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Summary

� Patterns of species richness are commonly linked to life history strategies. In diatoms, an

exceptionally diverse lineage of photosynthetic heterokonts important for global photosyn-

thesis and burial of atmospheric carbon, lineages with different locomotory and reproductive

traits differ dramatically in species richness, but any potential association between life history

strategy and diversification has not been tested in a phylogenetic framework.
� We constructed a time-calibrated, 11-gene, 1151-taxon phylogeny of diatoms – the most

inclusive diatom species tree to date. We used this phylogeny, together with a comprehensive

inventory of first–last occurrences of Cenozoic fossil diatoms, to estimate ranges of expected

species richness, diversification and its variation through time and across lineages.
� Diversification rates varied with life history traits. Although anisogamous lineages diversified

faster than oogamous ones, this increase was restricted to a nested clade with active motility

in the vegetative cells.
� We propose that the evolution of motility in vegetative cells, following an earlier transition

from oogamy to anisogamy, facilitated outcrossing and improved utilization of habitat com-

plexity, ultimately leading to enhanced opportunity for adaptive divergence across a variety

of novel habitats. Together, these contributed to a species radiation that gave rise to the

majority of present-day diatom diversity.

Introduction

Patterns of species richness across time, space and clades are com-
monly linked to evolutionary innovations and ecological oppor-
tunities that are thought to influence the rates of speciation and
extinction. Changes in life history can affect developmental or
reproductive strategies and have consequences for reproductive
success and fitness, whereas traits related to locomotion—which
are tightly linked to life history in many taxa—can improve dis-
persal abilities and facilitate range expansions, range shifts or col-
onizations of previously unavailable habitats. As a result,
transitions in life history (e.g. selfing or outcrossing), locomotion
(e.g. sedentary or mobile) or their interactions are often corre-
lated with shifts in species diversification (e.g. Lecl�ere et al., 2009;
Goldberg et al., 2010; Ikeda et al., 2012). Numerous life history
traits have been linked to net diversification (birth� death,
r = b� d) in vascular plants. These include features associated
with longevity (annual vs perennial, Drummond et al., 2012),
seed dispersal (Leslie et al., 2013; Beaulieu & O’Meara, 2016)
and mechanisms that promote outcrossing, such as self-
incompatibility (Goldberg et al., 2010) and heterostyly (de Vos
et al., 2014). Similar patterns are also evident in animals. In
insects, for example, the evolution of complete metamorphosis

(Rainford et al., 2014), as well as its subsequent reduction in
some groups (Cieslak et al., 2014), have been associated with
increases in net diversification (but see Condamine et al., 2016).
In hydrozoans, two alternative life cycles, one with and one with-
out a mobile life history stage, have been maintained by species
selection related to lower extinction rates in lineages with a
medusa or medusoid free-swimming stage that facilitates disper-
sal (Lecl�ere et al., 2009). Owing to its role in dispersal, mating
and interactions with environmental conditions in general, loco-
motion has also been linked with diversification. By facilitating
long-range dispersal, the presence and properties of motile life
history stages can increase gene flow across populations and, in
turn, reduce rates of speciation (e.g. Palumbi, 1992, 1994 and
references therein). On the other hand, limited locomotory abili-
ties could restrict gene flow between divergent and potentially
locally adapted populations, thereby increasing rates of speciation
(Duda & Rol�an, 2005; Ikeda et al., 2012). Such interactions
among life history, motility and ecology are common across the
tree of life and are especially important in microbial eukaryotes
(protists) in which the ability of self-propelled locomotion often
changes with alternating life history stages (Hoek et al., 1995).

One such interaction has played out in the evolutionary his-
tory of diatoms (Bacillariophyta), an ecologically, functionally
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and morphologically diverse clade of stramenopile algae (Ander-
sen, 2004). Diatoms are thought to be ancestrally planktonic and
oogamous, with nonmotile vegetative cells suspended in a dilute
environment, necessitating motile flagellated gametes to repro-
duce successfully (Drebes, 1977; Round et al., 1990; Chepurnov
et al., 2004). However, flagellated male gametes were lost at least
twice: once in the common ancestor of the pennate diatoms – a
large clade of predominantly benthic species whose gametes are
behaviorally dimorphic and move via pseudopodia (Davidovich
et al., 2010; Sato et al., 2011; Kaczmarska et al., 2017), and once
in Ardissonea crystallina – a member of a benthic marine clade
referred to as toxariids (Davidovich et al., 2017). Active, directed
motility in vegetative cells evolved subsequently in a clade nested
within pennate diatoms (raphid pennate diatoms; Harper, 1977;
Round et al., 1990). Motility of these cells is enabled by a longi-
tudinal slit through the cell wall called a raphe, which is lined
with actin–myosin protein complexes (Poulsen et al., 1999) that
move the cell across a substrate by displacing strands of extracel-
lular mucilaginous secretions (Harper, 1977; Round et al.,
1990). Diatoms outside this lineage can use these secretions for
attachment and, in some cases, movement (Pickett-Heaps et al.,
1986, 1991; Kooistra et al., 2003), but the range, velocity and
responsiveness of cells with raphe-enabled motility are
unmatched by other types of motility found in nonraphid
diatoms (Consalvey et al., 2004). In all, three combinations of
mode of sexual reproduction and locomotion of vegetative cells
are known in diatoms: oogamous and nonmotile lineages (the
paraphyletic group of ‘centric’ diatoms, excluding anisogamous
toxariids), anisogamous and nonmotile lineages (the paraphyletic
group of ‘araphid’ pennate diatoms, including the anisogamous
toxariids), and anisogamous and motile lineages (the clade of
raphid pennate diatoms) (Round et al., 1990; Theriot et al.,
2015; Parks et al., 2017).

