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Abstract: Monohexosylceramides (CMHs) are highly conserved fungal glycosphingolipids playing
a role in several cellular processes such as growth, differentiation and morphological transition.
In this study, we report the isolation, purification and chemical characterization of CMHs from
Rhizopus stolonifer and R. microspores. Using positive ion mode ESI-MS, two major ion species were
observed at m/z 750 and m/z 766, respectively. Both ion species consisted of a glucose/galactose
residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage
to a hydroxylated C16:0 fatty acid. The antimicrobial activity of CMH was evaluated against Gram
positive and Gram negative bacteria using the agar diffusion assay. CMH from both Rhizopus
species inhibited the growth of Bacillus terrae, Micrococcus luteus (M. luteus) and Pseudomonas stutzeri
(P. stutzeri) with a MICsq of 6.25, 6.25 and 3.13 mg/mL, respectively. The bactericidal effect was
detected only for M. luteus and P. stutzeri, with MBC values of 25 and 6.25 mg/mL, respectively.
Furthermore, the action of CMH on the biofilm produced by methicillin-resistant Staphylococcus aureus
(MRSA) was analyzed using 12.5 and 25 mg/mL of CMH from R. microsporus. Total biofilm biomass,
biofilm matrix and viability of the cells that form the biofilm structure were evaluated. CMH from
R. microsporus was able to inhibit the MRSA biofilm formation in all parameters tested.
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1. Introduction

Fungi of the order Mucorales are commonly found in soil as saprophytes and decomposing
organic matter all around the world. In Brazil these fungi are widely found in the northeastern region
in arid and semi-arid ecosystems such as the Caatinga, which is an exclusively Brazilian domain in the
semi-arid region of Brazil [1,2]. Some species have been described as agents of systemic infections in
humans, especially in immunocompromised patients [3,4]. Rhizopus species are frequently and amply
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distributed in soils of the Caatinga in the Brazilian Northeast [2]. Little was known about the cell wall
glycoconjugates of the Rhizopus species and, consequently, their specific functions in the fungal cell
and in their interaction with the environment.

Ceramide monohexosides (CMHs) are highly conserved fungal glycosphingolipids with structural
modifications that include different sites of unsaturation as well as fatty acid residues of varying length
in their ceramide moieties [5]. CMHs play diverse roles in fungal cell processes, such as growth
and morphological transition in Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans,
Aspergillus fumigatus and Collectotrichum gloeosporioides [6-10]. In addition, CMH are important
in promoting alkaline tolerance in vitro due to the involvement of CMH in the regulation of
membrane fungal lipid domains that lead to the redistribution of CMH in the membrane in an
alkaline environment [11-13]. CMH also interact with defensins isolated from insects and plants [14].
Studies on CMH with antimicrobial activity have been performed by isolating them from plants and
microorganisms, such as fungi, where they play a role in the microbial growth [15-18].

Bacterial infectious diseases are highly prevalent in tropical and developing countries
such as Brazil, affecting mainly hospitalized and/or immunosuppressed individuals [19-21].
Staphylococcus aureus is one of the most frequently found bacteria and is the etiological agent
of nosocomial infections that is associated with the production of biofilm on medical implants.
Furthermore, it possesses a strong capacity to acquire resistance resulting in high rates of therapeutic
failure [22,23]. In addition, several environmental bacteria, such as Pseudomonas stutzeri and
Micrococcus luteus, have emerged as opportunistic pathogens due to the increase in the number
of immunosuppressed individuals, either by immunosuppressive treatment after transplantation, HIV
infection or cancer [24-27].

In this context, the goal of this work was to characterize CMHs from two species of Rhizopus,
R. stolonifer and R. microsporus, and to evaluate the ability of these highly conserved fungal
glycosphingolipids to either inhibit the growth or to kill four different bacterial species. The influence
of both Rhizopus CMHs in methicillin-resistant S. aureus (MRSA) biofilm formation was also studied.

2. Results

2.1. CMH Purification and Chemical Analysis

The purification steps of CMH from the Rhizopus species grown in different media are shown
in Figure 1A. The Folch lower layer containing neutral glycolipids was fractionated by silica gel
chromatography and the fractions monitored by HPTLC on silica plates developed with chloroform:
methanol: 2 M NH4OH (40:10:1 v/v). The spots were stained by spraying with orcinol-sulfuric acid
reagent (Figure 1B).

