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Development of a personalized diagnostic
model for kidney stone disease tailored to
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demographics and laboratory data: the
diagnostic acute care algorithm - kidney
stones (DACA-KS)
Zhaoyi Chen1* , Victoria Y. Bird2, Rupam Ruchi3, Mark S. Segal3, Jiang Bian4, Saeed R. Khan5,
Marie-Carmelle Elie6 and Mattia Prosperi1

Abstract

Background: Kidney stone (KS) disease has high, increasing prevalence in the United States and poses a massive
economic burden. Diagnostics algorithms of KS only use a few variables with a limited sensitivity and specificity. In
this study, we tested a big data approach to infer and validate a ‘multi-domain’ personalized diagnostic acute care
algorithm for KS (DACA-KS), merging demographic, vital signs, clinical, and laboratory information.

Methods: We utilized a large, single-center database of patients admitted to acute care units in a large tertiary care
hospital. Patients diagnosed with KS were compared to groups of patients with acute abdominal/flank/groin pain,
genitourinary diseases, and other conditions. We analyzed multiple information domains (several thousands of variables)
using a collection of statistical and machine learning models with feature selectors. We compared sensitivity, specificity
and area under the receiver operating characteristic (AUROC) of our approach with the STONE score, using cross-validation.

Results: Thirty eight thousand five hundred and ninety-seven distinct adult patients were admitted to critical care between
2001 and 2012, of which 217 were diagnosed with KS, and 7446 with acute pain (non-KS). The multi-domain approach
using logistic regression yielded an AUROC of 0.86 and a sensitivity/specificity of 0.81/0.82 in cross-validation. Increase in
performance was obtained by fitting a super-learner, at the price of lower interpretability. We discussed in detail
comorbidity and lab marker variables independently associated with KS (e.g. blood chloride, candidiasis, sleep disorders).

Conclusions: Although external validation is warranted, DACA-KS could be integrated into electronic health systems; the
algorithm has the potential used as an effective tool to help nurses and healthcare personnel during triage or clinicians
making a diagnosis, streamlining patients’ management in acute care.
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Background
Kidney stone (KS) disease prevalence has increased in
the United States from 5.2% (6.3% males and 4.1%
females) in 1994 to 8.8% (10.6% males and 7.1% females)
in 2012 [1]. Since it is one of the costliest urologic dis-
eases in the United States, an increase in prevalence
poses a huge economic burden on society. The cost of
diagnosis, treatment and prevention of KS disease in
2007 was estimated to be ~$4 billion and, due to popu-
lation growth alone, is projected to increase by more
than $780 million by 2030 [2, 3]. The presence of KS
also places the individuals at increased risk of develop-
ment of chronic kidney disease. In a prospective cohort
study, those who had KS was associated with a 50–67%
higher risk of developing chronic kidney disease as com-
pared to those who did not have, KS group also had
twice the risk of developing end-stage renal disease [4].
The emergency department (ED) is a common place

where patient with KS are evaluated and diagnosed.
During the past two decades, a significant increase in ED
visits with stone-related symptoms has been observed [5],
with over 1.3 million individuals per year presenting to
the ED with KS in the United States. The clinical presen-
tation to the ED with KS commonly involves acute back,
flank or groin pain, nausea, vomiting and sometimes
blood in urine. The workup may include initial lab tests
such as complete blood count with differential, compre-
hensive metabolic panel, and urine analysis; but often
these tests are not promptly measured or are inappropri-
ately interpreted [5].
A cross-sectional analysis of the 2007–2010 National

Health and Nutrition Examination Survey (NHANES)
dataset suggests that obesity, diabetes, and gout all have a
significant positive association with kidney stone history
[1]. Results from the Nurses’ Health Study, a large
population-based longitudinal study (years 2001–2012)
demonstrated that high body-mass index (BMI), choleli-
thiasis, diabetes and specific dietary factors are associated
with a higher risk of KS formation in females [6]. In 2014,
a clinical prediction score -named STONE- was derived
and validated in retrospective and prospective cohorts [7].
The STONE score includes five variables: male sex, short
duration of pain, non-black race, presence of nausea or
vomiting, and microscopic hematuria. The STONE score
was also externally validated and showed good validity in
patients with flank pain [8]. An updated STONE-PLUS
score, augmented by point-of-care limited ultrasonog-
raphy assessing hydronephrosis, was recently released and
tested prospectively on an ED population sample, with
only a moderate improvement in risk stratification [9]. As
KS disease is multifactorial in nature, we hypothesized
that an approach incorporating laboratory data and add-
itional clinical characteristics would dramatically improve
a KS diagnostic model, leading to earlier diagnosis and a

better understanding of its complex etiology. In addition,
this approach could reduce the number of unnecessary
radiographic testing i.e. CT scans, in the acute care
setting.
In this study, we tested a big data approach, merging

demographic, vital signs, clinical, and laboratory infor-
mation, to infer and validate a ‘multi-domain’ personal-
ized diagnostic score for KS. We utilized a large,
single-center database of patients admitted to ED and
other intensive/acute care units in a large tertiary care
hospital (over 58,000 admissions with majority admitted
through ED). We analyzed the information domains
individually (e.g. only comorbidities, or only lab tests),
together, and compared our approach with the STONE
score. A number of statistical and machine learning
models were fit and compared to optimize performance.
Using this multi-domain integration approach our goal
was to significantly improve the sensitivity and specifi-
city of KS diagnosis in acute settings.

