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Multilayer neural networks are among the most powerful models
in machine learning, yet the fundamental reasons for this suc-
cess defy mathematical understanding. Learning a neural network
requires optimizing a nonconvex high-dimensional objective (risk
function), a problem that is usually attacked using stochastic gra-
dient descent (SGD). Does SGD converge to a global optimum of
the risk or only to a local optimum? In the former case, does this
happen because local minima are absent or because SGD some-
how avoids them? In the latter, why do local minima reached by
SGD have good generalization properties? In this paper, we con-
sider a simple case, namely two-layer neural networks, and prove
that—in a suitable scaling limit—SGD dynamics is captured by a
certain nonlinear partial differential equation (PDE) that we call
distributional dynamics (DD). We then consider several specific
examples and show how DD can be used to prove convergence
of SGD to networks with nearly ideal generalization error. This
description allows for “averaging out” some of the complexities
of the landscape of neural networks and can be used to prove a
general convergence result for noisy SGD.

neural networks | stochastic gradient descent | gradient flow |
Wasserstein space | partial differential equations

Multilayer neural networks are one of the oldest approaches
to statistical machine learning, dating back at least to the

1960s (1). Over the last 10 years, under the impulse of increasing
computer power and larger data availability, they have emerged
as a powerful tool for a wide variety of learning tasks (2, 3).

In this paper, we focus on the classical setting of supervised
learning, whereby we are given data points (xi , yi)∈Rd ×R,
indexed by i ∈N, which are assumed to be independent and iden-
tically distributed from an unknown distribution P on Rd ×R.
Here xi ∈Rd is a feature vector (e.g., a set of descriptors of
an image), and yi ∈R is a label (e.g., labeling the object in the
image). Our objective is to model the dependence of the label
yi on the feature vector xi to assign labels to previously unla-
beled examples. In a two-layer neural network, this dependence
is modeled as

ŷ(x;θ) =
1

N

N∑
i=1

σ∗(x;θi). [1]

Here, N is the number of hidden units (neurons), σ∗ :Rd ×
RD→R is an activation function, and θi ∈RD are parameters,
which we collectively denote by θ = (θ1, . . . ,θN ). The factor
(1/N ) is introduced for convenience and can be eliminated by
redefining the activation. Often θi = (ai , bi , wi) and

σ∗(x;θi) = ai σ(〈wi , x〉+ bi), [2]

for some σ :R→R. Ideally, the parameters θ = (θi)i≤N should
be chosen as to minimize the risk (generalization error) RN (θ) =
E{`(y , ŷ(x;θ))}, where ` :R×R→R is a certain loss function.
For the sake of simplicity, we will focus on the square loss
`(y , ŷ) = (y − ŷ)2, but more general choices can be treated along
the same lines.

In practice, the parameters of neural networks are learned
by stochastic gradient descent (SGD) (4) or its variants. In the

present case, this amounts to the iteration

θk+1
i =θk

i + 2sk
(
yk − ŷ(xk ;θk )

)
∇θiσ∗(xk ;θk

i ). [3]

Here θk = (θk
i )i≤N denotes the parameters after k iterations, sk

is a step size, and (xk , yk ) is the k th example. Throughout the
paper, we make the following “One-Pass Assumption”: Train-
ing examples are never revisited. Equivalently, {(xk , yk )}k≥1 are
independent and identically distributed. (xk , yk )∼P.

In large-scale applications, this is not far from truth: The data
are so large that each example is visited at most a few times
(5). Further, theoretical guarantees suggest that there is limited
advantage to be gained from multiple passes (6). For recent work
deriving scaling limits under such an assumption (in different
problems), see ref. 7.

Understanding the optimization landscape of two-layer neural
networks is largely an open problem even when we have access
to an infinite number of examples—that is, to the population risk
RN (θ). Several studies have focused on special choices of the
activation function σ∗ and of the data distribution P, proving that
the population risk has no bad local minima (8–10). This type of
analysis requires delicate calculations that are somewhat sensi-
tive to the specific choice of the model. Another line of work
proposes new algorithms with theoretical guarantees (11–16),
which use initializations based on tensor factorization.

In this paper, we prove that—in a suitable scaling limit—
the SGD dynamics admits an asymptotic description in terms
of a certain nonlinear partial differential equation (PDE). This
PDE has a remarkable mathematical structure, in that it cor-
responds to a gradient flow in the metric space (P(RD),W2):
the space of probability measures on RD , endowed with the
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Wasserstein metric. This gradient flow minimizes an asymptotic
version of the population risk, which is defined for ρ∈P(RD)
and will be denoted by R(ρ). This description simplifies the anal-
ysis of the landscape of two-layer neural networks, for instance
by exploiting underlying symmetries. We illustrate this by obtain-
ing results on several concrete examples as well as a general
convergence result for “noisy SGD.” In the next section, we
provide an informal outline, focusing on basic intuitions rather
than on formal results. We then present the consequences of
these ideas on a few specific examples and subsequently state our
general results.

