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Abstract

INTRODUCTION—The ability of Alzheimer disease (AD) cerebrospinal fluid (CSF) biomarkers 

[amyloid beta peptide 1–42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau)] to discriminate 

AD from related disorders is limited. Biomarkers for other concomitant pathologies [e.g., CSF α-

synuclein for Lewy body (LB) pathology] may be needed to further improve the differential 

diagnosis.

METHODS—CSF total α-synuclein, phosphorylated α-synuclein (pS129), and AD CSF 

biomarkers were evaluated with Luminex immunoassays in 367 participants, followed by 

validation in 74 different, neuropathologically-confirmed cases.
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RESULTS—CSF total α-synuclein, when combined with Aβ42 and either t-tau or p-tau, 

improved the differential diagnosis of AD vs frontotemporal dementia, LB disorders, or other 

neurological disorders. The diagnostic accuracy of the combined models attained clinical 

relevance (Area Under Curve ~0.9) and was largely validated in neuropathologically-confirmed 

cases.

CONCLUSIONS—Combining CSF biomarkers representing AD and LB pathologies may have 

clinical value in the differential diagnosis of AD.
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1. Introduction

Investigations using biochemical measures in cerebrospinal fluid (CSF) as Alzheimer 

disease (AD) biomarkers have shown great promise, and such CSF biomarkers have been 

incorporated into recent guidelines for informed diagnosis of AD [1]. Specifically, CSF 

markers of core AD pathology [i.e., amyloid beta (Aβ) peptide 1–42 (Aβ42) reflecting Aβ in 

plaque burden, and total tau (t-tau) and phosphorylated tau (p-tau) for assessing 

neurofibrillary tangles in the brain] provide both high sensitivity and specificity (80% or 

above) in differentiating patients with AD or mild cognitive impairment (MCI; prodromal 

AD) from healthy controls (HC) [2–4]. However, the diagnostic accuracy of these CSF 

biomarkers in the differential diagnosis of AD and other dementias is limited (40–80% 

sensitivity and specificity) due to substantial overlap in the CSF levels of these proteins [4–

9]. A recent large-scale international multicenter study [5] suggested that the limited utility 

of these core CSF biomarkers to discriminate AD from a variety of related disorders could 

be due to overlap in the underlying primary pathologies, and introduction of additional CSF 

biomarkers reflecting other types of pathologies could be of value to optimize the 

differential diagnosis [4, 5], though reliance on clinical diagnoses might underestimate the 

accuracy of CSF biomarkers [10].

Among the concomitant non-AD type pathologies in AD, α-synuclein (α-syn)-positive 

Lewy bodies (LBs), the pathological hallmark of another family of neurodegenerative 

diseases including Parkinson disease (PD) and dementia with LBs (DLB), can be observed 

in up to 50% of familial and sporadic AD patients at autopsy [11–13]. We have reported that 

CSF total α-syn and phosphorylated α-syn at Ser129 (pS129) help differentiate PD from 

AD and other related neurodegenerative diseases [14–16]. More recently, we also found that 

CSF total α-syn improved the diagnostic and prognostic performance of CSF Aβ42 and tau 

in AD [17, 18]. In this study, to test whether inclusion of CSF α-syn that represents brain 

LB pathology could improve the differential diagnosis of AD and other dementias, we 

further evaluated the utility of CSF total α-syn and pS129 in the differential diagnosis in a 

relatively large clinical cohort, followed by validating our findings in a separate cohort of 

neuropathologically-confirmed cases.
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2. Methods

2.1 Subjects

Two cohorts of research participants were recruited at the AD Core Center (ADCC), the 

Penn Memory Center (PMC), the Frontotemporal Degeneration (FTD) Center, the 

Amyotrophic Lateral Sclerosis (ALS) Center, the Parkinson disease and Movement Disorder 

Clinic (PD&MDC) and the Penn Udall Center for Parkinson’s Research at the University of 