Methods
Study population
The study population comprised individuals admitted to
critical care units at the Beth Israel Deaconess Medical
Center in Boston, Massachusetts, United States, between
2001 and 2012. Data are stored electronically in the
Medical Information Mart for Intensive Care (MIMI-
C-III) database, which is available to the public upon
request, upon Collaborative Institutional Training Initia-
tive (CITI) training, and license agreement for full
download and research [10]. MIMIC-III includes infor-
mation on: demographics; clinical diagnoses and proce-
dures encoded with the International Classification of
Diseases ver. 9 (ICD-9) ontology; vital sign measure-
ments made at the bedside (~ 1 data point per hour);
laboratory test results; medications; caregiver notes; im-
aging reports; mortality (both in- and out-of-hospital).
This is a secondary data analysis. We used the

MIMIC-III ver. 1.4, released on September 2nd, 2016.
Our study included patients aged 18 years and older, di-
vided into four groups based on the ICD-9 diagnoses
during hospitalization: (a) KS cases (ICD-9592, including
sub-codes 592.0, 592.1, 592.9); (b) patients diagnosed
with genitourinary diseases (GUD) except KS (any
ICD-9 code in the intervals 580–591 or 593–599), e.g.
patients with nephritis, nephrotic syndrome, nephrosis;
(c) patients admitted to acute care with other conditions
(OTH) who did not have any KS or GUD diagnosed
(any ICD-9 code not including 580–599) to represent a
general patient population; (d) patients admitted with
acute localized pain (ALP) of abdominal (ICD-9 code:
789.0), back (ICD-9 code: 724.2), flank, or groin (identi-
fied through patients’ electronic chart record). In
addition to ICD-9 codes, we also examined recorded
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charted events on ALP from the dataset. Patients with
both KS and GUD codes were put into the KS group.
Each patient was associated to a covariate vector of
demographic info, vital signs, clinical diagnoses, proce-
dures, medicaments, and laboratory tests performed dur-
ing hospitalization.

Statistical analysis
Descriptive analysis was used to assess demographic char-
acteristics (e.g. gender, age, insurance status, and religion),
vital signs (e.g. BMI, blood pressure), laboratory tests (e.g.
creatinine), and distribution of ICD-9 diagnoses at admis-
sion and during hospitalization. We also calculated the
Charlson Comorbidity Index (CCI) using Deyo’s algorithm
[11], and the estimated glomerular filtration rate (eGFR)
using the CKD-EPI (Chronic Kidney Disease Epidemi-
ology Collaboration) equation equation [12].
Due to a low frequency of KS, we included only ICD-9

diagnostic codes that were occurred in less than 5
counts of the KS group, and lab tests that performed in
at least 50% of the KS formers. Missing values were im-
puted via population median/mode. Univariate analysis
was conducted to assess differences between KS and
GUD/OTH/ALP groups on demographics, ICD-9 diag-
noses, and lab tests, using Student’s t-test, Wilcoxon
rank test, or chi-square test, where appropriate. Signifi-
cance p-values were adjusted using False Discover Rate
(FDR) correction [13].
In order to infer a KS diagnostic score, we fitted a col-

lection of multivariable logistic regression models with
the GUD, OTH or ALP as negative examples, using dif-
ferent input covariate domains. Specifically, we evaluated
seven models: (a) demographic variables and vital signs
(including blood pressure, heart rate and body
temperature) (b) CCI, plus demographic variables; (c)
eGFR alone; (d) ICD-9 diagnosis (top-25 as selected by
the univariate filter, i.e. the top-25 variables that were
differently distributed between KS and other groups),
plus demographic variables; (e) laboratory tests (top-25
as selected by the univariate filter), plus demographic
variables; (f ) ICD-9 diagnosis and laboratory tests
(top-50 as selected by the univariate filter), plus all other
variables included in models (a) to (e); (g) stepwise (for-
ward-backward) selection of model (f ); (h) STONE
model. Note that ICD-9 codes used to define the GUD
were not used as input covariates to any of the models,
except for the STONE model where hematuria (ICD-9
code 599.7) is a covariate. Also, the duration of pain to
presentation in the STONE score could not be precisely
ascertained from our data; we used ICD-9 codes in the
338 s family plus codes 780.96 and 789.0, excluding
chronic pain entries, using a weight of 2 (the STONE
score a < 6 h pain is weighted 3 and 6–24 h pain is
weighted 1, but duration of pain was not available in our

data set). In addition to ICD-9 codes, we also used
charted events to identify pain events. For nausea/vomit-
ing we used ICD-9787.0 codes. In a sensitivity analysis,
we also evaluated the contribution of GUD codes to
overall performance of models (d) to (g).
Model comparison, evaluation, and selection were carried

out using a 10-fold cross-validation framework [14],
comparing performance index (see below) distributions
from the repeated sampling folds using Bengio and
Nadeau’s correction to the Student’s t-test [15].however, th.
In addition to logistic regression, we also fit a number

of machine learning techniques on the full variable set
as in model (f ). In details: (i) a decision tree by means of
the C4.5 algorithms [16]; (ii) LogitBoost algorithm in
conjunction to logistic regression [17]; (iii) a random for-
est (optimizing number of trees up to 1000) [18]; (iv) a
super learner stacking all the above methods plus a
single-rule linear model, internally optimized via 5-fold
cross-validation [19]. Given the high class imbalance, in
addition to the standard model fit, we also used the
synthetic minority over-sampling technique (SMOTE)
internally to the cross-validation [20]. The univariate
feature selection for these machine learning algorithms
was done internally within the cross-validation setting.
The performance and discriminative ability of models