An Informal Overview
A good starting point is to rewrite the population risk RN (θ) =
E{[y − ŷ(x;θ)]2} as

RN (θ) =R# +
2

N

N∑
i=1

V (θi) +
1

N 2

N∑
i,j=1

U (θi ,θj ), [4]

where we defined the potentials V (θ) =−E {y σ∗(x;θ)},
U (θ1,θ2) =E {σ∗(x;θ1)σ∗(x;θ2)}. In particular, U ( · , · ) is a
symmetric positive semidefinite kernel. The constant R# =
E{y2} is the risk of the trivial predictor ŷ = 0.

Notice that RN (θ) only depends on θ1, . . . ,θN through their
empirical distribution ρ̂(N ) =N−1∑N

i=1 δθi . This suggests con-
sidering a risk function defined for ρ∈P(RD) [we denote by
P(Ω) the space of probability distributions on Ω]:

R(ρ)=R#+2

∫
V (θ) ρ(dθ)+

∫
U (θ1,θ2) ρ(dθ1) ρ(dθ2). [5]

Formal relationships can be established between RN (θ) and
R(ρ). For instance, under mild assumptions, infθ RN (θ) =
infρ R(ρ) +O(1/N ). We refer to the next sections for mathe-
matical statements of this type.

Roughly speaking, R(ρ) corresponds to the population risk
when the number of hidden units goes to infinity, and the empiri-
cal distribution of parameters ρ̂(N ) converges to ρ. Since U ( · , · )
is positive semidefinite, we obtain that the risk becomes convex
in this limit. The fact that learning can be viewed as convex opti-
mization in an infinite-dimensional space was indeed pointed out
in the past (17, 18). Does this mean that the landscape of the
population risk simplifies for large N and descent algorithms will
converge to a unique (or nearly unique) global optimum?

The answer to the latter question is generally negative, and
a physics analogy can explain why. Think of θ1, . . . ,θN as the
positions of N particles in a D-dimensional space. When N
is large, the behavior of such a “gas” of particles is effectively
described by a density ρt(θ) (with t indexing time). However, not
all “small” changes of this density profile can be realized in the
actual physical dynamics: The dynamics conserves mass locally
because particles cannot move discontinuously. For instance, if
supp(ρt) =S1 ∪S2 for two disjoint compact sets S1,S2⊆RD and
all t ∈ [t1, t2], then the total mass in each of these regions cannot
change over time—that is, ρt(S1) = 1− ρt(S2) does not depend
on t ∈ [t1, t2].

We will prove that SGD is well approximated (in a precise
quantitative sense described below) by a continuum dynamics
that enforces this local mass conservation principle. Namely,
assume that the step size in SGD is given by sk = ε ξ(kε), for
ξ :R≥0→R≥0 a sufficiently regular function. Denoting by
ρ̂

(N )
k =N−1∑N

i=1 δθk
i

the empirical distribution of parameters
after k SGD steps, we prove that

ρ̂
(N )

t/ε ⇒ ρt , [6]

when N →∞, ε→ 0 (here ⇒ denotes weak convergence). The
asymptotic dynamics of ρt is defined by the following PDE, which

we shall refer to as distributional dynamics (DD):

∂tρt = 2ξ(t)∇θ · (ρt∇θΨ(θ; ρt)), [7]

and

Ψ(θ; ρ)≡V (θ) +

∫
U (θ,θ′) ρ(dθ′). [8]

[Here,∇θ · v(θ) denotes the divergence of the vector field v(θ).]
This should be interpreted as an evolution equation in P(RD).
While we described the convergence to this dynamics in asymp-
totic terms, the results in the next sections provide explicit
nonasymptotic bounds. In particular, ρt is a good approximation
of ρ̂(N )

k , k = t/ε, as soon as ε� 1/D and N �D .
Using these results, analyzing learning in two-layer neural net-

works reduces to analyzing the PDE (Eq. 7). While this is far
from being an easy task, the PDE formulation leads to several
simplifications and insights. First, it factors out the invariance of
the risk (Eq. 4) (and of the SGD dynamics; Eq. 3), with respect
to permutations of the units {1, . . . ,N }.

Second, it allows us to exploit symmetries in the data distri-
bution P. If P is left invariant under a group of transformations
(e.g., rotations), we can look for a solution ρt of the DD (Eq. 7)
that enjoys the same symmetry, hence reducing the dimensional-
ity of the problem. This is impossible for the finite-N dynamics
(Eq. 3), since no arrangement of the points {θ1, . . . ,θN }⊆RD

is left invariant, say, under rotations. We will provide examples
of this approach in the next sections.