Pennsylvania (UPenn) [19]. The clinical or discovery cohort (n=540) of clinically diagnosed 

participants included 165 AD, 105 MCI, 70 FTD [including 60 behavioral variant FTD (bv-

FTD) and 10 corticobasal syndrome (CBS)], 79 LB disorders [LBD; including 16 DLB and 

63 PD/PD with dementia (PDD)], 41 ALS, 11 progressive supranuclear palsy (PSP), and 69 

HC (see Table 1 and Supplementary Table 1). The validation cohort contained 102 

neuropathologically-confirmed cases, including 40 AD, 23 frontotemporal lobar 

degeneration with and without AD (FTLD; 17 FTLD, and 6 FTLD-AD), 30 PD/LB-related 

pathology with and without AD (LRP) (3 PD, 4 PD-AD, 21 LRP-AD, and 2 LRP-TDP), and 

6 ALS (see below, Table 2, and Supplementary Table 2 for more details; note that 3 HC 

cases with an unremarkable burden of any significant brain pathology were not included in 

the analyses in the current study due to the small case number). The clinical diagnoses were 

made applying clinical diagnostic criteria for AD [1], bv-FTD [20], CBS [21], primary 

progressive aphasia [22], DLB [23], PD/PDD [24, 25], ALS [26], PSP [27], and HC as 

previously reported [19, 28, 29]. For the purposes of this study, patients diagnosed as CBS, 

bv-FTD, FTD-motor neuron disease, progressive non-fluent aphasia (PNFA) and semantic 

dementia (SD) were classified as FTD, while subjects with AD and logopenic progressive 

aphasia (LPA) were classified as AD. As per current conventions, the term FTD was used for 

the clinical diagnosis and the term FTLD for the neuropathologically-confirmed diagnoses. 

Informed consent to be included in research studies and to perform the autopsy was obtained 

in all cases from the patients or legal representatives in accordance with Pennsylvania state 

law. The study and all protocols were approved by the Institutional Review Boards of the 

UPenn and the University of Washington (UW).

2.2 CSF collection and CSF measurements

All CSF samples were obtained by lumbar puncture as described previously, and samples 

were immediately stored at −80°C until analysis [30]. CSF total α-syn and pS129 levels 

were measured at UW by using Luminex immunoassays as previously described [14, 16]. 

CSF data for Aβ42, t-tau, and p-tau were obtained at UPenn by using the INNO-BIA 

AlzBio3™ Luminex assay reagents (Innogenetics, Ghent, Belgium) [30–32]. CSF 

hemoglobin levels were measured as an index of red blood cell contamination, with a human 

hemoglobin ELISA quantitation kit (Bethyl Lab Inc, Montgomery, TX, USA) as previously 

described [14].

2.3 Tissue collection and neuropathological assessment

Tissue collection procedures have been previously described [19]. Briefly, a 

neuropathological diagnosis of AD was assigned if the probability was intermediate or high 

[33]. The diagnoses of FTLD-TAU, FTLD-TDP and DLB were based on established criteria 

[23, 34]. FTLD-TAU cases included cases with a diagnosis of argyrophilic grain disease 
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(AGD), progressive supranuclear palsy (PSP), tangle predominant senile dementia (TPSD), 

and corticobasal degeneration (CBD). See Supplementary Methods for more details.

2.4 Statistical analysis

All analyses were performed in SPSS 18.0 (IBM, Chicago, IL, USA) or Prism 6.0 

(GraphPad Software, La Jolla, CA, USA). Immunoassay data (CSF total α-syn, pS129, 

Aβ42, t-tau, and p-tau) were Log10 transformed to generate a more normally distributed 

dataset, and the transformed data was used in all analyses. Correlations between biomarkers 

are reported as Pearson correlation coefficients. One way analysis of variance (ANOVA) 

followed by Tukey post-hoc test was used to compare group means. Receiver operating 

characteristic (ROC) curves for analytes, controlling for age and sex of participants, were 

generated to evaluate their sensitivities and specificities in distinguishing AD from HC or 

diseased comparison participants. Area under curve (AUC) was determined as a measure of 

the overall performance of a diagnostic test (the closer AUC is to 1, the better the overall 

diagnostic performance), which is also independent of disease prevalence since it is based on 

sensitivity and specificity [35]. The “optimum” cutoff value for a ROC curve was defined as 

the value associated with the maximal sum of sensitivity and specificity (i.e., maximizing 

the Youden index). Stepwise logistic regression was used to determine the best prediction 

models that included multiple CSF biomarkers as well as age and sex of participants. Values 

with p<0.05 were regarded as significant.

