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Gershon and Kondo described CD8" Treg lymphocytes as the first ones with regulating activity due to their tolerance ability to
foreign antigens and their capacity to inhibit the proliferation of other lymphocytes. Regardless, CD8" Treg lymphocytes have
not been fully described—unlike CD4" Treg lymphocytes—because of their low numbers in blood and the lack of specific and
accurate population markers. Still, these lymphocytes have been studied for the past 30 years, even after finding difficulties
during investigations. As a result, studies have identified markers that define their subpopulations. This review is focused on the
expression of cell membrane markers as CD25, CD122, CD103, CTLA-4, CD39, CD73, LAG-3, and FasL as well as soluble
molecules such as FoxP3, IFN-y, IL-10, TGF-p, IL-34, and IL-35, in addition to the lack of expression of cell activation markers
such as CD28, CD127 CD45RC, and CD49d. This work also underlines the importance of identifying some of these markers in
infections with several pathogens, autoimmunity, cancer, and graft-versus-host disease as a strategy in their prevention,

monitoring, and cure.

1. Introduction

In general, CD8" Treg lymphocytes have been character-
ized as a heterogeneous population consisting of lymphoid
cells that express certain surface markers depending on
their inhibition activity and the microenvironment they
are found in [1].

In 1970, Gershon and Kondo described CD8" Treg
lymphocytes for the first time when they published the
results of experiments using mice. The study described a
population of lymphocytes from bone marrow responsible
for tolerance. These cells were originally called “suppressor
T lymphocytes.” In their work, the researchers proved the
cross-reactivity of related antigens by immunizing mice,
first using sheep erythrocytes and then horse erythrocytes.

The treatment induced tolerance to horse red blood cells
in mice that had been immunized with high levels of sheep
red blood cells. This tolerance was proven to be mediated
by thymic cells [2]. They later proved the regulatory role of
peripheral thymocytes, specifically those located in the spleen
[3]. The study of these cells was further developed in 2007
under the concept of CD8" Treg cells in the context of some
viral infections and development of some tumors. These
works established the indirect importance of IFN-y in the
induction of their regulatory activity through molecules as
indoleamine 2,3-dioxygenase (IDO) [4].

It is currently known that CD8" Treg lymphocytes have
an inhibitory effect through soluble factors or cell-cell con-
tact. In murine and human models, different works have
described a number of regulatory mechanisms mediated by
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FiGure 1: CD8" Treg lymphocyte. CD8" Treg lymphocytes have different suppression mechanisms of cell activation and survival, using their
own molecule expression: IL-2 receptor a-chain (CD25), IL-2 and IL-15 receptor 3-chains (CD122), inhibitory receptor CD152 or CTLA-4,
ectoenzymes CD39 and CD73 degrading ATP to ADP (CD39) and AMP to adenosine (CD73), an MHC-II-binding molecule called LAG-3
(lymphocyte activation gene-3), and the apoptosis-inducing molecule FasL. This T cell subset expresses low or absent costimulatory receptor
CD28 and the IL-7 receptor a-chain (CD127), the cellular activation molecule CD45RC, and the integrin CD49d and releases cytokines as
IL-10, IL-34, IL35, and IFN-y; transcription factor FoxP3 inhibits IL-2 gene transcription. APC: antigen-presenting cell; CTLA-4:

cytotoxic T-lymphocyte antigen 4.

CD8" Treg lymphocytes: (a) direct death of target cell [5, 6],
(b) negative signaling through CTLA-4 or PDI1 when
interacting with the antigen-presenting cell [7], and (c)
release of immunosuppressive cytokines as IL-10 and TGF-
B [8, 9]. The suppressor effect is evident when CD8" Treg
lymphocytes are able to inhibit the proliferation of effector
CD4" and CD8" effector T lymphocytes [10]. The immuno-
suppressive effect of CD8" Treg lymphocytes is likely to be
beneficial by reducing the severity of the inflammatory
response present during the development of the graft-
versus-host disease (GVHD) or autoimmune diseases. On
the other hand, it would be beneficial to decrease the CD8"
Treg population in diseases such as cancer or infections
where they participate in the evasion of the immune
response. Proving this effect would shed light on its applica-
tion as preventive or healing cell therapy.

The expression of surface molecules acting as cell markers
helps to phenotypically identify CD8" Treg lymphocytes.
Phenotypic markers include the high expression of the IL-2
receptor a-chain CD25 and expression of CD122 (IL-2 and
IL-15 receptor f-chains), adhesion molecule CD103, ectoen-
zymes CD39 and CD73, the inhibition receptor CD152 or
CTLA-4 (cytotoxic T lymphocyte-associated molecule-4), an
MHC-II-binding molecule called LAG-3, and the apoptosis-
inducing molecule FasL. The soluble molecules that CD8"
Treg lymphocytes can express are FoxP3, IFN-y, IL-10, IL-
34, and IL-35. The absence of activation markers is also
studied when looking for CD8" Treg lymphocytes. The costi-
mulation molecule CD28, the IL-7 receptor a-chain (known as

CD127), the cell activation molecule CD45RC, and the integ-
rin CD49d are absent or show low expression [10] (Figure 1).

1.1. Surface Markers of CD8" Treg Lymphocytes. The overex-
pression of CD25, widely described in CD4" Treg lympho-
cytes, indicates the presence of a regulatory activity,
inhibiting the proliferation of effector lymphocytes in com-
petition for IL-2. Given the high expression of CD25 in the
membrane of Treg lymphocytes, the latter obtain most of
the cytokine, leaving effector T lymphocytes without the sup-
ply of this growth factor. For its part, marker CD25 is com-
monly sought together with transcription factor FoxP3 [11].
In CD8" Treg lymphocytes, it is unclear whether CD25 sub-
tracts IL-2 from the medium as a regulatory mechanism.
However, CD8"CD25" Tregs are present in both human
and mouse and are very sensitive to IL-2 to proliferate com-
pared to T effectors and capable of inhibiting the prolifera-
tion of effector T cells [12].