was assessed using sensitivity (true positive rate), specifi-
city (true negative rate), and the area under the receiver
operating characteristic (AUROC), which is the expect-
ation that a uniformly drawn random positive case is
ranked before a uniformly drawn random negative (an
area of 100% represents a perfect test; an area of 50%
represents a worthless test) [21]. The optimal sensitivity/
specificity cutoff was chosen based on the maximal of
the Youden’s J statistic [22]. All statistical analyses were
conducted using SAS software ver. 9.4 (SAS Institute
Inc., Cary, NC, USA) and Weka ver. 3.9 [23].

Results
There were 38,597 distinct adult patients (> 18-year-old)
in the MIMIC-III database admitted to critical care units
between June 2001 to October 2012 (90% from
emergency room admission, 8% elective surgery, and 2%
urgent care services), of which 217 were diagnosed with
KS, 14,391 with GUD, 23,931 as OTH who did not have
any GUD nor KS, and 7446 as ALP with abdominal,
back, flank, groin pain.
Table 1 summarizes population characteristics among

the three groups. There was an excess of females in the
KS group as compared to other three groups (45.2% vs.
54.3%, 58.1% and 52.4%, respectively, p < 0.05). Most
sample population were admitted through emergency or
urgent (84.2%). The distribution of race was similar be-
tween KS and GUD, but comparing to OTH and ALP,
KS had a higher proportion of white (76.5% vs. 71.1%
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and 72.7%) and black African American (10.6% vs 6.0%
and 7.4%, p = 0.008). The median eGFR in KS was 65.3,
lower than in OTH (93.1, p = 0.0013) and ALP (77.3,
p < 0.0001), but higher than GUD (49.3, p < 0.0001).
The median (IQR) STONE score in KS formers was
4, higher than in GUD (2, p < 0.0001) or in OTH (2,
p < 0.0001), but not different from ALP (4, p = 0.46).
Figure 1 shows the comparison of the distributions of
age categories by gender, CCI and BMI in the three
groups of KS, GUD and OTH. The highest rates of
KS were seen in the age group 71–80 for both males
(30%) and females (23%), and the rates of KS increased
significantly after 50 years-of-age in males, while in fe-
males a steady increase was observed after 30 years-of-age
with a leveling off after 70 years. As for BMI, KS had the
highest overall distribution (median 29.1) among all four
groups (median of GUD, OTH and ALP: 27.5, 27.2, 27.0),
it also had the highest proportion of obese (17% vs 11% in
GUD, 9% in OTH and 2% in ALP, all p-values < 0.05).
Figure 2 shows the most frequent ICD-9 diagnoses in

all four groups of KS, GUD, OTH and ALP, collating the
top-10 frequencies of each group. Essential hypertension

(45.8%), disorders of fluid, electrolyte, and acid-base bal-
ance (44%), and septicemia (41.7%) were most frequently
diagnosed conditions among KS patients. Some of these
high frequency comorbidities also had different distribu-
tion in KS compared to other groups. For example, rates
of septicemia and certain adverse effects (including
anaphylaxis, unspecified medication adverse effects, un-
specified allergy, etc.) in KS were higher than in GUD,
OTH or ALP (18%, 36% and 23% higher respectively).
The proportion of essential hypertension was 10% higher
in KS than GUD or ALP but was similar to the rate in
OTH; heart failure and hypertensive renal disease had
much lower rates (14% and 16% less respectively) in KS
than in GUD, but the rates were higher in KSF compa-
ring to OTH (8% and 10% higher).
When looking at the STONE variables, we found

that hematuria was positively associated with KS
(7.4% vs. 4.6% in GUD, p = 0.051, and vs. 1.1% in
OTH, p < 0.0001, and vs. 1.5% in ALP, p < 0.0001);
98.6% of KS formers had experienced pain while
53.1% of GUD and 57.6% of OTH had pain events
(both p < 0.0001); 0.92% of KS formers had vomiting

Table 1 Characteristics of the study population (n = 38,597), stratified by outcome group

kidney stones (KS) other genitourinary diseases (GUD) other conditions (OTH) acute localized pain (ALP)

% (N) % (N) p-value % (N) p-value % (N) p-value

Total 217 14,391 23,931 7446

Gender

Male 45.2% (98) 54.3% (7816) 0.0072 58.1% (13895) 0.0001 52.4% (3902) 0.04

Ethnicity

White 76.5% (166) 72.0% (10359) 0.34 71.1% (17007) 0.0008 72.7% (5413) 0.04

Black 10.6% (23) 10.4% (1493) 6.0% (1445) 7.4% (549)

Hispanic 3.2% (7) 2.9% (416) 3.5% (833) 3.1% (231)

Asian 1.4% (3) 2.5% (358) 2.3% (555) 1.7% (124)

Other 8.3% (18) 12.2% (1765) 17.1% (4091) 15.2% (1129)

Insurance

Medicare/Medicaid/Government 67.3% (146) 77.6% (11164) 0.0002 57.8% (13837) 0.0094 64.7% (4814) 0.48