3. Results

3.1 Correlation among CSF analytes in the whole cohort

A total of 642 cases were included in the current study. As previously described [14, 15], 

CSF α-syn showed a strong association with CSF hemoglobin levels (an index of blood 

contamination in CSF; r=0.523, p<3.8×10−46) (Figure 1A). CSF pS129 showed a significant, 

although weaker, inverse association with CSF hemoglobin levels (r=−0.182, p<3.6×10−6) 

(Figure 1B).When using a cutoff of hemoglobin >500 ng/mL in this cohort to exclude blood-

contaminated samples, 31.3% of the CSF samples were excluded from all further analyses 

(n=201), and then both CSF α-syn (p=0.869) and pS129 (p=0.291) showed no significant 

associations with CSF hemoglobin.

After excluding CSF samples with high hemoglobin levels (>500 ng/mL), CSF α-syn 

showed no association with CSF Aβ42 (r=−0.025, p=0.597) (Figure 1C), but a strong 

positive correlation with t-tau (r=0.725, p<1.5×10−71) (Figure 1D) as well as a moderate 

positive correlation with p-tau (r=0.430, p<3.0×10−21) (Figure 1E). In contrast, CSF pS129 

showed no association with any of the three classic AD CSF biomarkers (all p>0.07). CSF 

α-syn and pS129 were not significantly correlated with each other (r=−0.069, p=0.15) in this 

cohort (Figure 1F).

3.2 Evaluation of diagnostic and differential diagnostic values of CSF α-syn and pS129 in 
the clinical cohort

A cohort of 540 cases without neuropathological confirmation was used as the discovery 

cohort in this study (see Supplementary Table 1 for the whole cohort). As described in the 
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Methods, certain disease groups were combined together based on their similar underlying 

pathology (e.g., DLB and PD/PDD) to increase the sample size in analyses. In this cohort 

(n=367 subjects after excluding samples with high hemoglobin levels), CSF α-syn levels 

were numerically higher in AD compared to HC or LBD (DLB/PD/PDD; p=0.153) (see 

Table 1 and Figure 2A). However, CSF α-syn was significantly higher in AD compared to 

FTD (p=0.004) or ALS (p=0.014), and borderline significantly higher in AD compared to 

PSP (p=0.068). CSF α-syn was also significant higher in MCI compared to FTD (p=0.001), 

LBD (p=0.034), ALS (p=0.003), or PSP (p=0.023). CSF pS129 showed no differences 

between AD or MCI and HC, consistent with previous reports [16, 36], or any other 

diagnostic groups (Figure 2B). Use of the CSF pS129/α-syn ratio did not enhance the 

performance of CSF total α-syn for AD diagnosis and differential diagnosis (Figure 2C).

To further evaluate the diagnostic and differential diagnostic values of CSF biomarkers and 

their combinations, ROC analysis was performed to determine the sensitivities and 

specificities between AD and HC or patients with other neurodegenerative diseases (see 

Table 3 and Figure 3). For the comparison between AD and HC, although CSF α-syn alone 

only provided a poor differentiation and as expected, CSF Aβ42 [AUC=0.890, 95% 

confidence interval (CI) 0.832–0.948; sensitivity=86.8% (95% CI 79.2–92.4%), 

specificity=83.3% (95% CI 69.8–92.5%)] or t-tau [AUC=0.848, 95% CI 0.783–0.912; 

sensitivity=77.2% (68.4–84.5%), specificity=83.3% (69.8–92.5%)] could discriminate the 

two groups well, the best model was the combination of CSF Aβ42, t-tau, and α-syn, when 

controlling for age and sex of participants [AUC=0.931, 95% CI 0.890–0.973; 

sensitivity=92.1% (85.5–96.3%), specificity=85.4% (72.2–93.9%); Figure 3A].