On the other hand, a subset of CD8"CD122" Treg
lymphocytes in mice has been observed to be efficient in
the suppression of allogeneic, autoimmune, and antitumor
responses. Additionally, CD8"CD122" T cells express large
amounts of IL-15 receptor a-chain (IL-15RA). The pS-
(CD122) and y- (CD132) chains are overexpressive and
common for CD25 and IL-15Ra; however, CD25 is absent
in those cells. Therefore, the distinctive molecule is CD122
and not CD25. That is why these lymphocytes consume
IL-15 to proliferate and not IL-2 [13]. The expression of
CD122 is associated with memory lymphocytes [13, 14].
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Because nonregulatory memory lymphocytes can also
express CD122, the presence of PD-1 is evaluated to confirm
that it is CD8*CD122" Treg [15]. Apparently, TCR-MHC-I
is a mechanism of interaction between these lymphocytes
and the target cells [16], and CD8"CD122" cells regulate
through IL-10 [17].

When CD8*CD122" T cells are eliminated from mice,
there is a growth of specific tumor T cells and infiltration of
effector/memory T cells in the tumor [15, 18]. In mice,
marker CD122 is exclusive of CD8" Treg lymphocytes and
is absent from CD47CD25" Treg lymphocytes [19]. CD122
works as an IL-15 receptor, which promotes survival and
proliferation of CD8" Treg lymphocytes, so that the transfer
of CD8"CD122" T lymphocytes, along with the administra-
tion of recombinant IL-15, promotes its regulatory activity,
extending the survival of mice after pancreas transplant
[18]. Indeed, in mice, CD122 has made a difference between
CD4" and CD8" Treg lymphocytes since, as it has been
already stated, the first often express high levels of CD25
while the latter exhibit elevated levels of CD122. For their
part, CD8"CD122" Treg lymphocytes are related to the suc-
cess of allogeneic transplant via the induction of apoptosis
among alloeffector T lymphocytes and thus inhibiting
transplant rejection [20].

In mice, CD8"CD122" T cells are comparable with
CD8'CXCR3" T cells in humans since they release 1L-10
and suppress IFN-y production by CD8*CXCR3~ effector T
cells [21].

Also known as LFA-1, CD103 is an adhesion molecule
present in T lymphocytes bound to E-cadherin from the
parenchymal epithelial tissue or mucous membranes. This
molecule promotes retention of Treg lymphocytes in such
tissues in areas expressing E-cadherin where the regulation
of immune response is needed. This is highly useful to
identify CD8" Treg lymphocyte subpopulations according
to their location [22]. It must be considered that molecule
CD103 does not provide an exclusive regulatory function
to CD8" Treg lymphocytes given that CD8" effector T
lymphocytes also express it [23, 24].

Ectoenzymes CD39 and CD73 are found on the cell
surface of lymphocytes and other cell lines. While CD39 pro-
duces ADP and AMP via ATP dephosphorylation, CD73
catabolizes AMP to produce adenosine, which inhibits T
lymphocyte response and has an anti-inflammatory effect.
The regulatory activity of adenosine starts after it is bound
to any of its four receptors: Al, A2A, A2B, and A3. Its effect
is greater when bound to receptor A2A. Even though the
pathway through which adenosine signals when it is bound
to its receptor, in vitro studies have found that CD73 inhibits
the proliferation of effector T lymphocytes in mice; such
effects have been proven in CD4" Treg lymphocytes. Because
these markers were later found in human CD8" Treg lym-
phocytes, they are considered therapeutic targets in therapy
against cancer [25-27].

Cytotoxic T lymphocyte antigen-4 (CTLA-4, CD152)
blocks the production of IL-2, the expression of IL-2R,
and the cell cycle of activated T lymphocytes [28]. CTLA-4
antagonizes CD28 and prevents CD28-CD80/CD86 interac-
tion like an inhibition mechanism [29]. Also, when there

is CTLA-4 engagement, the membrane-proximal region
of the CTLA-4 cytoplasmic domain delivers a tyrosine-
independent signal that inhibits T cell activation, another
inhibition mechanism by CTLA-4 [30-32]. Recent works
propose a different CTLA-4 suppressor mechanism that
involves the capture and depletion of its ligands, CD80 and
CD86, from antigen-presenting cells by transendocytosis.
During the process, CD80/CD86 are transferred into
CTLA-4-expressing cells. Therefore, not only does CTLA-4
uptake its ligands and internalize them but also is likely to
degrade them [33-35]. A reduced costimulation in T lym-
phocytes also reduces positive signals between them and
antigen-presenting cells that promote the maturation of the
latter. This event occurs in the infiltration of T cells in some
types of cancer [28, 36, 37]. The subpopulations of Treg
CD8*CTLA-4" suppress the immune response against
tumor, inhibiting the proliferation of effector T lymphocytes,
where they can participate in the regulatory mechanism of
IL-35 [38] and are also able to inhibit dependent allogeneic
responses [39].

For its part, LAG-3 (lymphocyte activation gene 3) is a
molecule with a similar structure to CD4. Because of this
similarity, it competitively binds to MHC-II molecules with
higher affinity than CD4. When it binds to MHC-II in
antigen-presenting cells, it signals in a negative way, unlike
CD4 does [40-42]. Therefore, LAG-3 interacts with the
TCR-CD3 complex and inhibits its signaling [43]. The inter-
action between LAG-3 and MHC-II inhibits the activation
and proliferation of CD4" and CD8" T cells and the produc-
tion of cytokines from a Thl subset [44]. This immune sys-
tem suppression molecule acts against tumors by blocking
them with an antibody, restoring the immune response
[45]. Finally, its presence in regulatory cells can decrease
the severity of autoimmune diseases [46].