Third, there is rich mathematical literature on the PDE (Eq.
7) that was motivated by the study of interacting particle systems
in mathematical physics. As mentioned above, a key structure
exploited in this line of work is that Eq. 7 can be viewed as a gra-
dient flow for the cost function R(ρ) in the space (P(RD),W2),
of probability measures on RD endowed with the Wasserstein
metric (19–21). Roughly speaking, this means that the trajectory
t 7→ ρt attempts to minimize the risk R(ρ) while maintaining the
“local mass conservation” constraint. Recall that the Wasserstein
distance is defined as

W2(ρ1, ρ2) =

(
inf

γ∈C(ρ1,ρ2)

∫
‖θ1−θ2‖22γ(dθ1, dθ2)

)1/2

, [9]

where the infimum is taken over all couplings of ρ1 and ρ2. Infor-
mally, the fact that ρt is a gradient flow means that Eq. 7 is
equivalent, for small τ , to

ρt+τ ≈ arg min
ρ∈P(RD )

{
R(ρ) +

1

2ξ(t)τ
W2(ρ, ρt)

2

}
. [10]

Powerful tools from the mathematical literature on gradient
flows in measure spaces (20) can be exploited to study the
behavior of Eq. 7.

Most importantly, the scaling limit elucidates the dependence
of the landscape of two-layer neural networks on the number of
hidden units N .

A remarkable feature of neural networks is the observa-
tion that, while they might be dramatically overparametrized,
this does not lead to performance degradation. In the case of
bounded activation functions, this phenomenon was clarified in
the 1990s for empirical risk minimization algorithms (see, e.g.,
ref. 22). The present work provides analogous insight for the
SGD dynamics: Roughly speaking, our results imply that the
landscape remains essentially unchanged as N grows, provided
N �D . In particular, assume that the PDE (Eq. 7) converges
close to an optimum in time t∗(D). This might depend on D but
does not depend on the number of hidden units N (which does
not appear in the DD PDE; Eq. 7). If t∗(D) =OD(1), we can
then take N arbitrarily (as long as N �D) and will achieve a
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population risk that is independent of N (and corresponds to the
optimum), using k = t∗/ε=O(D) samples.

Our analysis can accommodate some important variants of
SGD, a particularly interesting one being noisy SGD:

θk+1
i = (1− 2λsk )θk

i + 2sk (yk − ŷk )∇θiσ∗(xk ;θk
i )

+
√

2sk/β gk
i , [11]

where gk
i ∼N(0, ID) and ŷk = ŷ(xk ;θk ). (The term −2λskθ

k
i

corresponds to an `2 regularization and will be useful for our
analysis below.) The resulting scaling limit differs from Eq. 7 by
the addition of a diffusion term:

∂tρt = 2ξ(t)∇θ · (ρt∇θΨλ(θ; ρt))+ 2ξ(t)β−1∆θρt , [12]

where Ψλ(θ; ρ) = Ψ(θ; ρ) + (λ/2)‖θ‖22, and ∆θf (θ) =
∑d

i=1 ∂
2
θi

f (θ) denotes the usual Laplacian. This can be viewed as a
gradient flow for the free-energy Fβ,λ(ρ) = (1/2)R(ρ) + (λ/2)∫
‖θ‖22ρ(dθ)−β−1Ent(ρ), where Ent(ρ) =−

∫
ρ(θ) log ρ(θ) dθ

is the entropy of ρ [by definition Ent(ρ) =−∞ if ρ is singular].
Fβ,λ(ρ) is an entropy-regularized risk, which penalizes strongly
nonuniform ρ.

We will prove below that, for β <∞, the evolution (Eq. 12)
generically converges to the minimizer of Fβ,λ(ρ), hence imply-
ing global convergence of noisy SGD in a number of steps
independent of N .

Examples
In this section, we discuss some simple applications of the general
approach outlined above. Let us emphasize that these examples
are not realistic. First, the data distribution P is extremely simple:
We made this choice to be able to carry out explicit calcula-
tions. Second, the activation function σ∗(x;θ) is not necessarily
optimal: We made this choice to illustrate some interesting
phenomena.

Centered Isotropic Gaussians. One-neuron neural networks per-
form well with (nearly) linearly separable data. The simplest clas-
sification problem that requires multilayer networks is, arguably,
the one of distinguishing two Gaussians with the same mean.
Assume the joint law P of (y , x) to be as follows:

with probability 1/2: y = +1, x∼N(0, (1 + ∆)2Id); and
with probability 1/2: y =−1, x∼N(0, (1−∆)2Id).

(This example will be generalized later.) Of course, optimal
classification in this model becomes entirely trivial if we compute
the feature h(x) = ‖x‖2. However, it is nontrivial that an SGD-
trained neural network will succeed.

We choose an activation function without offset or output
weights, namely σ∗(x;θi) =σ(〈wi , x〉). While qualitatively sim-
ilar results are obtained for other choices of σ, we will use a
simple piecewise linear function as a running example: σ(t) = s1

if t ≤ t1, σ(t) = s2 if t ≥ t2, and σ(t) interpolated linearly for
t ∈ (t1, t2). In simulations, we use t1 = 0.5, t2 = 1.5, s1 =−2.5,
and s2 = 7.5.