For the comparison between AD and FTD groups, CSF α-syn alone (controlling for age and 

sex of participants) could provide a weak differentiation [AUC=0.760, 95% CI 0.687–0.832; 

sensitivity=51.8% (42.2–61.2%), specificity=89.3% (78.1–96.0%)], similar to those of CSF 

Aβ42, t-tau, or p-tau alone (Table 3); a combination of CSF α-syn, Aβ42, and p-tau 

differentiated AD from FTD well [AUC=0.893, 95% CI 0.845–0.941; sensitivity=80.7% 

(72.3–87.5%), specificity=85.7% (73.8–93.6%); Figure 3B] and was significantly more 

informative compared to the best individual CSF biomarker (Aβ42; Z=2.3744, p=0.0176, 

DeLong’s test[37]). Similarly, CSF α-syn alone could also provide a moderate 

differentiation for AD vs LBD (DLB/PD/PDD) [AUC=0.751, 95% CI 0.664–0.838; 

sensitivity=78.1% (69.4–85.3%), specificity=64.3% (48.0–78.4%)], AD vs ALS 

[AUC=0.858, 95% CI 0.788–0.928; sensitivity=87.7% (80.3–93.1%), specificity=68.6% 

(50.7–83.1%)], and AD vs PSP [AUC=0.740, 95% CI 0.539–0.940; sensitivity=70.2% 

(60.9–78.4%), specificity=77.8% (40.0–97.2%)], and adding CSF α-syn to Aβ42, t-tau (or p-

tau) enhanced the differential diagnosis [AD vs LBD, AUC=0.900, 95% CI 0.844–0.956, 

sensitivity=89.5% (82.3–94.4%), specificity=82.1% (62.5–92.5%), Figure 3C; AD vs ALS, 

AUC=0.947, 95% CI 0.883–1.000, sensitivity=96.5% (91.3–99.0%), specificity=88.6% 

(73.3–96.8%), Figure 3D; and AD vs PSP, AUC=0.915, 95% CI 0.860–0.970, 

sensitivity=80.7% (72.3–87.5%), specificity=100.0% (66.4–100%), Table 3].
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3.3 Validation of differential diagnostic values of CSF biomarkers in the autopsy cohort

To further validate the differential diagnostic values, we measured the CSF biomarkers in a 

cohort of neuropathologically-confirmed cases (n=102 in total; 74 after excluding CSF 

samples with >500 ng/mL hemoglobin levels; see Table 2 and Supplementary Table 2). Due 

to the limited number of cases, the subjects were categorized into the following pathological 

groups: AD, FTLD (including FTLD and FTLD-AD), LRP (including PD, PD-AD, LRP-

AD, and LRP-TDP), and ALS. As shown in Figure 4, consistent with the results from the 

clinical cohort, CSF α-syn was substantially higher in AD compared to FTLD, LRP, and 

ALS, while CSF pS129 didn’t show significant differences among diagnostic groups.

Further ROC analysis demonstrated that CSF α-syn could differentiate AD from FTLD 

[AUC=0.782, p=0.002, sensitivity=58.6% (95% CI 38.9–76.5%), specificity=93.8% (69.8–

99.8%); Figure 4C], LRP [AUC=0.678, p=0.033, sensitivity=79.3% (95% CI 60.3–92.0%), 

specificity=57.1% (34.0–78.2%); Figure 4D], and ALS [AUC=0.966, p=0.001, 

sensitivity=86.2% (95% CI 68.3–96.1%), specificity=100.0% (47.8–100.0%)] well, when 

controlling for age and sex of participants. Additionally, the combinations of CSF α-syn, 

