Table 3.
Accuracies of non-linear Net-Net classifiers.
ML Classifier | Test Accuracy | Test AUROC |
---|---|---|
Bayesian Nets | 0.681 | 0.737 |
Naive Bayes Nets | 0.586 | 0.636 |
Logistic Regression | 0.618 | 0.668 |
Decision Table | 0.516 | 0.552 |
MLP 1H | 0.809 | 0.878 |
MLP 2H | 0.827 | 0.902 |
Random Forest | 0.832 | 0.914 |
Bagging REP | 0.804 | 0.884 |
Bagging MLP | 0.819 | 0.896 |
AdaBoostM1 MLP | 0.821 | 0.884 |
Deep FC Nets | 0.866 | 0.935 |
Note: please see Methods section for details on the classifier.