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Summary

Systems-scale molecular profiling data accumulating in public repositories

may constitute a useful resource for immunologists. It is for instance

likely that information relevant to their chosen line of research be found

among the more than 90,000 data series available in the NCBI Gene

Expression Omnibus. Such ‘collective omics data’ may also be employed

as source material for training purposes. This is the case when training

curricula aim at the development of bioinformatics skills necessary for the

analysis, interpretation or visualization of data generated on global scales.

But ‘collective omics data’ may also be reused for training purposes to

foster the development of the skills and ‘mental habits’ underpinning tra-

ditional reductionist science approaches. This review describes a small-

scale initiative involving investigators, for the most part immunologists,

having engaged in a range of training activities relying on ‘collective omics

data’.
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Introduction

First it may be necessary to define what is meant by col-

lective data, and more precisely ‘collective omics data’.

Collective omics data refers here to the vast collections of

datasets generated using high throughput molecular pro-

filing technologies, which are accumulating in public

repositories. High-throughput molecular profiling tech-

nologies may include for example, next-generation

sequencers or mass spectrometers. Public repositories

include the NCBI Gene Expression Omnibus (GEO),

which holds results from transcriptome profiling studies.1

It is the resource that was primarily used in the context

of the training activities described in this article. GEO

comprises over 90 000 series or collections of profiles.

One series usually corresponds to one study or publica-

tion, although in some cases large studies may be associ-

ated with several series. GEO encompasses over two

million individual transcriptional profiles. Each of these

profiles can include measurements of abundance of up to

50 000 transcripts for an individual sample.

Such data collections constitute valuable training mate-

rial and have been recognized as a resource for teaching

data science skills to biomedical researchers.2–4 Here the

use of publically available large-scale profiling datasets for

acquisition of basic skills by biomedical researchers is also

discussed. Most of the ‘collective omics data’ (COD)

training activities described below were undertaken by

investigators working at Sidra Medicine in Doha, Qatar.

To complete the training an individual would have to

publish at least three peer-reviewed papers as first author,

one for each of the training modules listed below.

COD1: Reductionist interpretation of collective omics data

COD2: Creation of curated collective omics dataset

collections

COD3: Re-analysis of collective omics data on a global

scale

A proof of principle was recently obtained with one

trainee completing all three modules.5–7 Five other scien-

tists having completed at least one training module.8–12

Each one of the three training modules is presented in

more detail below.

COD1: Reductionist investigations using
collective omics data

A reductionist approach reduces a complex phenomenon

into its simpler or fundamental elements. It has been the

mainstay of scientific investigation until the emergence

two decades ago of ‘systems-scale’ or omics profiling

approaches, which allow simultaneous measurement and

investigation of all elements constituting a given biologi-

cal system. Such global approaches to scientific investiga-

tion are undeniably powerful but should complement

rather than substitute to reductionist approaches.
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In the first module, COD1, trainees follow a reduction-

ist scientific approach, but rely for this exclusively on

data obtained via omics profiling (Fig. 1). The interpreta-

tion focuses on one given element of the system, a tran-

script in the case of GEO data, while ignoring all other

measurements. The perspective of the trainee is often

unique because the team that generated and deposited

the data almost certainly used a global approach for the

analysis and interpretation of the data. Furthermore, as

GEO comprises datasets from tens of thousands of studies

it becomes possible to look up profiles of the same tran-

script in other datasets for independent validation of the

initial finding and for further interpretation.

Assessment of knowledge gaps is the central notion that

is explored during COD1 training. It consists of deter-

mining whether the knowledge conveyed by the data

being examined is novel, and if the answer is yes, then to

gain a measure of its potential impact or significance. A

proof of principle study was published and can be con-

sulted to illustrate the steps described below.6

With collective transcriptomic data serving as a use

case:

1 A gene presenting with differences in transcript abun-

dance between study or experimental groups is selected

in the first step; for instance:

a An entry from a published list of differentially

expressed genes is selected (e.g. that is found in

tables published in the manuscript or as a supple-

ment); OR

b A transcript presenting changes in abundance across

study groups identified while browsing GEO or

other web applications (e.g. refs 13–15) is selected;

OR

c A transcript presenting changes in abundance across

study groups identified while carrying out a re-ana-

lysis of the entire dataset is selected.