An ESI-MS analysis (positive mode) was performed to elucidate the chemical structure of purified
CMHs from Rhizopus species. Lithiated molecular ions were observed at m/z 750 and m/z 766. A major
lithiated ion species at m/z 750 was observed in R. microsporus grown in PDB and YEPD media and
in R. stolonifer grown in YEPD medium, respectively. When submitted to the ESI-MS/MS analysis,
these major peaks exhibited a fragment at m/z 732 (loss of water) and daughter ions at m/z 588 and
m/z 570 (loss of water). The loss of 162 mass units common to the CMHs analyzed corresponds to
the loss of a hexose residue (glucose or galactose) (Figure 2A). The prominent ion at m/z 496 suggests
the presence of an extra hydroxyl group in the long chain base [9]. CMH from R. stolonifer grown in
PDB medium presents a major lithiated species at m/z 766. The loss of 162 units generated daughter
ions at m/z 622 [M-hexose + Li*] and m/z 604 [M-hexose-H,O* Li*] corresponding to the ceramide
monolithiated ion (Figure 2B). According to these results, we concluded that the glycosphingolipid
structures consisted of a hexose, long-chain bases (4-OH-9-methyl-octadeca-4,8-sphingadienine and
4-OH-9-methyl-eicosa-4,8-sphingadienine) and hydroxylated C16:0 fatty acids. After hydrolysis with
3 M TFA, the constituent monosaccharides were identified by GC to be glucose and galactose in a ratio
1:1 from both Rhizopus species studied.
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Figure 1. (A) Isolation and purification of glycosphingolipids from Rhizopus species. (B) High
performance thin layer chromatography (HPTLC) of neutral glycosphingolipid fractions by silica
gel column chromatography. P. CMH standard. Lane 1: Methanol fraction from R. stolonifer
grown in potato dextrose broth (PDB). Lane 2: Methanol fraction from R. stolonifer grown in yeast
extract-peptone-dextrose growth medium (YEPD). Lane 3: Methanol fraction from R. microsporus
grown in PDB. Lane 4: Methanol fraction from R. microspores grown in YEPD. Solvent system:
Chloroform/methanol/2 M NH4OH (40:10:1 v/v/v). Detection: iodine vapor and orcinol-sulfuric
acid reagent.
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Figure 2. ESI-MS [M + Li] analysis of GlcCer/GalCer from Rhizopus species. (A) CMH from
R. microsporus grown in PDB and YEPD, and CMH from R. stolonifer grown in YEPD. Major ions
species at m/z 750. (B) CMH from R. stolonifer grown in PDB. Major ions species at m/z 766.

2.2. Antibacterial Activity Evaluation

The antibacterial activity of CMHs from Rhizopus species was evaluated against six different
species of indicator bacteria using the agar diffusion assay (Table 1 and Figure S1). In this assay,
the lower layer from Folch partition and CMH from both species (50 mg/mL-10 uL), were able to
inhibit the growth of B. terrae, M. luteus and P. stutzeri, but there was no inhibition of other bacteria
tested (B. cepacea, E. coli, S. aureus and MRSA-S. aureus). The lower layer from Folch partition containing
the neutral lipids from the crude lipid extract shows lower inhibition when compared with the
purified CMH.

Table 1. Antimicrobial Activity of CMHs from Rhizopus species by Agar Diffusion Assay. Lipid samples
(Folch lower layer and CMH) from R. stolonifer and R. microsporus grown in PDB were dissolved in
chloroform/methanol (2:1 v/v) at a concentration of 50 mg/mL (10 uL). The negative control consisted
of 10 uL of chloroform/methanol (2:1 v/v).

Inhibition (+) or No Inhibition (—)
Control Folch Lower Layer CMH

Rhizopus Species Bacteria Species

B. cepacea -

B. terrea —

E. coli -

R. stolonifer M. luteus -
S. aureus -

S. aureus MRSA —

P. stutzeri -

I H I H
I+ 1+

+
+

B. cepacea -

B. terrea -

E. coli —

R. microsporus M. luteus -
S. aureus -

S. aureus MRSA — — -

P. stutzeri -

I H I+
I H I H

+
+
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To confirm the results obtained in the agar diffusion assay, the Minimum Inhibitory Concentration
(MIC) and Minimum Bactericidal Concentration (MBC) values of CMH were determined against
B. terrae, M. luteus and P. stutzeri (Table 2). CMHs from both species showed considerable inhibitory
activity, with MICsj of 6.25 and 3.13 mg/mL for M. luteus and P. stutzeri, respectively. CMH from
R. stolonifer with MICs values of 6.25 mg/mL against B. terrae and 3.13 mg/mL for CMH from
R. microsporus. P. stutzeri was most sensitive to CMH, resulting in the lowest MIC5y and MBC values of
6.25 mg/mlL, followed by M. luteus with MICsq of 6.25 and MBC of 25 mg/mL. However, CMHs did
not show antimicrobial activity against B. terrae (MBC > 50 mg/mL) (Figure 3). Metabolic activity of the
bacteria was measured using XTT-assay for all concentration tested (1.57 to 50 mg/mL). CMHs from
R. stolonifer and R. microsporus were able to reduce the viability more than 50% at the concentration of
6.25 mg/mL. Streptomycin/Penicillin were used as standard references for activity against B. terrae,
M. luteus and P. stutzeri.