FasL is a molecule involved in the induction of apo-
ptosis of a target cell, a mechanism used by CD8" Treg
lymphocytes to kill effector T cells in a direct cytotoxicity.
For this regulatory mechanism to work, it is essential that
the Treg lymphocyte and the target cell express FasL and
Fas, respectively [47, 48].

The characterization of CD8" Treg lymphocytes via the
detection of membrane molecules that identify them should
be complemented with the research on soluble molecules
they express.

1.2. Soluble Molecules. FoxP3 is an intracellular DNA-
binding protein that prevents transcription and probably
involves the direct repression of NF-AT-mediated tran-
scription [4, 49, 50]. It was initially described in scurfy
mice that do not express FoxP3. Studies found that
CD4" T lymphocytes in scurfy mice were chronically acti-
vated, expressing high levels of several activation markers
and cytokines ex vivo. This lymphocyte hyperactivation
phenotype was refractory to inhibition with a number of
drugs, specifically immunosuppressants cyclosporine A
and rapamycin [51]. The phenotype of these mutant mice
is similar to the one observed in CTLA-4-deficient mice,
indicating that FoxP3 is an important regulator of T lym-
phocyte activation [52]. In CD4" Treg lymphocytes, FoxP3



is a suppression marker of cell activation and thus used as
identification marker. For CD8" Treg lymphocytes, the
role of FoxP3 is not so clear since it is only expressed in
less than 5% of CD8" T lymphocytes [53]. However, pop-
ulations of CD8" Treg cells expressing FoxP3 are impor-
tant immune-suppressors during chronic or asymptomatic
infections caused by suboptimal amounts of the infectious
agent [54]. They also play this role during GVHD and skin
transplantation [55].

The proinflammatory cytokine IFN-y polarizes Thl
immune cell response and has been observed to play another
role in CD8" Treg lymphocytes. When producing IFN-y,
these lymphocytes induce IDO production by dendritic and
endothelial cells [4, 56]. This enzyme is responsible for catab-
olizing tryptophan amino acid. This amino acid is essential to
lymphocyte proliferation after activation; therefore, the pres-
ence of IDO leads to a decrease in circulating tryptophan
levels, restricting the proliferation of activated effector lym-
phocytes [57]. The single nucleotide polymorphisms (SNPs)
of the IDO enzyme are related to autoimmune diseases such
as systemic sclerosis [58].

The anti-inflammatory cytokine IL-10 is considered a
characteristic molecule of CD4" Treg lymphocytes. Besides
mediating the anti-inflammatory regulatory action, it is
added to cultures in order to induce CD4" Treg lympho-
cytes in vitro. A similar observation has been made in
CD8" Treg lymphocytes, further proving that IL-10 is an
evidence of the regulatory function of these cells [59].
For example, IL-10 produced by CD8" Treg lymphocytes
inhibits CD4", Thl, and Th2 cell proliferation [60, 61].
In addition, IL-10 suppresses the cytotoxic activity of cyto-
toxic T lymphocytes by the reduction of MHC-I expression
in target cells [62].

A Treg-specific cytokine, IL-34, has an immunosuppres-
sive function and is involved in the maturation of immuno-
regulatory macrophages during immunological tolerance
processes as pregnancy and the inhibition of rejection in solid
organ transplantation [63, 64]. The cytokine carries out its
regulatory function when it is recognized through the Fms
receptor, which it shares with the macrophage colony-
stimulating factor (M-CSF) [65]. Additionally, IL-34 has
been found to be involved in the regulation of several sub-
populations of tissue resident macrophages, including Lan-
gerhans cells and microglia [66].

Another cytokine, IL-35, inhibits the maturation of
dendritic cells and the proliferation of CD4" and CD8"
T cells and the Thl polarization of CD4" T lymphocytes
[67]. Specifically, this cytokine is involved in the suppres-
sive role of CD8" Treg cells in tumors, synergizing with
CTLA-4 and avoiding the potentiation of an antitumor
immune response [38].

TGF-f (transforming growth factor) is an immunoregu-
latory cytokine that can be expressed in 3 isoforms: TGF-p1,
TGF-f2, and TGF- 33, depending on the tissue and the stage
of development. It promotes CD8" effector T lymphocyte
apoptosis through SMAD-2 signaling and the upregulation
of proapoptotic protein Bim [68]. The TGEF-fS-producing
CD8" Tregs are able to suppress autoimmune responses very
efficiently [69, 70]. It is known that TGF-f3 acts on antigen-
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presenting cells as dendritic cells decreasing the expression
of costimulation and MHC-I molecules and effector T lym-
phocytes by inhibiting their proliferation. This has been a
mechanism described in the evasion of the antitumor
immune response [71, 72].

1.3. Absence of Activation Molecules. As previously stated,
CD8" Treg lymphocytes are characterized by the presence
of molecules used as markers to detect and identify these
cells. However, it should also be considered that CD8" Treg
lymphocytes lack the expression of certain molecules associ-
ated to activation and are present in effector T cells. In mice
and human, marker CD28 is scarcely expressed in the thy-
mus and has a reduced expression in peripheral blood cells
with anti-inflammatory cytokine production; therefore, it is
considered that some subpopulations of CD8" Treg could
be CD28"°" [1]. The absence of CD28 in human T lympho-
cytes correlates with two biological events: cell senescence
[73, 74] and extended exposure to antigens [75]. Because of
that, there is an increase in CD8"CD28™ T lymphocyte pop-
ulation during chronic inflammatory processes and in elderly
subjects. These cells are produced from CD8" T lymphocytes
that have repeated antigen stimulation [76]. This explains the
fact that elderly subjects show higher concentrations of these
lymphocytes. CD8" T lymphocytes are also unable to prolif-
erate once they are induced to differentiate into CD28™ cells
[77, 78]. They express regulation molecules that are present
in CD4" Treg lymphocytes as CD39, CTLA-4, and CD25.
In addition, studies have proven that they are able to inhibit
effector CD4" and CD8" effector T lymphocytes. These lym-
phocytes are considered Treg and able to inhibit a Th1-type
response [10, 79-81].