Aβ42, t-tau (or p-tau) further improved the differential diagnosis: AD vs FTLD, AUC=0.935, 

p=1.67×10−6, sensitivity=93.1% (95% CI 77.2–99.2%), specificity=87.5% (61.6–98.4%) for 

a model of CSF α-syn, Aβ42, and p-tau (Figure 4E); AD vs LRP, AUC=0.767, p=0.001, 

sensitivity=55.2% (95% CI 35.7–73.6%), specificity=95.2% (76.2–99.9%) for a model of 

CSF α-syn, Aβ42, and t-tau (Figure 4F); AD vs ALS, AUC=1.000, p=4.23×10−4, 

sensitivity=100.0% (95% CI 88.1–100.0%), specificity=100.0% (47.8–100.0%) for a model 

of CSF α-syn, Aβ42, and p-tau. It should be noted that some small sample sizes (e.g., n=5 

for ALS) led to wide 95% CIs.

4. Discussion

For the clinically relevant diagnosis and differential diagnosis of AD, it is essential to have a 

set of biomarkers that discriminate AD from other clinically relevant dementias or 

neurodegenerative diseases. Previous studies revealed substantial overlaps in CSF biomarker 

profiles (Aβ42 and t-tau or p-tau) between AD and related disorders, and this significantly 

limits the utility of these core CSF biomarkers in differential diagnosis [5, 6]. In the current 

study, we interrogated CSF samples obtained from a relatively large, longitudinally-followed 

clinical cohort, and we report that higher CSF total α-syn might be relatively unique to AD, 

and that by combining data on CSF measures of α-syn, Aβ42, and t-tau or p-tau we might be 

able to provide better diagnostic and differential diagnostic biomarker values for AD. These 

findings were largely confirmed in a separate cohort of participants who were longitudinally 

followed to autopsy for neuropathological confirmation of their diagnoses.

Although it was less apparent in the cohort included in this study, there is overlap of CSF 

Aβ42 and tau values between AD and related disorders as reported in previous studies [5–9]. 

As discussed previously [5, 6], these observations were not that surprising, because mixed 

pathology is a common finding at autopsy [38–41], which may reflect converging 

pathophysiological mechanisms and pathways at late clinical stages [5]. For example, 

neuropathological and neuroimaging studies have revealed Aβ and tau pathology in LBD 

patients [42–44], and regional brain Aβ accumulation appears to correlate with domain-
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specific cognitive performance in PD patients [45]. These results suggest that CSF Aβ42 and 

tau may detect the increased levels of Aβ and tau pathology in non-AD diseases, limiting the 

differential diagnostic value of such biomarkers [5], particularly when used alone. Earlier 

studies [46, 47] reported that CSF p-tau might improve the differential dementia diagnosis 

(AUC 0.6–0.8), but other large-scale studies [4, 5], including the current study, found that 

CSF p-tau and t-tau performed largely equally.

In the current study, CSF α-syn levels tended to be higher in AD or MCI compared to 

related disorders in both cohorts, though the statistical significance was not achieved for AD 

vs HC and AD vs LBD (DLB/PD/PDD). This is in agreement with several previous large-

scale studies, showing significantly higher levels of α-syn in CSF from patients with AD 

compared to HC [17, 18, 36] or patients with DLB/PDD [48]. The increase is perhaps due to 

the release of α-syn from damaged neurons during neurodegeneration, similar to what has 

been hypothesized for the increased levels of CSF tau in AD. However, this cannot be the 

entire explanation since CSF α-syn and tau do not appear to be increased in most other 

neurodegenerative diseases that are also associated with α-syn or tau pathology and 

extensive neuron loss in the brain. We have reported that CSF α-syn and tau could be 

transported from the central nervous system (CNS) into peripheral blood, and this potential 

clearance of CNS α-syn and tau via exosomes appeared to be increased in PD compared to 

HC [49, 50], but not in AD for tau [50] (α-syn clearance in AD has not been tested yet). 

Whether this is also true for CNS α-syn clearance and whether it could be a major 

contributor to the increase of CSF α-syn and tau in AD needs further investigation.