Table 2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
values from CMH of R. stolonifer and R. microsporus grown in PDB media. MIC values from

Streptomycin/Penicillin as a drug control.

CMH Fraction Bacteria MICs5 MBC
B. terrea 6.25 mg/mL >50 mg/mL
R. stolonifer M. luteus 6.25 mg/mL 25 mg/mL
P. stutzeri 3.13 mg/mL 6.25 mg/mL
B. terrea 3.13 mg/mL >50 mg/mL
R. microsporus M. luteus 6.25 mg/mL 25 mg/mL
P. stutzeri 3.12 mg/mL 6.25 mg/mL
B. terrea 0.004 mg/mL -
Streptomycin/Penicillin M. luteus 0.004 mg/mL -
P. stutzeri 0.004 mg/mL -

MICsp Minimal Inhibitory Concentration; MBC Minimal Bactericidal Concentration.

B. terrea
R. stolonifer M. luteus

P. stutzeri

B. terrea | )

R. microsporus M. luteus

P. stutzeri

Figure 3. Minimal Bactericidal Concentration (MBC) of CMHs from Rhizopus species against B. terrea,

M. luteus and P. stutzeri analyzed by dot spot technique.

12.5

25

50 (mg/mL)
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2.3. Evaluation of Anti-Biofilm Activity

The effect of CMH (m/z 750) from R. microsporus on the biofilm produced by methicillin resistant
S. aureus (MRSA) was analyzed using two different concentrations (12.5 and 25 mg/mL). CMH was
not able to inhibit the growth of MRSA, however it could interfere with biofilm formation. Therefore,
S. aureus (MRSA) was chosen as indicator bacterium due to its multi-drug resistance and ability to form
biofilm. Representative biofilms formed by MRSA-S. aureus are shown in Figure 4A and the absorbance
was determined at 600 nm (Figure 4B). Absorbance values, mean, standard deviation and standard
error are represented in Figure 4C. Biofilm production on polystyrene microplates was also analyzed
by correlating the results of three different analyses: The total biofilm biomass (including biofilm
structure depleted of planktonic cells) was evaluated using crystal violet assay (Figure 5A, Table S1).
The production of extracellular matrix was, evaluated by safranin assay (Figure 5B, Table S1), and the
metabolic activity of the biofilm was quantified using XTT-assay (Figure 5C, Table S1). CMH from
R. microsporus was able to reduce the total biofilm biomass in both concentrations tested. The biofilm
matrix was also reduced and the metabolic activity of the biofilm was drastically decreased. Although
CMH was not able to kill MRSA, it was could capably interfere on the biofilm structure formation.

A B
Control of ) *okk |
Biofilm ! !
Formation 0.6+ T
CMH E
(No CMH) §
o 0.4+
o
Biofilm £
formation in %
presence of m 0.2
CMH I
12.5 mg/mL 2
0.0-
Biofilm Control 12.5 25
formation in CMH concentration (mg/mL)
presence of

CMH
12.5 mg/mL

©
Control 0.534 | 0,572 | 0.489 | 0.508 0.523 0,496 | 0,564 | 0,500 | 0,523 0.031 0.011
12.5mg/mL | 0,278 | 0.324 | 0.279 | 0.387 0.268 | 0242 | 0.245 | 0,256 | 0.284 0.049 0.017
25 mg/mL 0.209 | 0.273 | 0.245 | 0.207 0.260 0.161 | 0.266 | 0.219 | 0.230 0.038 0.013

Figure 4. Effect of CMH on MRSA-S. aureus biofilm formation. (A) Representative biofilm formation at
different concentration of CMH (12.5 and 25 mg/mL) and control. (B) Quantification of total biofilm
formed in presence or absence of CMH. Absorbance determined at 600 nm. (C) CMH effect on MRSA
biofilm formation determined by absorbance measurement at 600 nm. Mean, standard deviation
and standard error are represented. Statistical differences (* p < 0.05, ** p < 0.001, *** p < 0.0001) are
represented by asterisks (ns = not significant).
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Figure 5. Effect of CMH on MRSA-S. aureus biofilm formation, after 24 h of growth. (A) Total biomass
of the biofilm was quantified by crystal violet assay. (B) The biofilm matrix was quantified by safranin
assay. (C) Metabolic activity of the cells inside the biofilm was detected by XTT-reduction assay.
Statistical differences (* p < 0.05, ** p < 0.001, *** p < 0.0001) are represented by asterisks (ns = not
significant) ((A) = absorbance). Control represent MRSA growth in absence of CMH. Values represent
the mean + S.D. of three independent experiments performed in triplicate.