Self pay/Private 32.3% (70) 21.7% (3130) 40.4% (9671) 34.4% (2560)

Missing 0.5% (1) 0.7% (97) 1.8% (423) 1.0% (72)

Admission type

Elective 9.2% (20) 8.2% (1176) 0.92 20.2% (4841) < 0.0001 16.0% (1193) 0.01

Emergency 89.4% (194) 89.6% (12895) 76.9% (18406) 80.7% (6005)

Urgent 1.4% (3) 2.2% (320) 2.9% (684) 3.3% (248)

Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Age 67 (56–77) 72 (59–82) < 0.0001 62 (50–75) 0.0049 64 (51–77) 0.083

BMI 29.1 (28.3–30.5) 27.5 (26.9–27.6) 0.15 27.2 (27.2–27.2) 0.0023 27.0 (26.9–27.1) < 0.0001

Charlson Index 1 (0–2) 2 (1–4) < 0.0001 1 (0–2) 0.74 1 (0–3) 0.12

eGFR 50.8 (33.4, 81.9) 38.9 (22.5, 62.3) 0.0013 82.5 (59.1, 98.7) < 0.0001 65.1 (37.3, 93.9) < 0.0001

STONE 4 (2–4) 2 (2–4) < 0.0001 2 (2–4) < 0.0001 4 (2–4) 0.46

Chen et al. BMC Medical Informatics and Decision Making  (2018) 18:72 Page 4 of 14



and 0.46% had nausea recorded, and the percentages
of vomiting and nausea in KS were slightly higher
than in other three groups. Hydronephrosis (variable
from STONE-PLUS) was also positively associated
with KS (35.94% vs. 1.54% in GUD, p < 0.0001 and vs.
0% in OTH, p < 0.0001).
Next, we performed univariate analysis of ICD-9 diag-

nosis and lab tests comparing KS with GUD/OTH/ALP.
A total of 940 distinct three-letter ICD-9 codes were
identified in the whole study population; after code
filtering based on low frequency (< 5 cases in KS), 83

variables remained. For laboratory tests, a total of 754
entries were found, further condensed to 637 by manual
inspection of physicians, and reduced to 69 after fre-
quency filtering. The frequencies of missing values of
these included lab tests ranges from 0 to 45%, 66.0% and
45.2% in GUD, OTH and ALP respectively, with the
majority of them have less than 50% of missing.
Table 2 shows frequencies of the top ICD-9 diagnosis

identified through univariate analysis, selecting those
with an FDR-adjusted p-value below 0.1 (up to the
top-25). Overall, 7 ICD-9 were differentially distributed

Fig. 2 Prevalence of the top-10 most frequent ICD-9 diagnoses in KS, GUD, OTH and ALP groups

Fig. 1 Distributions of age categories by gender, CCI and BMI in KS, GUD, OTH and ALP groups
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between KS and GUD at the 5% FDR level, while 25 of
them were found different between KS and OTH or
ALP at the same significance level. Out of the 69 lab
tests performed in more than half of KS patients, 43, 50,
and 25 showed a significant (5% FDR level) mean or
distribution location shift between KS vs. GUD, KSF vs.
OTH, and KSF vs. ALP, respectively. The top-25 lab tests
rank is shown in Table 3.
In order to derive a multi-domain diagnostic model of

KS diagnosis, we fitted different logistic models on se-
lected covariate input domains, as specified in the
Methods section, and compared against the STONE.
Table 4 summarizes the performance indices for models
(a) through (h), showing average (st.dev.) AUROC, sensi-
tivity, specificity across 10-fold cross-validation runs (i.e.
results obtained on the test data), along with the best
Youden’s J. Figure 3 (top panels) shows the ROC curves
for each model, also obtained by averaging the 10 tests
sets, for the KS vs.)GUD, KS vs. OTH, and KS vs. ALP
data samples. Overall, model (f ), i.e. the top-ranked

ICD-9 diagnosis and laboratory tests plus demographic
variables, and model (g), i.e. the stepwise selection of
features included in model (f ), showed the best perfor-
mance, with AUROCs ~ 80%. All other models were sig-
nificantly less performant (adjusted p < 0.05) than these
two. Following cross-validated AUROC ranking, the sec-
ond best-performing models were those with top-ranked
ICD-9 codes (d), laboratory tests (e), CCI (b), eGFR (c),
and demographics alone (a).
Notably, models using top-ranked ICD-9 diagnostic

codes showed high sensitivity and moderate specificity,
while models using top lab tests showed moderate sensi-
tivity and high specificity, while both high sensitivity and
high specificity were achieved in the multi-domain
models. The STONE model (h) yielded relatively low
AUROC (62% for KS vs. GUD, 64% for KS vs. OTH, and
61% for KS vs. ALP).
When we added the ICD-9 code for hematuria and

other GUD codes to the set of input variables for models
(f ) and (g), performance increased significantly: For KS

Table 2 Top-ranked ICD-9 diagnoses differentially associated with KS vs. GUD / OTH / ALP

ICD-
9
code

Condition frequency
in kidney
stones (KS)

other genitourinary
diseases (GUD)

other conditions (OTH) acute localized pain (ALP)

frequency p-value* frequency p-value* frequency p-value*

401 Essential hypertension 45.6% (99) 35.4% (5101) 0.02 48.5% (11447) 0.63 37.6% (2797) 0.0224

276 Disorders of fluid, electrolyte, and acid-base balance 43.8% (95) 45.6% (6565) 0.78 18.3% (4375) < 0.0001 27.9% (2047) < 0.0001