Most importantly, we found that the diagnostic accuracy of the combinations of these CSF 

biomarkers including measures of α-syn, Aβ, and tau was high enough (AUC, 0.8–0.9) to be 

useful in clinical settings for differentiating patients with AD from those with other related 

disorders. The diagnostic accuracy of these CSF proteins for differentiating AD from FTD is 

at least in the same order of magnitude as those obtained with advanced neuroimaging 

technologies [51, 52] and at a lower cost. Our findings on AD vs LBD is also in line with a 

previous study [48] reporting a panel of CSF biomarkers including α-syn, tau and Aβ42 

could differentiate AD from DLB and PDD with high sensitivity and specificity. It should be 

emphasized that these results were acquired from a retrospective study under a research 

setting, the biomarker accuracy and usefulness of the panel need to be further confirmed in 

prospective diagnostic studies under clinical settings [4]. Additionally, we used AUC as well 

as the Youden index-determined sensitivity and specificity in this study to assess the overall 

performance of candidate biomarkers for the differential diagnosis of AD, which usually has 

higher prevalence rate among related diseases. In some clinical settings (e.g., to screen for a 

certain disease of very low prevalence, a high specificity and a low false positive rate is 

required), the performance may need to be re-evaluated by adjusting the cutoff range or 

considering only a portion of the ROC curve.

However, CSF pS129 levels did not distinguish AD from any of the other diagnostic groups 

in this study. Previous studies have demonstrated that pS129 is the predominant post-

translationally modified form of α-syn in LBs [53, 54] and have also associated CSF pS129 

with PD [16, 55]. However, the role of pS129 in AD remains unclear, despite the frequent 

observation of LBs in AD brains [11–13]. In our previous study [16], we did not observe 
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significant differences in CSF pS129 levels between AD and HC when a small cohort of AD 

subjects was examined. This was confirmed in a more recent independent study with a much 

larger AD cohort [36]. In the current study, CSF pS129 and total α-syn were not 

significantly correlated with each other, indicating different α-syn forms in CSF might 

behave differently, possibly due to different transportation or clearance mechanisms. Our 

results also suggest that the transportation or clearance mechanisms for pS129, if different 

from other general α-syn species, might be less likely affected under different disease 

settings.

All the ROC analyses in this study were performed by controlling for age and sex of 

participants. Several studies have explored if demographic factors, including age, sex, and 

the APOE ε4 genotype, impact the diagnostic accuracy of CSF AD biomarkers (see review 

by Mattsson et al [4]). While there is no clear effect of sex on the diagnostic accuracy, age 

may impact the diagnostic performance of CSF AD biomarkers [4]. The genotype APOE ε4 

is strongly associated with reduced CSF Aβ42 in controls, but not with altered CSF t-tau or 

p-tau levels [4] as well as CSF α-syn levels [17]. However, because APOE ε4 is associated 

with increased amyloid pathology, rather than artificial reductions of CSF Aβ42, it is not 

recommended to adjust the CSF Aβ42 cutoff depending on the presence of APOE ε4 [4]. In 

the current study, adding APOE ε4 status to the models did not change the outcomes (data 

not shown).

One limitation of this study is that the cohort studied here did not include any subjects with 

vascular dementia, and thus the performance of CSF α-syn, together with Aβ42 and t-tau or 

p-tau, on differentiating AD from vascular dementia remains unknown. While this needs to 

be further investigated in future studies, we previously reported that CSF E-selectin, a 

biomarker of endothelial function/vascular injury, might be a promising CSF biomarker to 

pursue as a potential indicator that vascular pathology is contributing to dementia [56]. 

Thus, CSF E-selectin should be tested in larger cohorts for its ability to differentiate AD 

from vascular dementia. Another potential limitation is that certain disease groups with 

similar underlying pathology were combined together (e.g., DLB and PD were combined 

into overarching LBD or LRP) to increase the sample size in the analyses, and its potential 

confounding effects need to be further investigated in future larger-scale studies.