We run SGD with initial weights (w0
i )i≤N ∼iid ρ0, where ρ0 is

spherically symmetric. Fig. 1 reports the result of such an experi-
ment. Due to the symmetry of the distribution P, the distribution
ρt remains spherically symmetric for all t and hence is completely
determined by the distribution ρt of the norm r = ‖w‖2. This
distribution satisfies a one-dimensional reduced DD:

∂tρt = 2ξ(t) ∂r (ρt∂rψ(r ; ρt)), [13]

where the form of ψ(r ; ρ) can be derived from Ψ(θ; ρ). This
reduced PDE can be efficiently solved numerically, see SI
Appendix for technical details. As illustrated by Fig. 1, the empir-
ical results match closely the predictions produced by this PDE.

In Fig. 2, we compare the asymptotic risk achieved by SGD
with the prediction obtained by minimizing R(ρ) (cf., Eq. 5) over

Fig. 1. Evolution of the radial distribution ρt for the isotropic Gaussian
model, with ∆ = 0.8. Histograms are obtained from SGD experiments with
d = 40, N = 800, initial weight distribution ρ0 = N(0, 0.82/d · Id), and step
size ε= 10−6 and ξ(t) = 1. Continuous lines correspond to a numerical
solution of the DD (Eq. 13).

spherically symmetric distributions. It turns out that, for certain
values of ∆, the minimum is achieved by the uniform distribution
over a sphere of radius ‖w‖2 = r∗, to be denoted by ρunif

r∗ . The
value of r∗ is computed by minimizing

R
(1)
d (r) = 1 + 2v(r) + ud(r , r), [14]

where expressions for v(r), ud(r1, r2) can be readily derived
from V (w), U (w1, w2) and are given in SI Appendix.

Lemma 1: Let r∗ be a global minimizer of r 7→R
(1)
d (r). Then ρunif

r∗
is a global minimizer of ρ 7→R(ρ) if and only if v(r) + ud(r , r∗)≥
v(r∗) + ud(r∗, r∗) for all r ≥ 0.

Checking numerically, this condition yields that ρunif
r∗ is a global

minimizer for ∆ in an interval [∆l
d , ∆h

d ], where limd→∞∆l
d = 0

and limd→∞∆h
d = ∆∞≈ 0.47.

Fig. 2 shows good quantitative agreement between empiri-
cal results and theoretical predictions and suggests that SGD
achieves a value of the risk that is close to optimum. Can we
prove that this is indeed the case and that the SGD dynamics
does not get stuck in local minima? It turns out that we can use
our general theory (see next section) to prove that this is the
case for large d . To state this result, we need to introduce a class
of good uninformative initializations Pgood⊆P(R≥0) for which
convergence to the optimum takes place. For ρ∈P(R≥0), we
let Rd(ρ)≡R(ρ×Unif(Sd−1)). This risk has a well-defined limit
as d→∞. We say that ρ∈Pgood if (i) ρ is absolutely continu-
ous with respect to the Lebesgue measure, with bounded density,
(ii) R∞(ρ)< 1.

Theorem 1: For any η, ∆, δ > 0 and ρ0 ∈Pgood, there exists
d0 = d0(η, ρ0, ∆), T =T (η, ρ0, ∆), and C0 =C0(η, ρ0, ∆, δ),
such that the following holds for the problem of classifying
isotropic Gaussians. For any dimension d ≥ d0, number of neu-
rons N ≥C0d , consider SGD initialized with (w0

i )i≤N ∼iid ρ0×
Unif(Sd−1) and step size ε∈ [1/N 10, 1/(C0d)]. Then we have

RN (θk )≤ inf
θ∈RN×d

R(θ) + η [15]

for any k ∈ [T/ε, 10T/ε] with probability at least 1− δ.

In particular, if we set ε= 1/(C0d), then the number of SGD
steps is k ∈ [(C0T ) d , (10C0T ) d ]: The number of samples used
by SGD does not depend on the number of hidden units N and
is only linear in the dimension. Unfortunately, the proof does
not provide the dependence of T on η, but Theorem 6 below
suggests exponential local convergence.
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Fig. 2. Population risk in the problem of separating two isotropic Gaussians,
as a function of the separation parameter ∆. We use a two-layer network
with piecewise linear activation, no offset, and output weights equal to 1.
Empirical results obtained by SGD (a single run per data point) are marked
“+.” Continuous lines are theoretical predictions obtained by numerically
minimizing R(ρ) (see SI Appendix for details). Dashed lines are theoretical
predictions from the single-delta ansatz of Eq. 14. Notice that this ansatz is
incorrect for ∆>∆h

d , which is marked as a solid round dot. Here, N = 800.

While we stated Theorem 1 for the piecewise linear sigmoids,
SI Appendix presents technical conditions under which it holds
for a general monotone function σ :R→R.

Centered Anisotropic Gaussians. We can generalize the previous
result to a problem in which the network needs to select a subset
of relevant nonlinear features out of many a priori equivalent
ones. We assume the joint law of (y , x) to be as follows:

with probability 1/2: y = +1, x∼N(0,Σ+); and
with probability 1/2: y =−1, x∼N(0,Σ−).