Comparisons between diatom groups with different combina-
tions of reproductive and locomotory traits reveal drastic differ-
ences in species richness, with anisogamous diatoms far
outnumbering oogamous diatoms and, within the former, lin-
eages with motile vegetative cells (specifically, the raphid pen-
nates) far outnumbering lineages with nonmotile vegetative cells
(Guiry & Guiry, 2017; Kociolek et al., 2017). This apparent dis-
parity in species richness and rates of diversification was first
investigated by James Small (e.g. Small, 1945a,b, 1950), whose
work on the geological duration of fossil taxa revealed differences
in species turnover between diatoms with radially vs bilaterally
symmetrical cell walls (Small, 1950; see also Van Valen, 1973).
Small’s results were framed in terms of cell symmetry, the pri-
mary basis of diatom classification at the time, but the division
between ‘centric’ and ‘pennate’ also largely mirrors the split
between oogamous and anisogamous diatoms. An added layer of
complexity comes from common in vitro observations of selfing
(homothally) in centric diatoms and the prevalence of outcross-
ing (heterothally) in pennates (Chepurnov et al., 2004 and refer-
ences therein). As a result, Small’s early findings of differences in
diversification dynamics between centric and pennate diatoms
also apply to variation in the mode of sexual reproduction and
outcrossing: oogamous diatoms (generally capable of selfing

in vitro) diversified more slowly than anisogamous diatoms (gen-
erally incapable of selfing in vitro).

These considerations suggest that life history—specifically the
mode of sexual reproduction—is one of the key factors driving
the observed disparity in species richness across diatom groups.
However, directed motility of vegetative cells within the anisoga-
mous lineage (raphid diatoms) conferred many ecological advan-
tages as well, including the ability to quickly respond to changes
in light and nutrient availability, diurnal and tidal migrations,
and pheromonal movements (Palmer & Round, 1967; Sato
et al., 2011; Cohn et al., 2015; Bondoc et al., 2016a,b). The
aggregated effect of these benefits suggests an alternative hypothe-
sis—namely, that the primary driver of species richness in raphid
pennate diatoms was active motility of vegetative cells, the evolu-
tion of which fundamentally altered both inter- and intraspecies
interactions (Drebes, 1977; Harper, 1977; Kingston, 1999),
enabled the colonization of novel habitats (Palmer & Round,
1967; Sims et al., 2006) and allowed them to better exploit habi-
tat heterogeneity (Consalvey et al., 2004; Cohn et al., 2015).
Such a scenario would imply that Small’s discovery of faster
diversification of anisogamous diatoms is a result of faster diversi-
fication in the nested lineage of actively motile raphid pennate
diatoms, analogous to the existence of an important unconsid-
ered (or ‘hidden’) trait (Beaulieu & O’Meara, 2016) – in this
case, a novel means of locomotion within a larger clade with a
derived mode of sexual reproduction.

We tested these hypotheses using a combination of phyloge-
netic and paleontological data, combining a large dataset of
first–last occurrences of marine Cenozoic fossil diatoms with an
11-gene phylogeny for 1151 diverse diatom taxa, which repre-
sents the most comprehensive analysis of the diatom phylogeny
to date. We found that, although anisogamous diatoms diversi-
fied faster than oogamous diatoms, the higher rates were largely
restricted to the nested clade of actively motile species. We pro-
pose that the evolution of directed motility enabled improved
utilization of habitat complexity, colonization of novel habitats
and more frequent or efficient sexual reproduction, ultimately
resulting in increased genetic diversity, greater potential for
evolutionary change and accelerated species diversification in the
lineage of raphid pennate diatoms.