The surface marker CD127 (IL-7 receptor a-chain) is
also absent from CD8" Treg lymphocytes, recovering its
levels of expression in effector and memory cells [82-85]
but not in FoxP3" and those that are likely to be regula-
tory [85]. There is evidence that CD127 is absent from
CD8" Treg lymphocytes. This was proven in vitro when dif-
ferentiating naive CD8" T lymphocyte with TGF-f and IL-2
and obtaining lymphocytes with suppressor action express-
ing CD127 CD25 FoxP3™ markers [86]; however, these
lymphocytes are not so helpful. In humans and mice,
CD4" and CD8" Treg lymphocytes expressing CD25"
FoxP3" exhibit low concentrations or absence of CD127,
unlike effector T cells. This difference is more evident in
humans [12].

A T cell activation marker, CD45RC, is absent or
found at low concentrations in CD8" Treg lymphocytes
involved in solid organ transplant acceptance by IL-34
production [4]. The isoform of CD45, CD45RC, is a trans-
membrane protein-tyrosine phosphatase that belongs to
the Src kinase family. It is essential to signal transduction
after T cell receptor activation and is present in rats, mice,
and humans [4, 87-92].

Finally, CD49d is a surface molecule expressed at low
levels in CD8" Treg lymphocytes. Although the role these
lymphocytes play remains unclear, one of their subpopula-
tions can induce apoptosis in activated T lymphocytes
through FasL-Fas interactions [48].
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TasLE 1: Phenotypes of CD8" Treg lymphocyte populations and their role in different pathologies.
. Phenotype of CD8" regulatory . .
Pathology Agent/condition T lymphocytes Exert suppressive action Model References
Infection Mycobacteria CD25"FoxP3"CD39" Inhibit Th1 lymphocyte proliferation ~ Human  [93, 94]
HIV CD28 CD127°CD39* Inhibit mononuclear cell proliferation ~ Human [97]
Qs + I
Epstein-Barr virus FoxP3* Inhibit CD4" T lymphocyte proliferation Human [98]
and produce IL-10
Autoimmune - Reduce amount of IFN-y produced by
disease EAE D28 CD4" T lymphocytes Mouse [101]
Inhibit characteristic IL-7 production of
EAE CD122* inflammatory process during EAE; inhibit Mouse [102]
CD4" T lymphocyte proliferation
Multiple sclerosis CD8"CD28 CD39"CD127~ Inhibit proliferation [103, 104]
SLE FoxP3" Regulate by TGF-f8 Human [70]
SLE CD25"FoxP3" Suppress production of autoantibodies ~Human  [105]
Primary biliary cirrhosis CD28°CD39"CD127~ Suppress proliferation Human [106]
s + _
Cancer Colorectal cancer CD25"FoxP3* Inhibit CD4 CD2.5 T Iymp hpcyte and Human  [110]
Th1 cytokine production
Prostate cancer CD25"FoxP3" Inhibit naive T lymphocyte proliferation Human  [111]
Inoculation _Wlth CD39"Tim-3"PD-1"LAG-3"* Exert cytotoxic activity Mouse [112]
tumor cell lines
GVHD Allogeneic cells LAG-3"FoxP3"CTLA-4" Suppress allogeneic response via CTLA-4 Human [39]
Inhibit cell proliferation and release
Allogeneic cells CD25"CTLA-4"FoxP3" of cytokines as IL-1a, IL-17a, [FN-p, ~ Human  [115]
and TNF-a
Allogeneic cells CD28" Inhibit CD4" T lymphocyte proliferation Human [10]
Allogeneic cells CD25"FoxP3* Inhibit allogeneic response Human [123]
Inhibit CD4" and CD8" T lymphocyte
Allogeneic cells FoxP3" proliferation and CD40, CD80, and Mouse [125, 126]

CD86 expression in CD

GVHD: graft-versus-host disease; HIV: human immunodeficiency virus; EAE: experimental autoimmune encephalomyelitis.

1.4. Participation of CD8" Treg Lymphocytes in Infection,
Autoimmunity, Cancer, and GVHD. Membrane, intracellu-
lar, and secretory originating molecules from cells previ-
ously mentioned have allowed for the characterization
and identification of Treg lymphocytes. Additionally, such
molecules confer a suppressant activity upon the activation
of other cell populations. In literature, CD8" Treg lympho-
cytes have been described as key elements in a number of
pathologies, including infectious and autoimmune diseases,
cancer, and GVHD (Table 1).

1.5. CD8" Treg Lymphocytes in Infectious Diseases. In infec-
tious diseases, CD8" Treg lymphocytes reduce immune
response against pathogens, which is beneficial to prevent tis-
sue damage caused by an exacerbated response. In contrast, it
can also participate in the evasion of host immune response
against the pathogen. As an example, the mycobacteria have
coexisted with humans for a long time, as M. tuberculosis.
These bacteria possess different evasion strategies, like the
capacity to induce suppressant activity of the immune
response mediated by CD8"CD25"FoxP3"CD39" Treg lym-
phocytes. These lymphocytes, found at higher levels during
mycobacteriosis, are able to suppress the proliferation of
Thl (proinflammatory type 1 T helper cells) that produces

IFN-y, necessary to activate other cells against mycobac-
teria. In addition, the measurement of IFN-y has been used
in the diagnosis and monitoring of patients. It has recently
been observed that vaccination with bacilli Calmette-Guérin
induces an increase in CD8" Treg lymphocyte population,
which has been related to the low protective action of the
vaccine against M. tuberculosis [93, 94] (Figure 2).