Given a linear subspace V ⊆Rd of dimension s0≤ d , we
assume that Σ+, Σ− differ uniquely along V : Σ±= Id + (τ2

±−
1)PV , where τ±= (1±∆) and PV is the orthogonal projector
onto V . In other words, the projection of x on the subspace V
is distributed according to an isotropic Gaussian with variance
τ2
+ (if y = +1) or τ2

− (if y =−1). The projection orthogonal to
V has instead the same variance in the two classes. A success-
ful classifier must be able to learn the relevant subspace V . We
assume the same class of activations σ∗(x;θ) =σ(〈w, x〉) as for
the isotropic case.

The distribution P is invariant under a reduced symme-
try group O(s0)×O(d − s0). As a consequence, letting r1 =
‖PVw‖2 and r2≡‖(Id − PV)w‖2, it is sufficient to consider dis-
tributions ρ that are uniform, conditional on the values of r1 and
r2. If we initialize ρ0 to be uniform conditional on (r1, r2), this
property is preserved by the evolution (Eq. 7). As in the isotropic
case, we can use our general theory to prove convergence to a
near-optimum if d is large enough.

Theorem 2: For any η, ∆, δ > 0 and ρ0 ∈Pgood, there exists
d0 = d0(η, ρ0, ∆, γ), T =T (η, ρ0, ∆, γ), and C0 =C0(η, ρ0, ∆,
δ, γ), such that the following holds for the problem of classi-
fying anisotropic Gaussians with s0 = γd , γ ∈ (0, 1) fixed. For
any dimension parameters s0 = γd ≥ d0, number of neurons N ≥
C0d , consider SGD initialized with initialization (w0

i )i≤N ∼iid

ρ0×Unif(Sd−1) and step size ε∈ [1/N 10, 1/(C0d)]. Then, we
have RN (θk )≤ infθ∈RN×d RN (θ) + η for any k ∈ [T/ε, 10T/ε]
with probability at least 1− δ.

Even with a reduced degree of symmetry, SGD converges to
a network with nearly optimal risk, after using a number of sam-
ples k =O(d), which is independent of the number of hidden
units N .

A Better Activation Function. Our previous examples use activa-
tion functions σ∗(x;θ) =σ(〈w, x〉) without output weights or
offset to simplify the analysis and illustrate some interesting
phenomena. Here we consider instead a standard rectified lin-
ear unit (ReLU) activation and fit both the output weight and
the offset: σ∗(x;θ) = a σReLU(〈w, x〉+ b), where σReLU(x ) =
max(x , 0). Hence, θ = (w, a, b)∈Rd+2.

We consider the same data distribution introduced in the last
section (anisotropic Gaussians). Fig. 3 reports the evolution of
the risk RN (θk ) for three experiments with d = 320, s0 = 60, and
different values of ∆. SGD is initialized by setting ai = 1, bi = 1,
and w0

i ∼iid N(0, 0.82/d · Id) for i ≤N . We observe that SGD
converges to a network with very small risk, but this convergence
has a nontrivial structure and presents long flat regions.

The empirical results are well captured by our predictions
based on the continuum limit. In this case, we obtain a reduced
PDE for the joint distribution of the four quantities r =
(a, b, r1 = ‖PVw‖2, r2 = ‖P⊥Vw‖2), denoted by ρt . The reduced
PDE is analogous to Eq. 13 albeit in 4 dimensions rather than 1
dimension. In Fig. 3, we consider the evolution of the risk, along-
side three properties of the distribution ρt—the means of the
output weight a , of the offset b, and of r1.

Predicting Failure. SGD does not always converge to a near global
optimum. Our analysis allows us to construct examples in which
SGD fails. For instance, Fig. 4 reports results for the isotropic
Gaussians problem. We violate the assumptions of Theorem
1 by using nonmonotone activation function. Namely, we use
σ∗(x;θ) =σ(〈w, x〉), where σ(t) =−2.5 for t ≤ 0, σ(t) = 7.5 for
t ≥ 1.5, and σ(t) linearly interpolates from (0, –2.5) to (0.5, –4),
and from (0.5, –4) to (1.5, 7.5).

Depending on the initialization, SGD converges to two differ-
ent limits, one with a small risk and the second with high risk.
Again, this behavior is well tracked by solving a one-dimensional
PDE for the distribution ρt of r = ‖w‖2.

Fig. 3. Evolution of the population risk for the variable selection problem
using a two-layer neural network with ReLU activations. Here d = 320, s0 =

60, and N = 800, and we used ξ(t) = t−1/4 and ε= 2× 10−4 to set the step
size. Numerical simulations using SGD (one run per data point) are marked
+, and curves are solutions of the reduced PDE with d =∞. (Inset) Evolution
of three parameters of the reduced distribution ρt (average output weights
a, average offsets b, and average `2 norm in the relevant subspace r1) for
the same setting.
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Fig. 4. Separating two isotropic Gaussians, with a nonmonotone activation
function (see Predicting Failure for details). Here N = 800, d = 320, and ∆ =

0.5. The main frame presents the evolution of the population risk along
the SGD trajectory, starting from two different initializations of (w0

i )i≤N ∼iid

N(0,κ2/d · Id) for either κ= 0.1 or κ= 0.4. In Inset, we plot the evolution of
the average of ‖w‖2 for the same conditions. Symbols are empirical results.
Continuous lines are predictions obtained with the reduced PDE (Eq. 13).