Materials and Methods

Phylogenetic dataset assembly

We compiled data for 11 genes that exhaust the set of markers
with substantial representation in publicly available databases
(Sorhannus & Fox, 2012; Theriot et al., 2015; Ruck et al., 2016).
These included two nuclear rRNA genes (18S and 28S rRNA),
seven plastid genes (16S rRNA, atpB, psaA, psaB, psbA, psbC and
rbcL) and two mitochondrial genes (cob and coxI) (Supporting
Information Table S1). The combined data from these genes
encompasses as much diatom diversity as possible, whilst maxi-
mizing the power to resolve both old and recent divergences
(Theriot et al., 2015). After removing environmental sequences,
which are commonly identified to the genus level only, we used
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USEARCH (Edgar, 2010) to identify and remove duplicate acces-
sions (Table S1). We then aligned the sequences and performed
several rounds of filtering to remove misidentified sequences, tax-
onomic duplicates and unnamed species that were identical (or
nearly so) to a named sister taxon (based on zero or near-zero
branch lengths). Decisions regarding the removal of misidentified
sequences were made on the basis of the manual inspection of
maximum likelihood (ML) trees built with RAXML (Stamatakis,
2014). When an accession appeared correctly aligned, but was
reconstructed phylogenetically far from its expected position (i.e.
it fell outside the expected genus or family), we flagged it as
misidentified and removed it from the alignment. These decisions
were made in consultation with the primary literature to ensure
that an accession in question had not been recently transferred to
a different taxonomic group or had been previously known to
have an unexpected phylogenetic placement compared with that
suggested by its name. These checks were important because
many diatom genera are not monophyletic and can comprise dis-
tant relatives that are taxonomically united on the basis of conver-
gent (Alverson et al., 2007; Ruck & Theriot, 2011) or
plesiomorphic (Ruck et al., 2016) characters. For taxonomic
duplicates, we removed the accession with fewer genes, and for
cases in which a pair of taxonomic duplicates had different gene
complements, we combined their data into a single accession.
Finally, we dropped all accessions represented by a single gene
that was not 18S or rbcL, the two genes with the highest taxon
occupancy in the dataset. Preliminary tree searches showed that
these types of singletons were often inconsistently or erroneously
placed phylogenetically. To enable the estimation of branch
lengths at the split between diatoms and Parmales (Bolido-
phyceae), we included nuclear ribosomal RNA and plastid gene
data for 13 additional outgroups from the stramenopile classes
Chrysophyceae, Phaeophyceae, Xanthophyceae, Raphidophyceae,
Eustigmatophyceae and Pelagophyceae. Data files, phylogenies
and scripts are available from a Zenodo online repository:
https://doi.org/10.5281/zenodo.583628.

Multiple sequence alignment, model partitioning and
phylogenetic inference

Ribosomal RNA genes (16S, 18S and 28S) were aligned on the
basis of covariance models of secondary structure (Cannone et al.,
2002; Nawrocki et al., 2009). For the nuclear 18S and plastid
16S genes, we used covariance models for Eukarya and Bacteria,
respectively, and removed sequences shorter than 250 nucleotides
in length. For the 28S gene fragment, we used a covariance model
developed from aligned full-length 28S sequences from stra-
menopiles (Nakov et al., 2014). We masked secondary structure
alignments to remove sites with low probability of positional
homology based on the covariance models (Nawrocki et al.,
2009). Protein-coding genes were aligned with MAFFT v.6.864b
(Katoh & Standley, 2013) and adjusted manually to resolve gaps
caused by incomplete codons. Single-gene alignments were then
concatenated into a single 11-gene alignment.

We split the 11-gene alignment into seven partitions (one for
the combined rRNA (n = 1 partition), one per codon position for

the combined plastid genes (n = 3 partitions) and one per codon
position for the combined mitochondrial genes (n = 3 partitions)
(Table S2)) and identified the best nucleotide substitution model
using IQ-TREE v.1.4.1 (Nguyen et al., 2015). Tree searches were
performed with IQ-TREE using the above partitioning scheme and
substitution models and the edge-proportional model to accom-
modate between-partition differences in evolutionary rate. We
performed 100 ML optimizations with default settings, except
for the strength of perturbation of the nearest-neighbor inter-
change (IQ-TREE option: -pers, default = 0.5), which we varied
between 0.3 and 0.6 with 0.05-unit increments. Support for the
inferred relationships was assessed with 103 ULTRAFAST bootstrap
replicates (Minh et al., 2013). The interpretation of the
ULTRAFAST bootstrap values differs from that of a standard non-
parametric bootstrap resampling in that only nodes with
ULTRAFAST bootstrap support ≥95% are considered to be strongly
supported.

Time calibration

We time calibrated the phylograms using TREEPL (Sanderson,
2002; Smith & O’Meara, 2012) and 38 calibration points taken
from first appearances of diatom lineages in the fossil record
(Table S3). Most first-appearance data came from the primary lit-
erature (Gersonde & Harwood, 1990; Harwood & Gersonde,
1990; Harwood & Nikolaev, 1995; Sims et al., 2006; Harwood
et al., 2007), and many have been used previously (Medlin,
2015). However, given the size of our phylogeny and the impor-
tance of having calibrations distributed throughout the tree and
covered time span, we also compiled first-appearance records
from the Neptune/Chronos database (Lazarus, 1994) which
includes data from the Deep Sea Drilling Project (DSDP) and
Ocean Drilling Project (ODP).