38 Septicaemia 41.5% (90) 23.4% (3361) < 0.0001 5.4% (1297) < 0.0001 16.3% (1216) < 0.0001

995 Certain adverse effects 39.6% (86) 21.4% (3078) < 0.0001 4.8% (1159) < 0.0001 13.2% (983) < 0.0001

785 Symptoms involving cardiovascular system 24.9% (54) 18.5% (2664) 0.09 5.7% (1353) < 0.0001 11.1% (827) < 0.0001

428 Heart failure 24.9% (54) 38.3% (5508) 0.00 16.2% (3867) 0.002 29.3% (2185) 0.1945

41 Other bacteria infections 21.2% (46) 16.3% (2350) 0.14 3.1% (752) < 0.0001 7.5% (559) < 0.0001

287 Purpura and other hemorrhagic conditions 12.9% (28) 11.7% (1680) 0.76 5.1% (1211) < 0.0001 7.9% (589) 0.0293

790 Nonspecific findings on examination of blood 12.0% (26) 9.8% (1413) 0.54 5.2% (1243) < 0.0001 6.0% (449) 0.0019

403 Hypertensive renal disease 11.1% (24) 27.0% (3892) < 0.0001 1.2% (278) < 0.0001 10.8% (805) 0.9642

278 Obesity and other hyperalimentation 10.1% (22) 6.0% (863) 0.08 4.7% (1121) 0.001 4.2% (315) 0.0003

311 Depressive disorder, not elsewhere classified 10.1% (22) 7.7% (1104) 0.77 5.9% (1403) 0.01 4.7% (351) 0.0015

300 Neurotic disorders 9.2% (20) 5.68% (817) 0.08 5.71% (1366) 0.03 4.0% (295) 0.0003

327 Sleep disorders 9.2% (20) 5.4% (778) 0.09 3.5% (843) < 0.0001 2.9% (212) < 0.0001

112 Candidiasis 8.8% (19) 4.3% (619) 0.02 2.0% (479) < 0.0001 4.0% (298) 0.0023

416 Chronic pulmonary heart disease 7.8% (17) 6.9% (989) 0.77 3.4% (809) 0.001 4.3% (317) 0.0365

799 Decreased libido and other ill-defined conditions 7.4% (16) 4.7% (668) 0.19 2.4% (569) < 0.0001 2.5% (186) < 0.0001

788 Symptoms involving urinary system 7.4% (16) 5.7% (820) 0.77 3.0% (712) 0.001 3.1% (229) 0.0019

288 Diseases of white blood cells 6.0% (13) 4.7% (674) 0.77 2.6% (629) 0.001 2.0% (148) 0.0004

574 Cholelithiasis 5.5% (12) 2.9% (419) 0.11 1.6% (392) < 0.0001 3.1% (230) 0.0558

570 Acute and subacute necrosis of liver 4.1% (9) 5.0% (717) 0.76 0.8% (184) < 0.0001 3.1% (228) 0.4404

345 Epilepsy 3.7% (8) 3.4% (491) 0.87 2.9% (688) 0.48 1.5% (111) 0.0345

346 Migraine 2.8% (6) 0.79% (113) 0.02 1.32% (316) 0.11 0.8% (57) 0.0052

* first 25 ICD-9 codes or those with a false discovery rate-adjusted p-value< 0.05 are shown
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vs. GUD, model (g) achieved AUROC of 88% (p < 0.0001
w.r.t. models with non GUD-specific ICD-9 codes) with
sensitivity of 77% and specificity of 87%; for KS vs.
OTH, model (g) achieved AUROC of 98% (p < 0.0001),
with sensitivity of 88% and specificity of 98%; for KS vs.
ALP, model (g) achieved AUROC of 87% (p < 0.0001),
with sensitivity of 81% and specificity of 82%. Model (f )
had very similar performance (not shown). However,
these GUD variables were measured concurrently with
KS, so we did not include them in our final prediction
model, but it could be used as input if these GUD
variables happened in one’s history to improve the pre-
dictivity and performance of the models.
When we applied the machine learning techniques,

using the same cross-validation settings, for the
comparison between KS and GUD or OTH, we did not
observe a substantial increase in performance indices
with the usage of the LogitBoost selector in alternative
to the stepwise, but an increased performance was

observed for KS vs. ALP (p < 0.0001). The variables
selected by the LogitBoost were concordant with the
variables selected from stepwise logistic regression
model (g), although the LogitBoost tended to select a
few more. The decision tree showed a peculiar behavior
as compared to the logistic regression, with increased
sensitivity at higher specificity but then lower plateau.
The random forest showed higher (almost perfect)
AUROC and sensitivity/specificity (significant below the
0.0001 level with respect to the logistic regression and
decision tree) and the super learner was comparable to
the random forest. In fact, the highest weight of the
super learner was that of the random forest, followed by
the decision tree, a single rule, and the LogitBoost. The
bottom panels of Fig. 3 show the cross-validated ROC
curves corresponding to KS vs. GUD, KS vs. OTH, and
KS vs. ALP. The decision tree for KS vs. ALP is depicted
in Fig. 4. Using the SMOTE, performance results for all
models were lower but ranking similar (not shown).