General Results
In this section, we return to the general supervised learning
problem described in the Introduction and describe our general
results. Proofs are deferred to SI Appendix.

First, we note that the minimum of the asymptotic risk R(ρ)
of Eq. 5 provides a good approximation of the minimum of the
finite-N risk RN (θ).

Proposition 1: Assume that either one of the following condi-
tions hold: (a) infρ R(ρ) is achieved by a distribution ρ∗ such
that

∫
U (θ,θ) ρ∗(dθ)≤K ; (b) There exists ε0 > 0 such that,

for any ρ∈P(RD) such that R(ρ)≤ infρ R(ρ) + ε0, we have∫
U (θ,θ) ρ(dθ)≤K . Then∣∣ inf

θ
RN (θ)− inf

ρ
R(ρ)

∣∣≤K/N . [16]

Further, assume that θ 7→V (θ) and (θ1,θ2) 7→U (θ1,θ2) are
continuous, with U bounded below. A probability measure ρ∗ is
a global minimum of R if infθ∈RD Ψ(θ; ρ∗)>−∞ and

supp(ρ∗)⊆ arg min
θ∈RD

Ψ(θ; ρ∗). [17]

We next consider the DDs (Eqs. 7 and 12). These should be inter-
preted to hold in a weak sense (cf. SI Appendix). To establish that
these PDEs indeed describe the limit of the SGD dynamics, we
make the following assumptions:

A1. t 7→ ξ(t) is bounded Lipschitz: ‖ξ‖∞, ‖ξ‖Lip≤K1, with∫∞
0
ξ(t)dt =∞.

A2. The activation function (x,θ) 7→σ∗(x;θ) is bounded, with
sub-Gaussian gradient: ‖σ∗‖∞≤K2, ‖∇θσ∗(X;θ)‖ψ2 ≤
K2. Labels are bounded |yk | ≤K2.

A3. The gradients θ 7→∇V (θ), (θ1,θ2) 7→∇θ1U (θ1,θ2) are
bounded, Lipschitz continuous [namely ‖∇θV (θ)‖2,
‖∇θ1U (θ1,θ2)‖2≤K3, ‖∇θV (θ)−∇θV (θ′)‖2≤K3‖θ−
θ′‖2, ‖∇θ1U (θ1,θ2)−∇θ1U (θ′1,θ′2)‖2≤K3‖(θ1,θ2)−
(θ′1,θ′2)‖2].

We also introduce the following error term that quantifies in a
nonasymptotic sense the accuracy of our PDE model:

errN ,D(z )≡
√

1/N ∨ ε ·
[√

D + log(N /ε) + z
]
. [18]

The convergence of the SGD process to the PDE model is an
example of a phenomenon that is known in probability theory as
propagation of chaos (23).

Theorem 3: Assume that conditions A1, A2, A3 hold. For ρ0 ∈
P(RD), consider SGD with initialization (θ0

i )i≤N ∼iid ρ0 and step
size sk = εξ(kε). For t ≥ 0, let ρt be the solution of PDE (Eq. 7).
Then, for any fixed k , ρ̂(N )

k ⇒ ρkε almost surely along any sequence
(N , ε= εN ) such that N / log(1/εN )→∞, εN → 0. Further, there
exists a constant C (depending uniquely on the parameters Ki

of conditions A1–A3) such that, for any f :RD ×R→R, with
‖f ‖∞, ‖f ‖Lip≤ 1, ε≤ 1,

sup
k∈[0,T/ε]∩N

∣∣∣ 1

N

N∑
i=1

f (θk
i )−

∫
f (θ)ρkε(dθ)

∣∣∣≤CeCT errN ,D(z ),

sup
k∈[0,T/ε]∩N

∣∣RN (θk )−R(ρkε)
∣∣≤CeCT errN ,D(z ), [19]

with probability 1− e−z2 . The same statements hold for noisy SGD
(Eq. 11), provided Eq. 7 is replaced by Eq. 12, and if β≥ 1, λ≤ 1,
and ρ0 is K0 sub-Gaussian for some K0 > 0.

Notice that dependence of the error terms in N and D is rather
benign. On the other hand, the error grows exponentially with
the time horizon T , which limits its applicability to cases in which
the DD converges rapidly to a good solution. We do not expect
this behavior to be improvable within the general setting of 0.3,
which a priori includes cases in which the dynamics is unstable.

We can regard J(θ; ρt) = ρt(θ)∇θΨ(θ; ρt) as a current. The
fixed points of the continuum dynamics are densities that
correspond to zero current, as stated below.

