Skip to main content
. 2018 Aug 17;9:3290. doi: 10.1038/s41467-018-05842-w

Fig. 2.

Fig. 2

The principle of NIRES nanoscopy using UCNP as multiphoton probe for deep tissue imaging. a The simplified energy levels and upconversion process of Yb3+ and Tm3+ co-doped UCNPs. The sensitizer Yb3+ ions initiate the photon upconversion process by a linear and sequential absorption of 980 nm excitation. Due to the multiple long-lived intermediate states, the energy is stepwise transferred onto the scaffold energy levels of emitters Tm3+, eventually facilitate multiphoton upconversion emission, including emissions from the four photon upconversion excited state 1D2 (455 nm), three photon state 1G4 (470 nm), and two photon excited state 3H4 (800 nm). b The saturation intensity curve of the 800 nm emissions from UCNPs (40 nm NaYF4: 20% Yb3+, 4% Tm3+) under 980 nm excitation. c Cross-section profiles of the saturated upconversion emission of UCNPs at four different excitation powers of 0.1, 0.4, 1, and 3 MW cm−2. d The simulated “negative” contrast images of the cross-section profiles of a single UCNP. Pixel size, 10 nm. Scale bar is 500 nm