To construct calibration bounds, we followed a procedure that
uses the difference between the first occurrences of two sister lin-
eages (ghost lineage time), or the difference between the earliest
and second earliest occurrence of a lineage (penultimate distance
time) (Norris et al., 2015). For example, the first occurrences in
the fossil record of the sister taxa Aulacoseira (Archepyrgis) and
Melosira are 115 million yr ago (Ma) and 125Ma, respectively
(Table S3), resulting in a ghost lineage time of 10 million yr
(Myr). Following Norris et al. (2015), a prior distribution for this
node can be constructed using a lognormal distribution with a
mean set to half the ghost lineage time (5Myr in this case), a
standard deviation of 1.814Myr and an offset given by the earlier
of the two first occurrences (Melosira, 125Ma in this case). We
used the 5% and 95% quantiles of this distribution as the mini-
mum and maximum bounds for the age of the calibrated node in
TREEPL. We used minimum age bounds only when there was not
enough information to calculate the ghost lineage or penultimate
distance time. We obtained a total of 21 calibrations with mini-
mum and maximum bounds (including the most recent common
ancestor (MRCA) of diatoms + Parmales and MRCA of all
diatoms) and 17 calibrations with a minimum bound only. The
majority of calibrations were within centric diatoms (19), with
11 in the araphid grade and six in the raphid clade.
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To find the optimal rate-smoothing parameter for the penal-
ized likelihood time calibration (Sanderson, 2002), we used a
random subsample and replace cross-validation procedure (Smith
& O’Meara, 2012) with a range of tested values for the smooth-
ing parameter between 102 and 10�5. Cross-validation showed
that a value of 10�3 provided the best smoothing, indicating sub-
stantial evolutionary rate variation across the phylogeny, as
expected for a phylogenetic tree of this size and age. We used the
calibrations described in Table S3 and the rate-smoothing proce-
dure described above to time calibrate the best tree and all boot-
strap phylogenies for downstream analyses.

Diversification rate at predefined clades

Although the sample of 1151 taxa in our dataset encompasses
a broad sample of diatom diversity and considerably expands

upon previous efforts to reconstruct the diatom phylogeny, our
species count still falls well short of the total estimated number
of diatom species (see below). To accommodate unsampled
diversity in our models, we pruned the phylogeny to include
just one representative per genus (Fig. 1a–c), such that each tip
was an unresolved polytomy representing the entire species
diversity within that genus (N = 234 genera; ‘genus-level’ analy-
sis). This strategy breaks down when genera are nonmono-
phyletic, and so we also performed analyses with genera
grouped into more inclusive clades (N = 45 clades; ‘clade-level’
analysis).

We calculated net diversification rates using (1) the crown or
stem age of clades across bootstrap trees, (2) the total number of
species per lineage (see below), and (3) an estimate of the
diatom-wide relative extinction rate (or ‘extinction fraction’,
e = d/b; see below). We also calculated the 95% confidence

(a) (b) (c)

Fig. 1 Time-calibrated phylogeny of diatoms based on 11 genes with 1151 diatoms and six Parmales pruned down to one taxon per genus (N = 234). The
highest scoring tree, based on 100 maximum likelihood optimizations, is shown. In (a–c), branches are colored according to life history and motility. White
circles at nodes indicate UltraFast bootstrap support ≥95%. Gray bars denote the 5% and 95% quantiles of the distribution of node ages across bootstrap
replicates in millions of years (Myr). Red angular brackets denote calibrations, single ‘>’ for a minimum bound only and double ‘< >’ for minimum and
maximum bounds. Clade labels for oogamous nonmotile (ON), anisogamous nonmotile (AN) and anisogamous motile (AM) lineages match the groups in
Figs 2(c) and 3(b–d).
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interval for the expected size of a clade given its crown or stem
age (Magall�on & Sanderson, 2001).

The total number of diatom species is unknown, and recent
approximations vary by orders of magnitude, from 29 104

(Guiry, 2012) to 105 (Mann & Vanormelingen, 2013), indicat-
ing that our phylogenetic hypothesis includes, at best, 5% of all
diatom species. We therefore calculated the net diversification
rate across a range of diversity estimates: (1) NTotal = 11 958
species, the AlgaeBase total number of taxonomically accepted
names for all genera represented in the phylogeny (Guiry &
Guiry, 2017); (2) NTotal = 10 569 species, the DiatomBase total
number of taxonomically accepted names for extant species in all
genera represented in the phylogeny (Kociolek et al., 2017); (3)
NTotal = 20 000 species (Guiry, 2012); (4) NTotal = 30 000
species, the lower estimate of Mann & Vanormelingen (2013);
and (5) NTotal = 100 000 species, the upper estimate of Mann &
Vanormelingen (2013).

Standing diversity for analyses at the genus and clade levels was
taken from both AlgaeBase and DiatomBase. We report results
that used data from DiatomBase because it provides an estimate
for the number of extant species, which is the quantity of interest
for diversification models (Magall�on & Sanderson, 2001). How-
ever, a comparison of extant diversity per genus from
DiatomBase with total diversity per genus from AlgaeBase
showed similar numbers, and both datasets provided qualitatively
similar results.