Proposition 2: Assume V ( · ),U ( · , · ) to be differentiable with
bounded gradient. If ρt is a solution of the PDE (Eq. 7), then R(ρt)
is nonincreasing. Further, probability distribution ρ is a fixed point
of the PDE (Eq. 7) if and only if

supp(ρ)⊆{θ : ∇θΨ(θ; ρ) = 0 }. [20]

Note that global optimizers of R(ρ), defined by condition (Eq.
17), are fixed points, but the set of fixed points is, in general,
larger than the set of optimizers. Our next proposition provides
an analogous characterization of the fixed points of diffusion DD
(Eq. 12) (see ref. 21 for related results).

Proposition 3: Assume that conditions A1–A3 hold and that ρ0 is
absolutely continuous with respect to the Lebesgue measure, with
Fβ,λ(ρ0)<∞. If (ρt)t≥0 is a solution of the diffusion PDE (Eq.
12), then ρt is absolutely continuous. Further, there is at most one
fixed point ρ∗= ρβ,λ

∗ of Eq. 12 satisfying Fβ,λ(ρ∗)<∞. This fixed
point is absolutely continuous and its density satisfies

ρ∗(θ) =
1

Z (β)
exp {−βΨλ(θ; ρ∗)}. [21]

In the next sections, we state our results about convergence of
the DD to its fixed point. In the case of noisy SGD [and for the
diffusion PDE (12)], a general convergence result can be estab-
lished (although at the cost of an additional regularization). For
noiseless SGD (and the continuity equation; Eq. 12), we do not
have such a general result. However, we obtain a stability condi-
tion for a fixed point containing one point mass, which is useful
to characterize possible limiting points (and is used in treating
the examples in the previous section).

Convergence: Noisy SGD. Remarkably, the diffusion PDE (Eq. 12)
generically admits a unique fixed point, which is the global min-
imum of Fβ,λ(ρ), and the evolution (Eq. 12) converges to it, if
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initialized so that Fβ,λ(ρ0)<∞. This statement requires some
qualifications. First, we introduce sufficient regularity assump-
tions to guarantee the existence of sufficiently smooth solutions
of Eq. 12:

A4. V ∈C 4(RD), U ∈C 4(RD ×RD), ∇k
θ1
U (θ1,θ2) is uni-

formly bounded for 0≤ k ≤ 4.
Next notice that the righthand side of the fixed point equation

(Eq. 21) is not necessarily normalizable [for instance, it is not
when V ( · ), U ( · , · ) are bounded]. To ensure the existence of a
fixed point, we need λ> 0.

Theorem 4: Assume that conditions A1–A4 hold, and 1/K0≤
λ≤K0 for some K0 > 0. Then Fβ,λ(ρ) has a unique minimizer,
denoted by ρβ,λ

∗ , which satisfies

R(ρβ,λ
∗ )≤ inf

θ∈RN×D
RN (θ) +C D/β, [22]

where C is a constant depending on K0,K1,K2,K3. Further, letting
ρt be a solution of the diffusion PDE (Eq. 12) with initialization
satisfying Fβ,λ(ρ0)<∞, we have, as t→∞,

ρt⇒ ρβ,λ
∗ . [23]

The proof of this theorem is based on the following formula that
describes the free-energy decrease along the trajectories of the
DD (Eq. 12):

dFβ,λ(ρt)

dt
=

−2ξ(t)

∫
RD

‖∇θ (Ψλ(θ; ρt) + 1/β · log ρt(θ))‖22ρt(θ)dθ. [24]

(A key technical hurdle is of course proving that this expres-
sion makes sense, which we do by showing the existence of
strong solutions.) It follows that the righthand side must van-
ish as t→∞, from which we prove that (eventually taking
subsequences) ρt⇒ ρ∗ where ρ∗ must satisfy βΨλ(θ; ρ∗) +
log ρ∗(θ) = const. This in turns mean ρ∗ is a solution of the fixed
point condition 21 and is in fact a global minimum of Fβ,λ by
convexity.

This result can be used in conjunction with Theorem 3, to
analyze the regularized noisy SGD algorithm (Eq. 11).

Theorem 5: Assume that conditions A1–A4 hold. Let ρ0 ∈
P(RD) be absolutely continuous with Fβ,λ(ρ0)<∞ and
K0 sub-Gaussian. Consider regularized noisy SGD (cf. Eq.
11) at inverse temperature β <∞, regularization 1/K0≤λ≤
K0 with initialization (θ0

i )i≤N ∼iid ρ0. Then, for any η >
0, there exists K =K (η, {Ki}), and setting β≥KD , there
exists T =T (η,V ,U , {Ki},D ,β)<∞ and C0 =C0(η, {Ki}, δ)(
independent of the dimension D and temperature β) such

that the following happens for N , (1/ε)≥C0e
C0TD , ε≥

1/N 10: For any k ∈ [T/ε, 10T/ε], we have, with probability
1− δ,

RN (θk )≤ inf
ρ∈P(RD )

Rλ(ρ) + η. [25]

Let us emphasize that the convergence time T in the last theo-
rem can depend on the dimension D and on the data distribution
P but is independent of the number of hidden units N . As illus-
trated by the examples in the previous section, understanding the
dependence of T on D requires further analysis, but examin-
ing the proof of this theorem suggests T = eO(D) quite generally
[examples in which T =O(1) or T = eΘ(D) can be constructed].
We expect that our techniques could be pushed to investigate the
dependence of T on η (see SI Appendix, Discussion). In highly
structured cases, the dimension D can be of constant order and
be much smaller than d .