In individuals coinfected with hepatitis C and human
immunodeficiency viruses, the TGF-S produced by CD8"
Treg lymphocytes reduces the levels of hepatitis C virus-
specific effector T lymphocytes. This effect is reversed by
blocking TGF-p and IL-10 produced by Tregs [95]. Addition-
ally, it has been reported that, during HIV infection, the levels
of CD8'CD28 CD127°°CD39* Treg lymphocytes are
increased with respect to those found in healthy subjects;
CD73 is less abundant [96]. The levels are reduced after
administering the antiretroviral treatment to the patients.
The Tregs observed in HIV patients are antigen-specific
and inhibit the proliferation of peripheral-blood lymphocytes.
These observations suggest that the suppressant activity of
Treg lymphocytes is one of the factors affecting the
immune function in HIV patients [97] (Figure 2).

Although the cytomegalovirus can coexist with the
human in a subclinical way, it is of great importance in the
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F1GURE 2: Participation of CD8" Treg lymphocytes in infectious diseases. In an infection with human immunodeficiency virus (HIV), CD8" T
lymphocyte has a phenotype CD28CD127'°CD39" inhibiting lymphocyte proliferation, which is probably related to the immunodeficiency
shown during the disease. In a parasitic infection as leishmaniasis, the persistence of the parasite partly depends on the existence of CD8" Treg
lymphocytes expressing CTLA-4 and producing IL-10, which results in the prevalence of the disease. During immunosuppression situations,
there is an increase in the population of IL-10-producing CD8 FoxP3" Treg lymphocytes that inhibit CD4" T cell proliferation, promoting
infection by Epstein-Barr virus. The low protection of bacillus Calmette-Guérin vaccine is attributed factors as CD8"CD25"CD39" Treg
lymphocytes that inhibit the proliferation of CD4" T lymphocytes producing Th1 cytokines as IFN-y, necessary to activate other cell lines

against mycobacteria.

production of CD8" T lymphocyte arrays in adult age. This is
because studies in adults have found that cytomegalovirus
epitope-specific CD8" T lymphocytes constitute a high per-
centage (33%, approximately) of the total CD8" T lympho-
cytes, which might compromise the response against other
pathogens [75]. A high ratio of these lymphocytes is probably
CD287, given that, as it was mentioned before, the absence of
CD28 indicates senescence and repeated stimulation with
persistent antigens.

Also, CD8" Treg lymphocytes are key to the infection
process in transplant patients who are under immunosup-
pressant conditions due to conditioning chemotherapy
previous to transplant and subsequent treatment with
immunosuppressants to prevent transplant rejection and
GVHD. The levels of IL-10-producing CD8" Treg lympho-
cytes in transplant patients are higher than those in healthy
subjects, which agrees and seems to be associated to the
presence of opportunistic pathogens as the Epstein-Barr
virus, caused by the inhibition of effector CD4" T lympho-
cyte proliferation [98] (Figure 2).

In parasitic infections, CD8" regulatory T lymphocytes
have been found in visceral leishmaniasis patients who
express CTLA-4 and produce IL-10 [99] (Figure 2). When
dermal sequelae are caused by Leishmania donovani

infection, the percentage of CD8"CD28 T lymphocytes is
increased and only restored after treatment [100].

1.6. CD8" Treg Lymphocytes in Autoimmune Diseases. As
CD4" Tregs, CD8" Treg lymphocyte show reduced levels
and function in autoimmune disease patients. In mouse
experimental autoimmune encephalomyelitis (EAE) studies,
it has been observed that CD8"CD28~ Treg lymphocytes
reduce levels of IFN-y produced by myelin oligodendro-
cyte glycoprotein-specific CD4" T lymphocytes. In conse-
quence, the expression of costimulatory molecules in
antigen-presenting cells interacting with CD4" T lympho-
cytes is reduced [101]. In this autoimmunity model, there is
also a CD8'CD122" regulatory T lymphocyte population.
This cell population inhibits IL-17, typical of inflammatory
process during EAE, and proliferation of CD4" T lympho-
cytes [102] (Figure 3).

Multiple sclerosis in humans, comparable to EAE in
mice, is a disease in which lymphocytes exhibit immune
deregulation that is shown as chronic persistent inflamma-
tory response [103]. In that sense, IFN-f treatment mod-
ulates the immune system, reducing autoreactive T cell
clones and increasing CD8"CD25'CD28  Treg lympho-
cytes together with plasmacytoid dendritic cells. Treatment
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human multiple sclerosis, therapy with IFN-f regulates the immune system by reducing autoreactive T cell clones and increases
CD8"CD25"CD28™ regulatory T cells. SLE: systemic lupus erythematosus.

with IEN-f is highly promising: its use could reduce the
activity of the disease [104].

The autologous transplant of hematopoietic progenitor
cells in refractory disease systemic lupus erythematosus
(SLE) has proven to be highly effective, achieving the
remission of the disease. This fact is directly related to
the restoration of the CD8 FoxP3" Treg lymphocyte popula-
tion characterized by CD103, PD-1, PD-L1, and CTLA-4
expression. In this case, the function of CD8" Treg lympho-
cytes on target cells depends on cell-cell contact and TGF-f3
production by regulatory lymphocytes [70]. In addition,
CD8"CD25"FoxP3" regulatory T lymphocytes have been
found to be able of suppressing autoantibody production
[105] (Figure 3).

Primary biliary cirrhosis is another autoimmune disease
that affects humans. In this disease, CD8" Treg lymphocytes
express low CD39 and high CD127, a condition that does not
change even after culturing the lymphocytes with IL-10.
Additionally, the lymphocytes show a deficient suppressant
function [106] (Figure 3).