Table 4 Comparison of prediction performance of different models, using 10-fold cross validation

Model/Outcome AUC Sensitivity Specificity J

kidney stones (KS) vs. other genitourinary diseases (GUD)

(a) Demographic 0.63 (0.02) 0.69 0.51 0.20

(b) Charlson’s comorbidity index 0.69 (0.02) 0.69 0.62 0.31

(c) eGFR 0.62 (0.02) 0.65 0.56 0.21

(d) ICD 0.74 (0.02) 0.75 0.63 0.38

(e) Labs 0.76 (0.02) 0.67 0.74 0.41

(f) All 0.81 (0.02) 0.75 0.76 0.51

(g) All (Stepwise) 0.80 (0.02) 0.76 0.71 0.47

(h) STONE 0.62 (0.02) 0.55 0.64 0.19

KS vs. other conditions (OTH)

(a) Demographic 0.65 (0.02) 0.64 0.62 0.27

(b) CCI 0.65 (0.02) 0.68 0.57 0.25

(c) eGFR 0.71 (0.02) 0.59 0.75 0.35

(d) ICD 0.82 (0.02) 0.68 0.87 0.55

(e) Labs 0.90 (0.01) 0.81 0.87 0.68

(f) All 0.92 (0.01) 0.90 0.80 0.70

(g) All (Stepwise) 0.92 (0.01) 0.90 0.81 0.71

(h) STONE 0.64 (0.02) 0.62 0.65 0.27

KS vs. acute localized pain (ALP)

(a) Demographic 0.60 (0.02) 0.71 0.47 0.18

(b) Charlson’s comorbidity index 0.62 (0.02) 0.60 0.61 0.21

(c) eGFR 0.57 (0.02) 0.59 0.44 0.15

(d) ICD 0.77 (0.02) 0.74 0.69 0.43

(e) Labs 0.85 (0.02) 0.66 0.90 0.56

(f) All 0.88 (0.01) 0.78 0.85 0.63

(g) All (Stepwise) 0.86 (0.01) 0.81 0.82 0.63

(h) STONE 0.61 (0.02) 0.58 0.60 0.18
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The final model of choice was the stepwise-selected
model (g), because in conjunction with optimal per-
formance, it included fewer variables than model (f )
(15 variables for each comparison vs. 50 variables in
model (f )). Table 5 displays the final model (with
odds ratios and confidence intervals) which we name
as the Diagnostic Acute Care Algorithm for Kidney
Stones (DACA-KS). The stepwise regression for KS
vs. GUD yielded a few nonspecific predictors (e.g.
nonspecific findings on examination of blood (ICD-9:
790), Other complications of procedures (ICD-9:998))
which were removed without loss in performance. In
addition, although random forest and super learner
showed better performance, given the high class im-
balance we have in the sample population, we cannot
sure about the generalizability of these models in
different dataset, so we focused more on interpretabi-
lity especially when the logistic regression model had
good performance as well. In fact, the SMOTE
performance estimates of the super learner as well as
of the random forest are lower.

Discussion
In this large sample of individuals admitted to acute care
between 2000 and 2012, we aimed to infer a multi-domain,
personalized, diagnostic algorithm risk assessment for KS
disease. With a robust model collection and selection
framework, under cross-validation settings, we demon-
strated that the integrated model improves both specificity
and sensitivity as compared to a single domain model. Also,
it includes more extensive parameters compared to the
STONE score. The STONE score utilizes presentations of
KS-related symptoms (pain, hematuria, nausea/vomiting)
and two demographic predictors (gender and race). In our
sample population, only a small proportion of (KS) patients
had hematuria and nausea/vomiting present or recorded.
Our study evaluated thousands of potential predictors
among the different domains, comparing relative propor-
tions and shifts in distributions between KS formers and
the GUD, OTH and ALP groups, our model can make per-
sonalized prediction for each individual based on his/her
parameters from different domains. The features used in
our final models are usually routinely tested in critical care

Fig. 3 Model comparison via AUROC. Legend: Left panels: kidney stone (KS) formers vs. other genitourinary diseases (GUD); middle panels: KS vs.
other non-genitourinary (OTH) conditions; right panels: KS vs. acute localized pain (ALP) in the abdomen, back, flank, or groin. Top panels: logistic
regression models upon stepwise feature selection, fit on selected input domains; Bottom panels: comparison of machine learning techniques on
the full input set. Curves shown are averaged over 10-fold cross-validation, i.e. using the test sets
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unit, or tested at admission, therefore, all information to
implement our model should be available in an ICU setting,
and can be easily adapted to different clinical settings by
adding or removing features. We report a series of novel
findings in KS that are significantly different than GUD,
OTH and ALP populations and which could aid in the tri-
age of patients when they present to the ED or are admit-
ted/transferred into critical care. A number of these
variables are worth of discussion in detail.
In our study cohort, we found that KS peaked at the 7th

decade of age; with variation of prevalence at different age
groups between both genders, overall, we found a higher
prevalence of females in this cohort. KS prevalence was the
highest in non-Hispanic whites, similarly to other studies
[1]. Lower rates of private insurance coverage were found
in KS (comparing with OTH), which suggests that
socio-economic status may contribute to risk factors associ-
ated with KS. Previous studies showed that lower income
[1] and lower coverage of private insurance [24] are associ-
ated with higher risk of KS [25].