In summary, CSF total α-syn, when combined with core AD biomarkers (i.e., Aβ42, t-tau, 

and p-tau), improved the differential diagnosis of AD vs FTD, LBD (DLB/PD/PDD), and 

other neurodegenerative disease. The diagnostic accuracy of the combined models described 

here was high enough to be of clinical value for differentiating AD patients from patients 

with other related disorders in our cohort. Moreover, the diagnostic performance of these 

CSF biomarkers was supported by studies of a second cohort of subjects who were 

longitudinally followed to autopsy for neuropathological confirmation of their diagnoses. 

Although further validation in independent cohorts is still needed, our results indicate that 

CSF measures of total α-syn combined with measures of Aβ42, t-tau, and p-tau might have 

clinical value in the differential diagnosis of AD.
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Research in Context

1. 1. Systematic review: The Pubmed database was searched to identify 

previously published research. Differential diagnosis of AD from other 

common geriatric dementing disorders remains unresolved. Recent studies 

found that the utility of the core CSF AD biomarkers (Aβ42, t-tau, and p-tau) 

to discriminate AD from a variety of related disorders is limited, probably due 

to overlap in the underlying primary pathologies. It has been suggested that 

introduction of additional CSF biomarkers reflecting other types of 

pathologies could optimize differential diagnosis.

2. 2. Interpretation: Our findings indicate that CSF measures of total α-

synuclein combined with measures of Aβ42, t-tau, and p-tau, representing LB 

and AD pathologies, respectively, likely have clinical value in the differential 

diagnosis of AD.

3. 3. Future directions: Further studies are needed to include additional CSF 

biomarkers to reflect other comorbid pathologies, such as E-selectin for 

vascular pathology commonly observed at autopsy of AD brains.
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Figure 1. Association of CSF analytes
(A and B) Associations of CSF α-synuclein (α-syn; A) and α-syn phosphorylated at Ser129 

(pS129; B) with CSF hemoglobin values in all subjects (n=642); vertical dashed red line 

represents the 500 ng/mL cut-off selected to exclude CSF α-syn values due to blood 

contamination. (C, D, and E) Associations of CSF α-syn with CSF amyloid beta peptide 1–

42 (Aβ42; C), total tau (t-tau; D), and phosphorylated p-tau at Thr181 (p-tau; E), after 

excluding subjects with >500 ng/mL of CSF hemoglobin (n=441 after exclusion). (F) 

Association of CSF α-syn and pS129 in subjects with ≤500 ng/mL hemoglobin.
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Figure 2. CSF α-syn, pS129, and the pS129/α-syn ratio stratified by clinical diagnosis in the 
clinical cohort
CSF total α-syn (A) and pS129 (B) concentrations were measured in the clinical cohort that 

includes patients with the diagnoses indicated below panel C. The ratio of pS129/α-syn is 

also shown (C). The boxes extend from the 25th to 75th percentiles. The middle dark lines 

indicate the medians. The whiskers extend to 1.5 times the height of the box or, if no case 

has a value in that range, to the minimum or maximum values. Values not included between 

the whiskers are plotted as outliers with corresponding symbols. No outliers were excluded 

from the analyses in this study.
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Figure 3. ROC analysis of CSF biomarkers in the clinical cohort
(A) Alzheimer disease (AD) vs healthy controls (HC); (B) AD vs frontotemporal 

degeneration (FTD)/corticobasal syndrome (CBS); (C) AD vs dementia with Lewy bodies 

(DLB)/Parkinson disease (PD); (D) AD vs amyotrophic lateral sclerosis (ALS). Blue dashed 

line indicates CSF α-syn alone, orange dot-dashed line indicates CSF Aβ42, black dotted 

line indicates CSF t-tau or p-tau, and red solid line indicates a combined model of CSF α-

syn, Aβ42, and t-tau or p-tau.
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Figure 4. CSF α-syn and pS129 stratified by autopsy diagnosis and the differential diagnosis 
performance of CSF biomarkers in the validation (autopsy) cohort
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