Convergence: Noiseless SGD. The next theorems provide neces-
sary and sufficient conditions for distributions containing a single
point mass to be a stable fixed point of the evolution. This result
is useful to characterize the large time asymptotics of the dynam-
ics (Eq. 7). Here, we write ∇1U (θ1,θ2) for the gradient of
U with respect to its first argument and ∇2

1,1U for the corre-
sponding Hessian. Further, for a probability distribution ρ∗, we
define

H0(ρ∗) =∇2V (θ∗) +

∫
∇2

1,1U (θ∗,θ) ρ∗(dθ). [26]

Note that H0(ρ∗) is nothing but the Hessian of θ 7→Ψ(θ; ρ∗)
at θ∗.

Theorem 6: Assume V ,U to be twice differentiable with bounded
gradient and bounded continuous Hessian. Let θ∗ ∈RD be given.
Then ρ∗= δθ∗ is a fixed point of the evolution (Eq. 7) if and only if
∇V (θ∗) +∇1U (θ∗,θ∗) = 0.

Define H0(δθ∗)∈RD×D as per Eq. 26. If λmin(H0(δθ∗))> 0,
then there exists r0 > 0 such that, if supp(ρt0)⊆B(θ∗; r0)≡{θ :
‖θ−θ∗‖2≤ r0}, then ρt⇒ ρ∗ as t→∞. In fact, convergence
is exponentially fast, namely

∫
‖θ−θ∗‖22ρt(dθ)≤ e−λ(t−t0) for

some λ> 0.

Theorem 7: Under the same assumptions of Theorem 6, let ρ∗=
p∗δθ∗ + (1− p∗)ρ̃∗ ∈P(RD) be a fixed point of dynamics (Eq.
7), with p∗ ∈ (0, 1] and ∇Ψ(θ∗; ρ∗) = 0 (which, in particular, is
implied by the fixed point condition; Eq. 20). Define the level
sets L(η)≡{θ : Ψ(θ; ρ∗)≤Ψ(θ∗; ρ∗)− η} and make the follow-
ing assumptions: (B1) The eigenvalues of H0 = H0(ρ∗) are all
different from 0, with λmin(H0)< 0; (B2) ρ̃∗(L(η)) ↑ 1 as η ↓ 0;
and (B3) there exists η0 > 0 such that the sets ∂L(η) are compact
for all η ∈ (0, η0).

If ρ0 has a bounded density with respect to the Lebesgue measure,
then it cannot be that ρt converges weakly to ρ∗ as t→∞.

Discussion and Future Directions
In this paper, we developed an approach to the analysis of two-
layer neural networks. Using a propagation-of-chaos argument,
we proved that—if the number of hidden units satisfies N �D—
SGD dynamics is well approximated by the PDE in Eq. 7, while
noisy SGD is well approximated by Eq. 12. Both of these asymp-
totic descriptions correspond to Wasserstein gradient flows for
certain energy (or free energy) functionals. While empirical risk
minimization is known to be insensitive to overparametrization
(22), the present work clarifies that the SGD behavior is also
independent of the number of hidden units, as soon as this is
large enough.

We illustrated our approach on several concrete examples, by
proving convergence of SGD to a near-global optimum. This type
of analysis provides a mechanism for avoiding the perils of non-
convexity. We do not prove that the finite-N risk RN (θ) has a
unique local minimum or that all local minima are close to each
other. Such claims have often been the target of earlier work
but might be too strong for the case of neural networks. We
prove instead that the PDE (Eq. 7) converges to a near-global
optimum, when initialized with a bounded density. This effec-
tively gets rid of some exceptional stationary points of RN (θ) and
merges multiple finite N stationary points that result into similar
distributions ρ.

In the case of noisy SGD (Eq. 11), we prove that it con-
verges generically to a near-global minimum of the regu-
larized risk, in time independent of the number of hidden
units.

We emphasize that while we focused here on the case of
square loss, our approach should be generalizable to other loss
functions as well (cf. SI Appendix).
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The present work opens the way to several interesting research
directions. We will mention two of them: (i) The PDE (Eq. 7)
corresponds to gradient flow in the Wasserstein metric for the
risk R(ρ) (see ref. 20). Building on this remark, tools from opti-
mal transportation theory can be used to prove convergence. (ii)
Multiple finite-N local minima can correspond to the same min-
imizer ρ∗ of R(ρ) in the limit N →∞. Ideas from glass theory
(24) might be useful to investigate this structure.

Let us finally mention that, after a first version of this paper
appeared as a preprint, several other groups obtained results that
are closely related to Theorem 3 (25–27).
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