Our calculations of net diversification required a fixed value
for the relative extinction rate (Magall�on & Sanderson, 2001).
We followed the method of Foote (2000), as implemented in the
R package PALEOTREE v.2.6 (Bapst, 2012), to obtain an empirical
estimate of relative extinction. This approach used the first and
last occurrence of fossil species binned into discrete, nonoverlap-
ping time intervals to calculate the instantaneous rates of specia-
tion and extinction. Fossil data were taken from the Barron
Diatom Catalog of first and last occurrences of Cenozoic diatoms
(Lazarus et al., 2014). To obtain a single estimate of relative
extinction for the entire set of fossils spanning the Cenozoic, we
binned the data into discrete time intervals, calculated rates of
speciation and extinction, and then averaged over time intervals.
To assess the effect of interval duration on the estimates of
relative extinction and downstream analyses, we repeated the
calculations with bin durations of 0.5, 1.0, 2.5 and 5.0Myr.

Discrete shifts and temporal variation in diversification

To complement the analysis based on predefined taxonomic
ranks, we used a rank-free approach to identify discrete shifts in
diversification rate that uses a stepwise Akaike information crite-
rion (AIC) procedure (MEDUSA; Alfaro et al., 2009; Brown et al.,
2016). The addition of a discrete shift to the MEDUSA diversifica-
tion model increases the number of model parameters, and so
more complex models were retained only when the improvement
in AIC was greater than a threshold derived from the size of the
phylogeny (N = 234, DAICc = 6.7; ‘genus-level’ analysis). To
account for discordance between taxonomy and phylogeny, we
repeated the analysis using a clade-level phylogeny (N = 45,

DAICc = 2.3; ‘clade-level’ analysis). We restricted the algorithm
to test only birth–death models and allowed shifts in diversifica-
tion at both stems and nodes of the phylogeny.

To summarize MEDUSA results and account for uncertainty in
divergence times across bootstrap trees, we focused on break-
points detected in ≥50% or ≥75% of bootstrap trees. We also cal-
culated temporal trends of net diversification (r = birth� death),
net turnover rate (s = birth + death sensu Beaulieu & O’Meara
(2016)) and relative extinction (e = death/birth). We split the
phylogenies into 1-Myr intervals and obtained summary statistics
for parameters of all branches intersecting an interval (Tank
et al., 2015).

Results

Time-calibrated phylogeny of diatoms

Consistent with previous multigene-based (e.g. Theriot et al.,
2015) and transcriptome-based (Parks et al., 2017) phylogenies,
we reconstructed the centric diatoms as a grade of five large clades
(Figs 1a, S1). A clade of Corethrales + Leptocylindrales was sister
to all other diatoms, and a clade of the multipolar diatoms
Attheya and Biddulphia was sister to the clade of pennate diatoms
(Figs 1a, S1). The diatom crown age was estimated at 190.4Ma
(mean across bootstrap trees), placing the origin of diatoms near
the Triassic–Jurassic boundary (Fig. 1a). Origins of genus-level
diversity within the grade of centric diatoms largely pre-dated the
Cenozoic, with notable exceptions within Eupodiscales,
Cymatosirales, Lithodesmiales and Thalassiosirales (Fig. 1a).
These results suggested both temporal and lineage-specific varia-
tion in the origination of genera, whereby genera within the
radial centric grade diversified much earlier than their counter-
parts in the polar centric grade (Fig. 1a). The pennate and raphid
lineages also had their origins in the Cretaceous, with genus origi-
nations distributed more evenly throughout the Cretaceous and
Cenozoic (Fig. 1b,c).

Accelerated diversification in diatoms with actively motile
vegetative cells

The analysis of Cenozoic marine diatom fossils showed that both
speciation (birth, b) and extinction (death, d) decreased during
the first 20Myr of the Cenozoic (Fig. 2a). The last 40–45Myr
were marked by a slow increase in turnover (b + d) that first
peaked at c. 35Ma and then again towards the recent (Fig. 2a).
These results were in agreement with recent paleontological stud-
ies based on similar data (Lazarus et al., 2014; Cerme~no et al.,
2015).

Using these data, we calculated that Cenozoic marine fossil
diatoms diversified at a mean rate of r = 0.029 (SD = 0.007) net
speciation events per 1 Myr, with a relatively high mean relative
extinction rate of e = 0.751 (SD = 0.081; Table 1). These values
were averages of calculations performed with the fossil data
binned into discrete, nonoverlapping time intervals with dura-
tions of 0.5, 1.0, 2.5 and 5.0Myr (Fig. S2). Comparison of
results obtained with different interval durations indicated that
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the estimates of relative extinction varied with the granularity of
the fossil data, being highest for 5-Myr intervals and lowest for
0.5-Myr intervals (Fig. S2). The most pronounced downstream
effect of relative extinction calculated with different interval dura-
tions was noticed for young clades inferred to have diversified at
a high rate (Fig. S3). For such clades, relative extinction calcu-
lated with a bin size of 5Myr provided the most conservative val-
ues for net diversification (Fig. S3). Although this variation had a
minor effect on downstream calculations of net diversification
(Fig. S3), we nonetheless performed all downstream analyses with
relative extinction averaged over the estimates obtained from the
four different bin sizes (Table 1; Fig. S2).