1.7. CD8" Treg Lymphocytes in Cancer. Immune response
has been well documented to be altered in cancer. It has
been established that antitumoral immune response is
avoided by different types of cancer, including kidney,
bladder, and colorectal cancer. Antitumoral evasion has been
associated to CD8*CD28CD127"°CD39" lymphocytes [107]
(Figure 4). Such lymphocytes can be produced in tumor tis-
sue thanks to the cytokines produced by tumor cells as
GCS-F and IL-10. Furthermore, regulatory lymphocytes can
be attracted to the tumor because it releases chemokines as
CCL2 and CCL22, highly attractive to regulatory lympho-
cytes expressing specific CCR2 and CCR4. Also, CD8"CD28~

Treg lymphocytes directly correlate with tumor diagnosis:
the higher the concentration of lymphocytes, the worse the
diagnosis and vice versa [108]. CD8"CD28~ T lymphocytes
are found at higher levels in advanced stages of non-small-
cell lung cancer, maintaining the increase up to the resection
of the tumor when there is a decrease in the concentration
and the prognosis for the patient is favorable. However,
these lymphocytes have yet to be functionally evaluated to
confirm whether they were regulatory [109]. In colorectal
cancer patients, studies have successfully isolated CD8"
CD25"FoxP3" Treg lymphocytes directly from a tumor.
The immunosuppressant phenotype of those lymphocytes
is characterized by CTLA-4 expression and TGF-f produc-
tion. They inhibit CD4"CD25 T lymphocyte proliferation
ex vivo and suppress Th1 cytokine production in themselves
[110]. Therefore, these Treg lymphocytes contribute to
immune response evasion against tumor and progression of
the disease in consequence. In prostate cancer patients, stud-
ies have found tumor-infiltrating regulatory lymphocytes
with the same phenotype (CD8"CD25"FoxP3") as the one
observed in lymphocytes of colorectal cancer patients. These
cells are able to inhibit naive T lymphocyte proliferation.
However, the regulatory activity of these lymphocytes can
be reverted by exposing them to TLR-8 ligands as poly-G2.
Therefore, the possibility that the manipulation of the TLR-
8 signaling pathway can revert immunosuppression medi-
ated by Treg lymphocytes and use it as a therapeutic strategy
against cancer is promising [111] (Figure 4). In mice, CD8"
Treg lymphocytes have been found as well in cancer induced
by inoculation with tumor cell lines. Furthermore, the
population CD8*CD39*Tim-3"PD-1"LAG-3" has been
found to be tumor-infiltrating, produces low levels of IL-
2 and TNF, and has a high cytotoxic potential evaluated
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FIGURE 4: Participation of CD8" Treg lymphocytes in cancer. Regulatory T lymphocytes often aid in the evasion of the immune system by the
cancer cell. Specifically, CD8" Tregs can be induced in tumor tissue due to the presence of cytokines as GCS-F and IL-10. They can also be
attracted to the tumor after the latter releases the chemokines CCL2 and CCL22 that attract regulatory lymphocytes expressing CCR2 and
CCR4. In colorectal cancer, CD8"CD25"FoxP3" Treg lymphocytes with an immunosuppressive phenotype characterized by expressing
CTLA-4 and TGF-8 inhibit Th1 lymphocyte proliferation. In prostate cancer, CD8"CD25"FoxP3" Treg lymphocytes have been found to
share markers with colorectal cancer and can inhibit naive T lymphocyte proliferation.

by granzyme B activity and CD107a mobilization. The
expression of CD39 in Treg lymphocytes is created by a rec-
ognition of the TCR pathway and promoted by IL-6 and IL-
27, which are present in the microenvironment surrounding
the tumor. The manipulation of the microenvironment, as
well as some therapeutic strategy whose target molecule is
CD39, might reduce the evasion of the immune system pro-
moted by Treg lymphocytes and improve the immune
response against cancer [112].

1.8. CD8" Treg Lymphocytes in Graft-versus-Host Disease.
CD8" Treg lymphocytes have been described in solid organ
transplant and bone marrow transplant as well, which is cur-
rently used as hematopoietic stem cell transplantation. In
solid organ transplantation, CD8" Treg lymphocytes reduce
the risk of transplant rejection in the host by creating host
tolerance towards the received tissue or organ [47, 113]. An
inverse situation occurs in hematopoietic stem cell transplan-
tation: CD8" Treg lymphocytes participate in the tolerance of
donor cells towards the host’s tissues. In addition to undergo-
ing ablation of their bone marrow, the host is immunosup-
pressed by the pharmacological treatment received prior to
the transplant and is therefore susceptible to attacks by
the immune system cells of the donor. In this situation,
the available Treg lymphocytes reduce the risk of GVHD,
decreasing the intensity of the damage caused by the
donor’s cells (Figure 5). As a beneficial collateral effect

on the host, a graft-versus-tumor can occur mediated by
donor cell, lowering the risk of primary disease relapse. The
immunosuppressant effect of Treg cells that prevent GVHD
apparently does not compromise the effect of graft-versus-
tumor [114, 115]. Still, CD8" Treg lymphocytes are not
always found in sufficient quantities, which seems to predis-
pose the patient to GVHD.

Because the inherent immune response to the disease is
proinflammatory, the pharmacotherapy given to patients
against the illness includes strong immunosuppressants that
jeopardize the patient’s health since they can lead to infec-
tions and/or primary disease relapse. Although the immune
response of effector T lymphocytes in the graft versus leuke-
mic cells of the host is needed to prevent relapse, an exacer-
bated immune response, along with a reduced number of
Treg lymphocytes, might cause the death of the host by trig-
gering severe GVHD [116].

This disease causes severe damage in a number of
organs, including tissues such as skin, liver, and gastroin-
testinal tract. It is triggered when immunocompetent
donor cells recognize the host cells as foreign and its onset
depends on three factors: (1) infused donor cells must be
immunocompetent; (2) the host must have antigens absent
in the graft; and (3) the host must be unable to generate a
response against the graft [117].

