayesian Network, artificial neural network, 

SVM, and logistic regression (Qi, Bar-Joseph, & Klein-Seetharaman, 2006). In Table 3 

methods that use multiple features are summarized.

From the table, we can see the most popular feature integrated was gene co-expression data 

(COX). The next most popular ones are GO functional similarity (GO), and homology 

(HOM). Several features in the table are not explained yet in this review. The 

physicochemical features (PCH) concerns features such as charge and aromaticity of amino 

acids in a protein sequence. The post-translational modification feature (PTM) indicates that 

PTM motifs are found in UniProt and HPRD. The disordered region (DIS) is a protein 

structure feature where non-structured regions in a protein can be predicted from its 

sequence. Thus, besides obvious sequence-based features, DIS, PCH, and PTM are features 

that are predicted from protein sequences. Direct experimental data of PPIs (EXP) used by 

Qi et al. were yeast-two-hybrid and mass spectrometry data (Qi et al., 2006), and those used 

by Miller et al. were data from yeast two-hybrid system (Miller et al., 2005). The protein 

functional class (CLA) in yeast are taken from the MIPS Protein Class Catalogue, which 

were determined by experiments (Mewes et al., 2004). Gene essentiality (ESN), synthetic 

lethality (SNL), and MIPS mutant phenotype (MUT) were determined by knockout mutants 

(Qi et al., 2006). Text mining (TXT) counts co-mentions of two proteins in PubMed 

abstracts.
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Regarding combinations of features, methods by Ben-Hur et al., Xu et al. combine mostly 

sequence-based features (Ben-Hur & Noble, 2005; Xu et al., 2010). On the other hand, 

PrePPI (Q. C. Zhang et al., 2012), FpClass (Kotlyar et al., 2015), and Taghipour et al. 
(Taghipour, Zarrineh, Ganjtabesh, & Nowzari-Dalini, 2017) are intended to combine 

different types of features.

Turning our attention to algorithms used, naïve Bayes is the most frequently used among the 

multiple feature-based methods in Table 3. SVM was the next, used in the three methods. Qi 

et al. tested five integrating algorithms with different feature combinations (Qi et al., 2006).

DISCUSSION

The identification of PPIs is vital for a systems level understanding of molecular activity of 

living cells. To complement experimental approaches, we saw many computational tools, 

which use different types of protein features. Through writing this article, we felt that a wide 

variety of features were explored already, and development of novel computational 

approaches would need new types of experimental data. Also, we noticed that large scale 

PPI networks are experimentally revealed only for a limited number of organisms, and thus 

many computational methods were developed and benchmarked on those organisms. 

Therefore, for further advancement of PPI prediction, proteomics-scale PPIs of many more 

organisms would be needed.

Current PPI networks construct both experimental and computational methods, and only 

represent a static snapshot of interactions of proteins in a cell, which are dynamically 

changing over time, containing both transient and permanent interactions. Therefore, the 

next generation of PPI studies would aim to capture the time-dependent, dynamic aspects of 

PPIs. Computationally, this direction would eventually meet and be integrated with other 

computational approaches, such as pathway simulations and molecular dynamics simulation 

of molecules in a cell.
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Feature abbreviations

MOT/DOM protein motifs or domains

NGM n-gram

PCH physiochemical feature

HOM homologous interaction (interlogs)

COD codon usage

PHP phylogenetic profile and gene co-occurrence

Ding and Kihara Page 15

Curr Protoc Protein Sci. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FUS gene fusion

GNB gene neighbor

PTM post-translational modifications regions

GO gene ontology terms

MIPS Munich Information Centre for Protein Sequences (MIPS) functional 

similarity

COX gene/protein co-expression

XPI Experimental PPI detection, direct experimental data including two-hybrid 

screens and mass spectrometry

CLA protein functional class by MIPS Protein Class Catalogue

ESN essentiality

LOC protein localization

COR common co-regulators of genes

SNL synthetic lethality

MUT MIPS mutant phenotype

STR protein structure

DIS disordered region

NET protein-protein interaction network

TXT text mining

Integrating method abbreviations

LPK linear pairwise kernel

SVM support vector machine

RF random forest

KNN k-nearest neighbor

NB Naïve Bayes

DT decision tree

LR logistic regression

NOR noisy-OR model (a type of Bayesian network)

LNR linear regression
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MCL Markov clustering algorithm
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Figure 1. The n-gram features for a protein sequence
The 20 amino acids are clustered into seven classes based on their physicochemical 

properties. A window of length n (e.g., n=3) slides along the sequence and captures amino 

acid class patterns in the window. Then the occurrences of every combination of amino acid 

class are counted to generate a feature vector for the sequence. For example, when n equals 

3, the total number of combinations of amino acid class is 7*7*7=343.

Ding and Kihara Page 26

Curr Protoc Protein Sci. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The local descriptors
Amino acids are clustered into seven classes (C1-C7). A, The distribution of the lengths of 

sequences from the N-terminus that contain the first, first 25%, 50%, 75%, and 100% of 

each amino acid class in the protein sequence are represented in blue, pink, green, and 

yellow, respectively. The dotted line represents the position of the first, first 25%, 50%, 75%, 

and 100% of Class 1 in the local region. The number of distribution descriptor is 7 (classes) 

*5 (distribution values) =35 for a local region. B, The composition of each amino acid class 

in a local region is considered. C, The transition accounts for the frequency of the transition 

from one class to another. The number of transition descriptor is (7*6)/2=21. Therefore, 

each local region is represented by 35+7+21=63 descriptors.
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Figure 3. Schematic view of calculating Auto-covariance (AC)
The black line in the plot represents the value of the j-th physiochemical property along the 

amino acid sequence. The dashed grey line represents the average value of the j-th 
physiochemical property. The grey bracket regions are the difference from the average value 

of i-th and (i+lag)-th amino acid, respectively. AC is the average of Fi,lag,j.
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Figure 4. Comparative genomics-based methods
A, Phylogenetic tree topology-based method. A pair of query sequences, A and B, are 

compared with n reference organisms and multiple sequence alignments are constructed. 

Based on the alignments, phylogenetic trees are computed, from which distances between all 

pairs of sequences are computed and stored in matrices. Then the similarity between two 

matrices is evaluated with a correlation coefficient. B, Phylogenetic profiles. Genes in a 

query organism is compared with n reference organisms by BLAST search. 1 represents the 

presence of the gene in the reference organism 0 for the absence. The table can also be filled 

with real-values, such as BLAST bit scores. C, Gene fusion. Two protein genes A and B are 

predicted as interacting if they fuse to form one protein gene AB in another organism. D, 
Gene order. If protein gene orders of proteins are conserved among different species, they 

are predicted as interacting proteins with each other.
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