Using the above estimate of relative extinction averaged
through time and across bin sizes (e = 0.751), the inferred crown
age of diatoms (mean = 190.4Ma; Fig. 1) and different approxi-
mations of total diatom diversity, we calculated a minimum net
diversification of r = 0.044 events per 1Myr per lineage
(SD = 0.00033) for NTotal = 20 000 species and a maximum of
r = 0.052 (SD = 0.00039) for NTotal = 100 000 species. The 95%
confidence limits on expected species richness under the least
conservative scenario (NTotal = 100 000 species) indicated that
the expected diversity of a clade with a crown age of 50Myr
could range from two to 218 species.

Although the numbers of oogamous/nonmotile genera (ON;
number of genera NG = 86), anisogamous/nonmotile genera
(AN; NG = 61) and anisogamous/motile genera (AM, raphid;
NG = 85) included in our analyses were comparable (Fig. 1), at
the species level, the number of described AM species
(DiatomBase number of species, NS = 9533) far exceeds the
numbers of described ON (NS = 1871) and AN (NS = 759)
diatoms (Figs 2b, 3). This unbalanced distribution of species-
level diversity was evident in the diversity-by-age plot (Fig. 2b).
The raphid pennate (AM) lineage as a whole was more diverse
than expected, or, at least, at the upper bound of expected diver-
sity for NTotal = 100 000 species (Fig. 2b). The broader pennate
diatom lineage (AN + AM) was also more diverse than expected
when the assumed total diatom diversity was ≤ 20 000 species
(Fig. 2b).

At a lower phylogenetic scale, only lineages within the actively
motile raphid pennate (AM) clade had higher than expected
species richness, whereas the species richness of clades within the
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Fig. 2 Diatom diversification based on fossil and phylogenetic data at predefined clades. (a) Rates of speciation (birth, b), extinction (death, d) and species
turnover (s = b + d) based on first–last occurrence data for Cenozoic diatoms from the Barron Diatom Catalog. (b) Confidence intervals (95%) for species
richness of predefined diatom clades, based on crown ages, standing diversity and a relative extinction (e = d/b) of e = 0.751. Line types correspond to
different approximations of total diatom diversity (see the Materials and Methods section). Species richness from DiatomBase is plotted against crown age
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Supporting Information Fig. S4 for an identical analysis with AlgaeBase instead of DiatomBase species richness.

Table 1 Instantaneous rates of speciation (birth, b) and extinction (death,
d) based on first–last occurrence data of Cenozoic marine diatoms
summarized over time

Median Mean SD

Speciation (b) 0.093 0.097 0.009
Extinction (d) 0.086 0.085 0.005
Net diversification (r = b� d) 0.029 0.027 0.007
Relative extinction (e = d/b) 0.731 0.751 0.081
Net turnover (s = d + b) 0.193 0.190 0.030

The fossil data were binned into discrete, nonoverlapping intervals with
durations of 0.5, 1.0, 2.5 and 5.0 million yr (Myr). Summary statistics were
calculated for each granularity, and the reported values are averages of
the median parameter estimates across bin sizes. See Supporting
Information Fig. S2 for more details on parameter estimates at different
granularities.
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grades of AN and ON diatoms either was within or below the
bounds of expected species richness (Fig. 2b). The estimated
diversification rate of raphid (AM) diatoms as a whole was 1.66
times greater than that of all diatoms (Fig. 3), and the diversifica-
tion rate of AM diatoms was significantly higher than that of any
of the AN and ON lineages, with rate ratios ranging between 1.6
and 10.7 (Tukey post hoc tests, Padj < 0.001, Fig. 2c). These com-
parisons were obtained by pooling and averaging diversification
rate estimates of clades grouped into the most inclusive mono-
phyletic groups with a particular combination of life history and
locomotory traits. For example, for the AM lineages that together
form a single monophyletic group (raphid pennate diatoms), we
averaged over all AM clades, whereas, as the AN and ON lineages
are paraphyletic, we pooled clade-level parameters into the most
inclusive monophyletic groups (e.g. Corethrales + Leptocylin-
drales; Fig. 1). Results using stem rather than crown clade ages
(Fig. 3) and alternative sources for the number of species, i.e.
AlgaeBase instead of DiatomBase, agreed with these results
(Figs 3, S4).