Then, why is GVHD generated? It is well known that the
main reason of graft rejection in solid organ transplant
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(allogeneic peptide) in all three Treg phenotypes.

patients (as in kidney transplant) is high incompatibility
between donor and host in HLA histocompatibility. Despite
HLA compatibility between donor and host for HLA cells
expressing high polymorphism is sought in hematopoietic
stem cell transplantation, there may be differences in the
HLA showing lower polymorphism that they are not studied
routinely. Therefore, foreign antigen recognition after trans-
plant by donor cells is latent and can trigger GVHD [118]. In
addition to these risk factors, we must also consider non-
HLA genes. An example is that some polymorphisms have
been identified in regulatory sequences of genes associated
to NK cell KIR receptors. Ligands of KIR receptors are class
I HLA molecules. In consequence, the absence of the correct
ligands for KIR receptors during hematopoietic stem cell
transplanting can lead to cytotoxic activity of the donor NK
cells. This can be beneficial to the patient because primary
disease relapse is avoided; however, the severity of GVHD
is increased as well [119]. Simultaneously, other factors have
been related to the development of the disease. Some of them
are the source of hematopoietic stem cells (the risk of GVHD
is higher when peripheral blood mobilized with growth fac-
tors to induce the exit of stem cells is transfused than when
bone marrow is transfused), the patient’s age (higher risk is
associated to older ages), and conditioning of the host with
chemotherapy and/or radiotherapy and prophylaxis [117].

These risk factors place GVHD as one of the main causes of
failure in hematopoietic stem cell allogeneic transplantation.
Nearly 60% of the transplant patients at the Centro Médico
Nacional “La Raza” of the Instituto Mexicano del Seguro
Social in Mexico City suffer GVHD (unpublished data).

Some hypotheses consider CD8" Treg lymphocytes as
responsible for tolerance in the first days after hematopoietic
stem cell transplant. This is because, after the transplant, the
first T lymphocytes to be present in the peripheral blood are
CD8", followed by CD4" lymphocytes in a later stage [120].
Furthermore, recent studies show that when higher concen-
trations of CD8" T lymphocytes are found in the graft, the
possibility of primary disease relapse is reduced without
increasing the risk of GVHD. Still, these lymphocytes were
not characterized beyond the expression of molecule CD8
on their surface [121].

In GVHD, CD8" Treg lymphocytes have been identified
as antigen-specific that are activated when they encounter
foreign antigens; that is, they are alloreactive. Their activation
is triggered by the encounter of an antigen-presenting cell,
like a dendritic cell or a B lymphocyte. In humans, lympho-
cytes are activated when they encounter a plasmacytoid den-
dritic cell and acquire a LAG-3"FoxP3"CTLA-4" phenotype.
These cells are able to suppress the allogeneic response of T
lymphocytes via CTLA-4 [39]. If the activating cell is a B
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lymphocyte, the phenotype acquired by the CD8" Treg lym-
phocyte will be CD25*CTLA-4"FoxP3". This phenotype
suppresses cell proliferation and release of proinflammatory
cytokines as IL-1f3, IL-2, IL-17a, IFN-y, and TNF-« by autol-
ogous peripheral blood mononuclear cells; CTLA-4 is the
molecule with the most involvement in this suppressant
function [115] (Figure 5). During the follow-up after a year,
a different population of CD8'CD28  Treg lymphocytes
was observed to be increased and constant in vivo in
patients that were infused with allogeneic donor cells, using
B7-blocking reagents like CTLA-4-Ig that inhibit CD28-B7
together with CTLA-4-B7 interactions as immunosuppres-
sive agent. All the patients survived without showing
GVHD [10]. After an allogeneic hematopoietic stem cell
transplant, CD8CD28- T lymphocytes are found in
increased percentage in the patient (Figure 5). These lym-
phocytes are antigen-specific for tumors related to leukemia
patients in remission. Additionally, their proliferation and
degranulation are stopped and they become senescent with
short telomeres [122].

In human in vitro experiments in which the allogeneic
condition occurring in a transplant was simulated, CD8*
CD25™ T lymphocytes of a donor were incubated together
with dendritic cells of a different donor. This culture yielded
CD8"CD25"FoxP3" Treg lymphocytes that were able to
inhibit the allogeneic immune response without affecting
the one against the cytomegalovirus, a risk of infection
among patients transplanted with hematopoietic stem cells
[123]. Another study found that the CD8" cells found in
higher concentrations in patients without GVHD expressed
FoxP3™, unlike GVHD patients. The latter exhibited higher
levels of IFN-y-producing Tcl and IL-17-producing Tcl7
lymphocytes [124].

In mice, CD8"FoxP3" lymphocytes are the most rele-
vant population and are sufficient to decrease the severity
of GVHD [125, 126]. These mouse lymphocytes express
the transcription factor FoxP3 and GITR, CD62L, CD28,
and CTLA-4 molecules. They produce lower levels of IL-10
and IL-17 and higher concentrations of IFN-y. Addition-
ally, they inhibit CD4" and CD8" T lymphocyte prolifera-
tion and expression of costimulatory CD40, CD80, and
CD86 molecules during antigenic presentation by dendritic
cells [126].

Although the direction of the immune response during
graft rejection is inverse to the one present during GVHD,
it is also caused by an exacerbated immune response.
According to evidence, this response can be controlled by
CD8" Treg lymphocytes. In that regard, different subpopula-
tions of CD8" Treg lymphocytes have been described in solid
organ transplantation. For instance, the human kidney is not
rejected when the percentage of CD8"CD28~ and CD4*
CD25"FoxP3" Treg lymphocytes increases during the first
six months after the transplant [127].