In our population, KS formers had the highest preva-
lence of obesity when compared to the GUD/OTH/ALP
groups, and our final multivariate model suggested that
patients with obesity are two times more likely to be di-
agnosed with KS comparing with GUD or ALP patients.
We found that KS, OTH and ALP were a healthier co-

hort with lower CCI and higher eGFR when compared
to the GUD. Previous studies have demonstrated that
KS formers have higher risk of developing chronic
kidney diseases [4, 26]; in fact, in our study we found a
tendency to a decreased eGFR in KS with respect to
OTH/ALP groups, and this points to the necessity of
monitoring and management of KS to prevent progres-
sion into chronic kidney disease.
The most common diagnosis associated with ED visits

was hypertension, and its prevalence was higher in pa-
tients with KS comparing to GUD and ALP. Disorders
of fluids, electrolytes, and acid-base balance was also fre-
quently found in KS and GUD, but not in the diagnosis
in the OTH/ALP group. A meta-analysis found that

Fig. 4 Decision tree for the diagnosis of KS patients vs. ALP patientsLegend: Each leaf node contains the predicted class (1 if KS, 0 if ALP) and the
numbers between parentheses indicate total number of instances (first number) reaching the leaf, and the number of those instances that are
misclassified (second number).
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increasing water intake was associated with significantly
reduced risk of kidney stones and it was dose dependent
for each increase of 500 ml of water [27]. For KS for-
mers, the single most significant preventive measure is
increasing fluid intake. In the GUD population, disorders
of fluids and electrolytes are a well-known entity. In
addition, diseases of acid base and electrolytes such
as renal tubular acidosis (RTA) and partial RTA,
which may present with hyperchloremic acidosis,
hypokalemia, and normal or minimally reduced GFR
[28], also have a higher prevalence of KS [29]. Inter-
estingly, in our KS cohort we found higher levels of
serum chloride and lower levels of serum bicarbonate,
lower serum potassium levels, and elevated urine
protein comparing to the GUD/OTH/ALP groups,
Additional research efforts may be able to fully eluci-
date the significance of these findings.

We found that purpura and other hemorrhagic condi-
tions were higher in the KS population when compared
to the OTH/ALP population but there was no significant
difference when compared to the GUD group.
The distribution of serum lipase and creatinine kinase

MB isoenzyme were significantly lower in KS as compared
to the GUD and OTH/ALP groups. Renal handling of lip-
ase involves removal of lipase from serum by glomerular
filtration of lipase with nearly complete absorption of free
oxalate in the bowel lumen [30]. Disorders of lipid meta-
bolism have been associated with the metabolic syndrome
and obesity [31]. Lower levels of lipase in the KS group
needs to be further elucidated as there have not been pre-
vious reports of this finding. Creatinine kinase MB
(CK-MB) is an enzyme that is elevated in renal disease
and it may be elevated even in the absence of myocardial
injury; however, the significance of its elevation is

Table 5 The Diagnostic Acute Care Algorithm - Kidney Stones (DACA-KS)

Items Kidney Stones vs. Other
Genitourinary Diseases

Kidney Stones vs.
Other Conditions

Kidney Stones vs.
Acute Localized Pain

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Insurance 1.70 (1.25, 2.32) 0.001

Charlson Comorbidity Index 0.81 (0.75, 0.88) < 0.0001 0.91 (0.84, 0.97) 0.01 0.88 (0.82, 0.94) 0.001

Certain adverse effects (ICD-9: 995) 2.93 (2.14, 4.00) < 0.0001 6.33 (4.47, 8.96) < 0.0001

Hypertensive renal disease (ICD-9: 403) 0.55 (0.34, 0.89) 0.01 5.37 (2.96, 9.77) < 0.0001

Obesity and other hyperalimentation (ICD-9: 278) 2.06 (1.28, 3.32) 0.003 2.18 (1.25, 3.82) 0.04

Candidiasis (ICD-9: 112) 2.37 (1.39, 4.06) 0.002

Decreased libido and other ill-defined conditions (ICD-9: 799) 2.30 (1.35, 3.93) 0.002 1.98 (1.08, 3.64) 0.03 3.40 (1.85, 6.27) 0.001

urine white blood cells (WBC) 1.13 (1.10, 1.16) < 0.0001 1.26 (1.22, 1.30) < 0.0001 1.15 (1.11, 1.19) < 0.0001

urine pH 1.45 (1.20, 1.74) < 0.0001

urine protein 1.26 (1.01, 1.57) 0.04 2.19 (1.78, 2.69) < 0.0001 1.99 (1.61, 2.45) < 0.0001

blood Magnesium 0.17 (0.08, 0.35) < 0.0001

blood Chloride 3.97 (2.06, 7.65) < 0.0001 5.05 (2.02, 12.59) 0.001 2.67 (1.01, 7.03) 0.05

blood Albumin 1.78 (1.37, 2.32) < 0.0001

blood red blood cells (RBC) 1.60 (1.22, 2.10) 0.001 1.49 (1.11, 1.99) 0.01 1.77 (1.24, 2.52) 0.002

Disorders of fluid, electrolyte, and acid-base balance (ICD-9: 276) 1.70 (1.23, 2.37) 0.002

Other bacteria infections (ICD-9: 041) 5.47 (3.60, 8.31) < 0.0001 2.67 (1.81, 3.93) 0.01