Discrete shifts and temporal trends in diatom diversification

In the genus-level analysis with DiatomBase species richness data,
MEDUSA identified 23 rate shifts that occurred in at least 5% of
the bootstrap trees. Of these, 13 were present in ≥50% and 10
were detected in ≥75% of trees (Fig. 4a). Most shifts occurred

within the past c. 70Myr, and upward shifts tended to be more
recent, consistent with the Cenozoic increase in diatom diversity
as a whole (Rabosky & Sorhannus, 2009; Lazarus et al., 2014;
Cerme~no et al., 2015), as well as many lineages of both ON
(Alverson, 2014) and AM (Edwards, 1991) diatoms (Fig. 4a).
Breakpoints at deeper internal branches were detected in Thalas-
siosirales (ON, upward shift), deeper within a clade of multipolar
diatoms (ON, downward shift) and in two clades of AN diatoms
(downward shifts, Fig. 4a). Two phylogenetically deep upward
shifts coincided with the transitions from oogamy to anisogamy
in the ancestor of pennate diatoms (frequency = 0.70, magni-
tude = 0.007) and with the evolution of active motility in the
ancestor of raphid pennate diatoms (frequency = 0.69, magni-
tude = 0.014, Fig. 4a).

Averaged branch-associated parameters binned into 1-Myr
intervals showed increases in the rates of net diversification, rel-
ative extinction and species turnover after the emergence of
actively motile raphid pennate diatoms (Fig. 4b–d). Temporal
trends in lineages with different life history strategies reinforced
the finding of faster diversification in actively motile raphid
diatoms (AM) compared with their nonmotile counterparts
(ON and AN, Fig. 4b). This difference in diversification, how-
ever, was not caused by higher rates of speciation among
raphid diatoms against a background of similar extinction rates,
or the reverse, lower rates of extinction with comparable specia-
tion. The difference instead was a result of increases in both
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the birth of new lineages and their extinction
(turnover = birth + death, Fig. 4d). Accordingly, a higher frac-
tion of species per unit time went extinct among AM lineages
than in the ON and AN grades (Fig. 4c). We found

qualitatively similar results when using species richness data
from AlgaeBase instead of DiatomBase, and when we collapsed
the phylogeny down to the 45 predefined clades used in the
previous analysis (Figs 3, S4, S5).
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Fig. 4 Discrete shifts and temporal trends of
diversification across diatoms. (a) MEDUSA

reconstruction of rates of (birth� death,
r = b� d, events per million years) across the
genus-level phylogeny of
diatoms + Parmales. Triangle size is
proportional to the number of species per
genus (from DiatomBase), and the shading
corresponds to the estimated net
diversification rate. Rate shifts detected in
≥50% of trees are shown. (b–d) Temporal
trends in net diversification, relative
extinction (e = d/b) and turnover (s = b + d)
as estimated by the genus-level MEDUSA

analysis. Trend lines were calculated by
slicing the bootstrap phylogenies into 1
million yr (Myr) intervals and averaging the
branch-associated parameters for each slice
across trees. Trendlines are shown for the
most inclusive clades with a combination of
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Cenozoic marine fossil record (bin size,
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timing of the evolution of active motility (the
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Information Fig. S5 for an identical analysis
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species richness. Ma, million years ago.
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Discussion

Diversity patterns are frequently associated with evolutionary
innovations and ecological opportunities that are thought to alter
the rates at which species are born and lost through time. Transi-
tions in locomotory and life history strategies are important traits
that may underlie major shifts in diversification (Lecl�ere et al.,
2009; Goldberg et al., 2010; Ikeda et al., 2012; Cieslak et al.,
2014; de Vos et al., 2014). Changes in life history may also drive
shifts in locomotion (or vice versa) to optimally match these
traits, which are often linked in microbial eukaryotes (Hoek
et al., 1995).

Our results suggest that an interaction between motility and
life history during diatom evolution may have promoted an
increase in the rate of diversification of raphid pennate diatoms, a
lineage that evolved a novel mechanism of directed motility in
vegetative cells following the earlier loss of flagellated male game-
tes (Figs 2–4). At least 137Ma (Fig. 1), the MRCA of pennate
diatoms experienced a reduction in the morphological and behav-
ioral differences between gametes, such that the typical egg-and-
sperm oogamy present in the diatom ancestor, and largely pre-
served across the grade of ON (‘centric’) diatoms, was replaced
with anisogamy. It is unclear what, if any, selective pressures led
to the loss of the ancestral oogamous reproductive system.
Oogamy is thought to be advantageous because a species can
maximize the number of gametes and, as a result, successful cop-
ulation encounters by producing many small and highly motile
male gametes, as well as zygote survivorship by producing one or
a few large (and immobile) female gametes (Parker et al., 1972;
Maynard Smith, 1978; Matsuda & Abrams, 1999; Bulmer &
Parker, 2002; Togashi et al., 2012). In pennate diatoms, how-
ever, the flagellum of male gametes was lost, and dimorphism
between gametes diminished, such that gametes in a copulation
pair converged towards a similar, intermediate size (reviewed in
Kaczmarska et al., 2013), but differed in their behavior (Drebes,
1977), with male gametes that moved by pseudopodia to search
for a nonmotile female gamete (Davidovich et al., 2010, 2017;
Sato et al., 2011; Kaczmarska et al., 2017). The evolution of the
raphe and active motility in vegetative cells enabled gametangia,
rather than gametes, to search for mating partners, promoting
further reduction in sexual dimorphism and gamete mobility. An
added benefit of raphe-enabled locomotion is linked to the evolu-
tion of a system resembling internal fertilization, whereby copula-
tion occurs between closely spaced cells protected by a
mucilaginous ‘copulation envelope’ (Drebes, 1977; Round et al.,
1990; Kaczmarska et al., 2013). Thus, in raphid pennate
diatoms, the choice of a compatible mate precedes investment in
meiosis, providing greater certainty of copulation and increasing
the odds of the successful production of a viable zygote.