On the other hand, CD8"CD122"PD-1" Treg lympho-
cytes reduced rejection to skin graft in mice. These lym-
phocytes exert a regulatory activity independently from
FasL-Fas and thus promote effector CD3* T lymphocyte
apoptosis. The inhibition of effector T lymphocyte prolifera-
tion depended on IL-10 [47].
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A CD8" Treg lymphocyte subpopulation recently
described in rats is specific for at least two allogeneic class
II MHC peptides in a heart transplant model [128]. This sub-
population shows a low expression or absence of CD45RC
(CD45RC""") [63, 128]. These lymphocytes exert a regula-
tory action through IL-34 that they produce. This cytokine
acts generating regulatory macrophages from monocytes,
promoting in turn the suppressor activity of CD8"
CD45RC™™ T lymphocytes. Apparently, CD8"CD45RC"*'~
lymphocytes have a regulatory activity only when they
are the result of blocking the interaction CD40-CD40L
(CD87CD40lg) since they produce more IL-34 than naive
CD8"CD45RC™~ lymphocytes (spleen), which are positive
to FoxP3. Their regulatory activity can be proven by their
ability to inhibit effector CD4*CD25~ T lymphocyte prolif-
eration, which was induced by IL-34 in a dose-dependent
manner. When in vivo, these lymphocytes extended the
acceptance of the allograft while the production of anti-
bodies against the graft was inhibited [63]. This might
constitute a therapeutic strategy to reduce the fatality of
acute GVHD in humans, as proven by the use of human
anti-CD45RC antibodies in humanized mice [129].

Those CD8" Treg lymphocyte populations that mediate
solid organ transplant rejection in GVHD are likely to play
a key role in decreasing acuteness of GVHD and promoting
the graft-versus-tumor effect.

1.9. Concluding Remarks. Although CD8" lymphocytes are
described to have an immunosuppressive action, CD4"
lymphocytes have been more thoroughly characterized,
becoming the model to describe CD8" Treg lymphocytes.
No exclusive markers have been described for any of these
regulatory lymphocyte populations. For this reason, more
than one criterion has been employed to characterize
and identify them. The three requisites that must be met
to identify CD8" Treg lymphocytes are as follows: (1) they
must express more than one marker indicating regulation.
(2) They must produce anti-inflammatory cytokines as IL-10
and/or TGF-f3, and (3) they must inhibit the proliferation
of CD4" and/or CD8" effector T lymphocytes. Although
FoxP3 is a less abundant marker for CD8* Treg lympho-
cytes when compared against CD4" Treg, it is relevant to
CD8" Treg identification.

The markers that have been described are useful to group
Treg lymphocytes in different subpopulations according to
their characteristics, location, or role in a pathology. In order
to be certain of a subpopulation taking part in GVHD regu-
lation, studies should choose the population with the highest
number of markers. This would improve the specificity, but
populations showing all the markers would be very small.
Working with a reduced and insufficient quantity of CD8"
Treg lymphocytes would be inconvenient. If the aim is
to find an abundant and regulatory population, it would
probably be best to look for subpopulation CD8"CD28~
and check its regulatory activity, seeking anti-inflammatory
cytokine production and proliferation inhibition. A thorough
characterization is important given that a CD8*CD28™ T
lymphocyte population might also contain effector lympho-
cytes [130, 131]. In general, if we were to look for CD8" Treg
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lymphocytes specific of a pathology, we would resort to the
information provided, as shown in Table 1.

The benefits of CD8" Treg lymphocyte participation vary
between the pathologies in which the cells play a role. In
infectious diseases, it is desirable for the lymphocytes to
counter the exacerbated inflammation produces as a
response to the microorganism to prevent damage in own tis-
sue. However, an increased participation of regulatory cells
might contribute to the pathogen’s evasion of the immune
response generated by the host and the consequent persis-
tence of the parasite. As shown in Figure 2, CD8" Treg lym-
phocytes that express ectoenzyme CD39 produce adenosine,
which suppresses immune response against two agents: one
viral and one bacterial. On the other hand, CD8" Treg lym-
phocytes allow for the establishment of a parasitic and a viral
agent, through IL-10.

Although they are present in some autoimmune dis-
eases and show a presumptive regulatory phenotype, lym-
phocytes express their regulatory molecules at low levels.
In consequence, the molecules are not effective to inhibit
lymphocytes and innate immune response cells, responsible
for triggered autoimmune inflammatory response. However,
effector CD8" Treg lymphocytes inhibiting autoantibody
production have been identified in systemic lupus erythema-
tosus (Figure 3).

In cancer progression, CD8" Treg lymphocytes exhibit
higher levels and seem to be a tumor-mediated immuno-
suppressive strategy. They are attracted to the tumor and
their permanence is promoted thanks to the evasion of
the immune response that might eradicate cancer cells
(Figure 4).

Finally, two events occur after an allogeneic hemato-
poietic stem cell transplant. The first one is GVHD,
which can be exhibited in four stages, according to its severity
(being 4 the most severe stage). On the other hand, there
is the desired graft-versus-tumor effect, in which a strong
participation of CD8" Treg lymphocytes is not conve-
nient since it would allow for the reestablishment of the
primary disease.

Some in vitro studies have obtained CD8'CD28™ Treg
lymphocytes by stimulation of the microenvironment of the
cells after an allogeneic transplant, inducing alloanergized
CD8" Treg cells. Furthermore, these same markers have been
found in increased lymphocyte populations of transplant
patients induced to tolerance with belatacept, an immuno-
suppressant from a fusion molecule bound to CTLA-4. These
data define this as one of the ideal cell populations to be stud-
ied in allogeneic hematopoietic stem cell transplantation
[10]. However, this is not the only CD8" Treg lymphocyte
subpopulation involved in the modulation of the immune
response in GVHD. Those CD8" Treg lymphocytes with
CTLA-4-mediated suppressor activity that are induced by B
lymphocytes and plasmacytoid dendritic cells are effective
against an allogeneic response (Figure 5).

The study of CD8" Treg cells is not yet complete. A
detailed analysis of their identification, regulation mecha-
nisms, and ways of induction, among other events, will allow
researchers to know the proportion of CD8" Treg and CD4"
effector lymphocytes. This will allow for a cell therapy to
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prevent and cure infectious and autoimmune diseases as well
as cancer and GVHD.
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