2 Whether differences in transcript abundance between

study or experimental groups observed for the selected

gene could convey novel knowledge is ascertained in

the second step.

a The body of peer-reviewed biomedical literature

associated with the gene selected in step 1, or its

product, is identified (e.g. via a PubMed query

combining the official gene symbol, name and

aliases) AND

b Concepts (biological, disease processes, tissues or

cell types) relevant to the study or experimental

groups for which differences in transcript abun-

dance are identified; AND
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Figure 1. ‘Collective Omics Data’ training

module 1 (COD1). This activity focuses on the

development of skills and demonstrable experi-

ence in the conduct of reductionist biomedical

research approaches. Trainees prioritize and

select molecules based on potential for address-

ing gaps in biomedical knowledge and poten-

tial for impact (e.g. extent of clinical or

conceptual advances that filling the knowledge

gap in question may provide). This assessment

is made by examining differences in transcript

abundance between experimental groups or

study groups among datasets available in the

GEO repository. The current state of biomedi-

cal knowledge, as is reported in the peer-

reviewed biomedical literature, is also taken

into account. Expression profiles of the mole-

cule that has been selected for further investi-

gation can be examined in additional GEO

datasets for independent validation of the ini-

tial finding or hypothesis development and

testing. A graphical element used in this figure

was adapted from Akula et al.16 Licensed

obtained from Springer Nature on May 16,

2018. License number 4350660730175.
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c The overlap between the literature associated with

the gene or its product (a) and concepts relevant to

the study or experimental groups (b) is ascertained.

For instance: the body of literature associated with a

given gene may be identified using a PubMed query com-

bining the official symbol, name and aliases for that gene

(Step 2a). This information can be found in the NCBI

Entrez Gene database entry for that gene.

Concepts that may be relevant to a study or experi-

mental group (Step 2b) may include the cell type or tis-

sue in which transcript abundance was measured or a

disease (for case–control studies) or treatment (for trials

or in vitro experiments). For example, if measuring levels

of expression in B cells of patients with multiple sclerosis

pre- and post-administration of interferon-b, concepts to

be examined would include: ‘Multiple sclerosis’, ‘B cell or

B lymphocyte’ and ‘Interferon’.

Step 2c ascertains whether absence of overlap can be

observed between the literature associated with the

selected gene and at least one of the relevant concepts,

which would be indicative of a high likelihood of the

existence of a knowledge gap.

3 When possible, the original observation is validated

in one or multiple independent datasets, in the third

step.

a Datasets in which identical, or similar, study or

experimental group can be found are identified (e.g.

measurement in disease A versus control in purified

mononuclear cells rather than whole blood).

b Differences in transcript abundance, or the absence

thereof, between study or experimental groups are

recorded.

c The findings are reported and taken into considera-

tion in the decision to move to the next step.

4 A measure of the potential significance or impact of

the novel finding is obtained in the fourth step. This

may be done in a variety of ways and usually relies on

the subject matter expertise, experience or even intu-

ition of the investigator. Associations or convergences

will often be sought, with this step involving searching

and reading relevant literature, accessing profiles for

the molecule in question in other datasets, drawing of

models and discussions with colleagues.

Altogether, trainees undertaking this first learning mod-

ule gain experience with the key steps involved in

biomedical knowledge discovery, from identification and

assessment of potential knowledge gaps to independent

validation of findings, hypothesis formation and testing.

In addition, trainees gain experience with accessing and

browsing the data available in public repositories for indi-

vidual genes or molecules of interest as well as development

of advanced PubMed queries, which is another skill that

will present a broader utility in most research projects.

COD2: Creation of curated collective omics
dataset collections

Collections of public datasets expertly curated based on

their quality and relevance to a specific subject matter

can prove a useful resource, even if for a small subset of

biomedical researchers sharing a similar interest. Notably,

such curated dataset collection may also support the

COD1 training activities described above.