The novel combination of traits in raphid diatoms probably
makes it easier to search for and find a genetically compatible
mate. The diplontic life cycle of diatoms is characterized by long
periods of asexual reproduction and short, periodic bouts of sex-
ual reproduction. If vegetative cells cannot move, repeated vege-
tative divisions might lead to clonal patches of sibling cells,
especially in benthic, nonmotile species that often live attached to

substrates. This, in turn, might increase the chance of selfing or
delay sexual reproduction until a nonclonal partner is encoun-
tered. The frequency of sexual reproduction and the rates of self-
ing or outcrossing in natural populations of diatoms are
unknown and difficult to estimate. However, in culture, the
majority of surveyed pennate diatoms are heterothallic, with mat-
ing occurring only between genetically compatible clones (Chep-
urnov & Mann, 2004; Chepurnov et al., 2004; but see, e.g.,
Davidovich et al., 2010, 2017). This led to the hypothesis that
heterothally is the ancestral condition in pennates (Chepurnov
et al., 2004). Moreover, when selfing has been observed and the
progeny followed for a few generations thereafter, the cultured
strains experienced inbreeding depression, resulting in reduced
rates of gamete fusion and inviable zygotes (e.g. Chepurnov &
Mann, 1999). It follows that selfing is probably rare in natural
populations, and the various motility mechanisms that have
evolved in different life history stages (gametes vs vegetative cells)
might represent alternative strategies for increasing the frequency
or efficiency of sex and outcrossing. The combination of life his-
tory and motility traits present in raphid pennate diatoms sug-
gests that sexual reproduction is both more frequent and more
efficient in this lineage compared with clades with nonmotile veg-
etative cells.

This interaction between locomotion and life history had last-
ing consequences for the ways in which raphid diatoms interact
with conspecifics, heterospecifics and the environment. Raphe-
enabled motility relies on an actin–myosin system (Poulsen et al.,
1999), and is directional, reversible and much faster than other
forms of movement present in some nonraphid diatoms (Pickett-
Heaps et al., 1986, 1991; Kooistra et al., 2003). Active motility
in vegetative cells enabled directed movement towards microhab-
itats with specific light, nutrient and temperature conditions
(Cohn et al., 2015; Bondoc et al., 2016a), diurnal and tidal
migrations (Palmer & Round, 1967), gravitactic behaviors
(Frankenbach et al., 2014), predator avoidance (Kingston, 1999)
and pheromonal migration (Sato et al., 2011; Gillard et al., 2013;
Bondoc et al., 2016b; Moeys et al., 2016; Basu et al., 2017). This
broad range of ecological benefits – unavailable to nonraphid
diatoms – expanded the repertoire of habitats available for colo-
nization, creating new opportunities for niche specialization.
Active motility, and its tight association with substrate, might
have lowered the overall rates of passive dispersal, reducing long-
range connectivity between populations, ultimately leading to
greater isolation between local populations. Finally, the poten-
tially higher frequency of sexual reproduction might have con-
tributed to faster rates of adaptive divergence and the
maintenance of reproductive isolation (Barraclough et al., 2003).
Overall, the ability to move in response to both biotic and envi-
ronmental stimuli appears to have provided greater potential for
adaptive change and improved flexibility in dealing with habitat
complexity in benthic habitats, where raphid diatoms thrive.
Ultimately, the benefits of this novel locomotory trait might have
contributed to the elevated diversification rate found in raphid
pennate diatoms (Figs 2–4).

Although the myriad benefits of raphe-enabled motility have
been thoroughly characterized (Consalvey et al., 2004), these
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associations are nevertheless correlative and with a sample size of
one (i.e. the gain of a raphe occurred just once in diatom evolu-
tion). This highlights a long-standing challenge in comparative
evolutionary biology. Namely, it is impossible to derive statistical
support for an association between a trait and property, whether
it is diversification or the evolution of another trait, when the
focal trait evolved once (Maddison & FitzJohn, 2015; Beaulieu
& O’Meara, 2016). Moreover, although it is likely that locomo-
tion had a large effect on diatom evolution, diversification within
raphid pennate diatoms was certainly influenced by other envi-
ronmental, ecological and genetic factors. In this regard, the
diversification of raphe-bearing pennate diatoms resembles that
of many other exceptionally diverse clades (e.g. flowering plants
and insects), whose evolutionary success appears to be linked, at
least superficially, to innovations that evolved only once. A more
complete understanding of the diversification of diatoms, includ-
ing raphid pennates, will need to account for the synergistic
effects of other traits, biogeography and environmental changes,
whose combined influence probably contributed to their diversi-
fication (Donoghue & Sanderson, 2015).
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