Sleep disorders (ICD-9: 327) 3.06 (1.76, 5.31) < 0.0001 3.29 (1.80, 6.02) 0.001

Chronic pulmonary heart disease (ICD-9: 416) 2.07 (1.13, 3.79) 0.02

Acute and subacute necrosis of liver (ICD-9: 570) 3.14 (1.38, 7.14) 0.01

blood pO2 0.52 (0.36, 0.76) 0.001

Neurotic disorders (ICD-9: 300) 2.28 (1.34, 3.88) 0.03

Hyperplasia of prostate (ICD-9: 600) 2.88 (1.48, 5.60) 0.02

blood CO2 0.70 (0.61, 0.80) < 0.0001

blood phosphate 0.60 (0.47, 0.76) < 0.0001

urine bands 1.15 (1.07, 1.24) 0.002

urine RDW 0.79 (0.71, 0.88) < 0.0001
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controversial [32]. Further investigation is warranted to
unveil both the role of low lipase and CK-MB isoenzyme
in KS formers.
A set of neurologic findings in our study demonstrated

that migraine headaches were higher in KS and OTH
compared to GUD/ALP. Sleep disorder, neurotic dis-
order, and depression disorder were also higher in KS
patients. Migraine headache medications such as Topa-
max promote an (RTA)-like phenomenon [33]. Sleep
disorders and fatigue have been associated with migraine
headaches [34]. In our analysis, sleep disturbances and
low libido were correlated with the diagnosis of KS when
compared to GUD, OTH and ALP. Low libido due to
low testosterone could be correlated with poor sleep
quality, since a normal circadian rhythm/cycle is neces-
sary for central effects on normal testosterone produc-
tion [35]. Low testosterone levels not only associated
with low libido but also have been related with KS,
Otunctermur et al. showed that male KS patients had
lower testosterone levels, although the potential causal
relationship were not confirmed [36].
Perhaps the most important finding and among high

morbidity and mortality conditions, septicemia and can-
didiasis were found to have a high correlation with KS
formers only. Reyner et al. [37] reported that of patients
presenting to the ED with urosepsis, one-tenth pre-
sented with anatomic urinary obstruction, and that mor-
tality was higher in this group, occurring in almost
one-third of cases. Early imaging is suggested in this
group of patients, due to suspected anatomic obstruc-
tion and need for immediate intervention to avoid mor-
tality. Our data confirms this finding of a higher rate of
urosepsis in KS patients when compared to other
groups. This suggests that, as part of an algorithm to
identify patients with KS, a high index of suspicion
should trigger immediate action with early imaging to
identify anatomic urinary obstruction in septic patients
to prevent mortalities. In addition, the presence of can-
didiasis was found to have a higher association a KS
diagnosis. Candidiasis is a fungal infection that can vary
in presentation-from local to systemic and invasive, it
may be found among debilitated, elderly and inpatients
with indwelling urethral catheters [38], combining with
our findings, patients presenting to the ED with candi-
duria may be considered for immediate imaging to iden-
tify any potential anatomic obstruction of the urinary
tract. Interestingly, some variables in the model were
not directly associated with risk of kidney stone: com-
paring to OTH patients, KS patients were more likely to
have chronic pulmonary heart disease or acute and sub-
acute necrosis of liver. These conditions might be associ-
ated with certain KS prognostic outcomes. Future
studies the help further the understandings of these as-
sociations are needed.

There are several limitations of our study. First, we
analyzed a sample from a single site, without external
validation; the characteristics of patients in the KS,
GUD, OTH and ALP are different and there may be
a selection bias which we did not adjust for. In
addition, many potentially useful lab tests were
dropped because of low frequency in the KS group;
other relevant lab predictors for KS may be found
outside those routinely measured in people being
triaged at the ED based on admission’s symptoms.
Second, there was a high-class imbalance, for which
the power of the study can be affected, as well as the
derivation of a diagnostic model, even though we
tried to address in part this issue using the SMOTE
technique. Third, when using logistic regression, we
did not consider interactions among variables (consid-
ering only two-ways interactions would have produced
n2 variables, and we would have needed to use more
efficient libraries, with parallel or cloud computing),
therefore the model assumed a linear relationship. En-
semble methods, i.e. the random forest and the super
learner, achieved almost perfect performance, but the
result was not confirmed with the SMOTE class
rebalancing, and this warrants further external
validation using the TRIPOD protocol [39]. Even
though we used nested cross-validation for parameter
optimization, there may have been overfitting. Fourth,
we acknowledge a subpar calculation of the STONE
score because we could not assess the duration of
pain, and the small number of subjects with vomiting
and nausea in our sample indicating there may be
under-reporting during data collection. Due to the
cross-sectional nature of this study, we cannot deter-
mine the causality of the predictors for KS formation,
but even using longitudinal database with variables
only from earlier data, the causality of the predictors
is still unable to be confirmed. Future studies may
help address these limitations and help designing
early-risk diagnostic models applicable to the general
population.
Despite these limitations, our study provided a com-

pact and high-performance diagnostic model for diagno-
sis of KS.

Conclusions
DACA-KS could be integrated into electronic health
systems; the algorithm has the potential used as an
effective tool to help nurses and healthcare personnel
during triage or clinicians making a diagnosis, streamlin-
ing patients’ management in acute care. As we enter the
era of precision medicine, we envision a family of
DACA- models for many other conditions in addition to
KS, derived in the same way from big integrated
biomedical data bases.
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