In the second module, COD2, trainees create curated

collective omics dataset collections that are annotated

and loaded on a data browsing web application (Fig. 2).

Proof of principle is provided by publication of multiple

data notes by Sidra investigators.5,9–12

Basic bioinformatics skills are gained as part of this

training module, which are more directed to data retrie-

val and management tasks: dataset curation, quality con-

trol, validation, annotation of samples and sample sets,

grouping ; it also provides an opportunity to learn about

organization, annotation and dissemination of data

through data-browsing web applications.

With collective transcriptomic data serving here again

as a use case:

1 The choice of a subject matter expertise is made by the

trainee in the first step. The subject should be suffi-

ciently narrow in scope to allow the trainee to acquire

knowledge with some degree of depth.

2 Relevant ‘data series’ (data sets) are identified among

the 90 000+ that are available in GEO in the second

step. This involves selecting relevant keywords to use

in GEO queries and restricting searches to species or

technology platforms of choice. The results returned

by the query are then manually curated to return a list

of data sets that are deemed most relevant to the

chosen subject matter.

3 The data sets are loaded in a data-browsing web appli-

cation, for instance GXB in the third step (a descrip-

tion of GXB can be found elsewhere,14 and in the data

notes referenced above). Study and sample information

is loaded as well (i.e. the metadata). Samples are

grouped, rank lists are computed and and plots are

customized taking experimental or study design into

account (e.g. grouping samples by disease status, but

also by gender or treatment groups).

4 Quality control of the data sets is performed in the

fourth step. This step may rely on technical quality

metrics, as well as biological markers (e.g. markers

associated with gender, cell populations or physiologi-

cal processes).

A manuscript could be prepared next, which would for

instance provide information about: (i) the subject-

matter of choice, (ii) the studies from which the data

sets originate, (iii) quality control metrics, (iv) use cases,

and (v) means by which readers can access the
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curated dataset collection using the data-browsing web

application.

The dataset collections described in papers published

by Sidra scientists covered a wide range of sometimes

very narrowly focused subject matters, including: human

monocyte immune biology,5 development and differentia-

tion of placenta,10 functional programming of

haematopoietic cells in early life,11 embryonic develop-

ment in healthy individuals and patients with polycystic

ovary syndrome,9 human immunobiology of human

immunodeficiency virus infection8 and breast cancer

immune classification.12

In addition to data retrieval and data management

skills, trainees undertaking this first learning module gain

experience with various aspects of study or experimental

design – through sample grouping and annotation. They

also become aware of the availability of public data sets

that may be used as a resource as they develop their own

research projects.

COD3: Re-analysis of collective omics data on a
global scale

Public omics data sets are an obvious choice as training

material for the third hands-on learning module

described here, COD3, which focuses on acquisition of

skills necessary for analysis, interpretation and visualiza-

tion of global-scale profiling data. As is the case of the

other two learning modules, this activity also provides

trainees with publication opportunities. These opportuni-

ties exist because different analytical strategies imple-

mented by different groups can yield different insights.

Indeed, although the validity of different strategies is usu-

ally not in question, different approaches to feature selec-

tion or functional interpretation will provide different

perspectives and lead to different conclusions (Fig. 3).

The analytical approach or approaches employed in the

context of COD3 training should be selected based on the

desired set of skills that are to be acquired by the trainees.

identified

Dataset collection 

loaded and 

annotated in web 

application

Training module Activity Pictogram References

COD2

Creation of curated 

collective omics 

dataset collections

[5, 8–12]

Subject-matter selected

Relevant data sets 

Figure 2. ‘Collective Omics Data’ training

module 2 (COD2). This activity focuses on the

development of skills and demonstrable experi-

ence in identification, retrieval and manage-

ment of collective omics data. Trainees select a

subject matter in a first step. In a second step

they identify and retrieve data sets from the

> 90 000 that have been deposited in GEO.

Next, the selected data sets are loaded on a

data-browsing application, such as GXB, which

is referenced in the text. Data sets and samples

are annotated and organized and this curated

dataset compendium is made available publicly

along with a peer-reviewed data note describ-

ing the resource. A graphical element used in

this figure was adapted from Akula et al.16

Licensed obtained from Springer Nature on

May 16, 2018. License number 4350660730175.
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The dataset selected for re-analysis should preferably not

have employed the approach or approaches in question if

publication is also one of the desired outcomes (i.e. an

‘analytical gap’ should be sought).

In our laboratory, training focuses on blood transcrip-

tome analysis, and makes use of the modular repertoire anal-

ysis strategy that we have developed over the years. Rationale

and methods for module repertoire construction and down-

stream analysis and fingerprint visualization have been

described in detail previously.17 The only relevant point here

is that it is an approach that was not employed by the pri-

mary investigators who conducted and published the semi-

nal study.18 This gap between the approaches used for

primary and secondary analyses is what permitted the identi-

fication of distinct but potentially complementary signatures

associated with protection conferred by the RTS,S vaccine.7

Other alternative analytical approaches may be used as

a focus for COD3 training, with data sets available in

GEO including cross-sectional as well as longitudinal

designs, in vitro and in vivo treatment. Curation work

similar to that described in the context of COD2 but with

a constitution of collections based on study design rather

than subject matter would be useful in supporting COD3

training activities. Finally, meta-analysis (i.e. the com-

bined analysis of data sets that have been generated inde-

pendently) provides another means by which original

findings might be obtained through re-analysis.

Hands-on training opportunities available through the

COD3 training module cover advanced bioinformatics

skills, such as Omics data pre-processing and quality con-

trol, Data analysis using R programming language, Omics

data visualization and interpretation.

Conclusions

Proof of principle has been obtained with a few investiga-

tors at Sidra having concluded COD1, COD2 and/or

COD3 training with publications in peer-reviewed journals.

Workshops between 1 and 3 days in length have also been

organized during which participants were presented with

use cases and been given the opportunity to carry out

hands-on activities associated with the COD1 training

module (e.g. accessing and browsing collective omics data

sets, building PubMed queries for retrieval of literature

associated with a given gene, knowledge gap assessment).

The format of each training module is likely to change as

the programme is still in the early stages of development

and there is room left for optimization at many levels.

The notion of using publically available ‘big data sets’ for

training purposes is far from being novel. Education is an

important component of the NIH’s Big Data to Knowledge

(BD2K) initiative.2,3 Funds have been dedicated to the devel-

opment of open educational resources, curricula or work-

shops, which are meant for ‘skills development in

Training module Activity Pictogram References

COD3

Re-analysis of 

collective omics 

data on a global 

scale

[7]

Figure 3. ‘Collective Omics Data’ training

module 3 (COD3). This activity focuses on the

development of skills and demonstrable experi-

ence in global scale analysis, interpretation and

visualization of omics data. A dataset can yield

different insights when processed, analysed

and/or visualized using distinct approaches. As

a result, reuse of data sets through this training

activity may yield peer-reviewed publications

that can serve to demonstrate the proficiency

of the trainee with use of such approaches.

A graphical element used in this figure was

adapted from Akula et al.16 Licensed obtained

from Springer Nature on May 16, 2018.

License number 4350660730175.
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biomedical big data science’. COD3, and to some extent

COD2, relate to this goal, with data science skills being

increasingly important for biomedical investigators to

acquire and apply in their research. COD1, however, focuses

squarely on ‘old-fashioned’ reductionist approaches, with

the vast public collections of omics data sets simply obviat-

ing the need to generate the primary data as source material

for training purposes. Another difference lies in the fact that,

due to the overabundance of data, the discovery process is

somewhat more opportunistic and turned towards hypothe-

sis generation. But once the potential for addressing a gap in

biomedical knowledge has been identified that process

becomes hypothesis-driven and fairly similar to what most

readers would have experienced in their younger days.

Furthermore, downstream discovery work would be likely to

require, at some point, de novo data generation, which was

the case for our COD3 proof of principle study.7
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