3. Discussion

Glycosphingolipids are membrane lipids distributed among all eukaryotic cells. They are highly
enriched in the plasma membrane and are present in membrane microdomains together with
sterols and proteins. Glycosylceramides are the main neutral glycosphingolipids expressed in fungal
pathogens [7,28,29], and may have glucose and galactose as glycan motifs [30]. Glycosphingolipids
play an important role in relevant cellular functions such as cell growth, cell adhesion and motility,
carbohydrate-carbohydrate interactions and also act as potential antifungal agents [31,32]. In this
work, CMHs obtained from R. stolonifer and R. microsporus grown in PDB or YEPD medium had their
chemical structures elucidated by electrospray ionization mass spectrometry (ESI-MS) and by gas
chromatography (GC). In this work, the role of CMH in inhibiting the growth of several bacterial
species or the biofilm formation in methicillin-resistant S. aureus (MRSA) was also studied.

The major glycosphingolipids detected in Rhizopus species grown in PDB and YEPD are
N-2'-hydroxyhexadecanoyl-1-O-f-D-glucopyranosyl-4-OH-9-methyl-octadeca-4,8-sphingadienine and
N-2'-hydroxyhexadecanoyl-1-O-f-D-galactopyranosyl-4-OH-9-methyl-octadeca-4,8-sphingadienine
with a ratio of 1:1. The main difference between R. stolonifer CMHs grown in PDB medium and the
other Rhizopus species described above is the presence of 4-OH-9-methyl-eicosa-4,8-sphingadienine as
the main long chain base. To our knowledge, this is the first time that different CMHs structures were
identified in R. stolonifer grown in different culture media. CMHs with ceramide mono-, di-, tri-, tetra-
and pentasaccharides have been found in other Zygomycetes species as Mucor hiemalis [33].
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Currently, many clinically important and emerging pathogens are resistant to all or almost all
antibiotics tested. This is a serious public health problem with great medical and social dimensions.
The indiscriminate use of antibiotics has greatly increased the number of different bacterial species
resistant to antimicrobials, which are normally used in clinical settings [34]. Therefore, there is an
urgency for studies looking for the discovery of new antimicrobial agents.

In this context, CMHs isolated from R. stolonifer and R. microsporus grown in PDB were tested
against both pathogenic and opportunistic bacteria, such as B. cepacea, B. terrae and E. coli (Gram
negative bacteria), and M. luteus, P. stutzeri and S. aureus (Gram positive bacteria). In the agar diffusion
assay, 50 mg/mL of the Folch lower phase (containing neutral lipids) or purified CMH from Rhizopus
species showed antimicrobial activity against B. terrae, M. luteus and P. stutzeri. The growth of B. cepacea,
E. coli, S. aureus and MRSA was not affected by either the Folch lower phase or by CMH. The best
antimicrobial potential was observed for CMH from both fungi, with MICsq values of 3.13 mg/mL
against P. stutzeri, followed by M. luteus with MICsp 6.25 mg/mL. The MIC values for CMH from
R. stolonifer against B. terrae was 6.25 mg/mL and from R. microsporus was 3.13 mg/mL. The CMHs
from both fungi were able to decrease the viability of the three indicator bacteria tested. However,
the bactericidal activity of CMH was only detected against M. luteus and P. stutzeri, with MBC
values of 25 and 6.25 mg/mlL, respectively. Previous work has shown that glycosphingolipids,
which are amphipathic molecules, may present several biological activities, such as antimicrobial and
biosurfactant actions [35].

An important survival strategy of microorganisms is the formation of biofilm, which is considered
an adaptation to hostile environmental conditions [36]. Biofilms can be defined as a community of
cells attached to a substrate embedded in a matrix of extracellular polymeric substances. Inside the
structure of the biofilm, channels are formed that allow the passage of water, oxygen and nutrients [37].
The biofilm produced by S. aureus is an important virulence factor associated with many localized
infections. In this work, although CMH did not inhibit the growth of MRSA, we investigated whether
it would be able to inhibit the formation or disaggregation of the biofilm structure formed by MRSA.
The biofilm produced by MRSA in the presence or absence of CMH was evaluated by three parameters:
Total biofilm biomass, biofilm matrix and viability of the biofilm-forming cells. The results showed
that both CMH concentrations (12.5 and 25 mg/mL) were able to influence all tested parameters.
Biosurfactants isolated from Lactobacillus jensenii and L. rhamnosus showed anti-biofilm activities against
clinical Multidrug Resistant (MDR) strains of Acinetobacter baumannii, E. coli, and S. aureus (MRSA) at
the concentrations of 25 and 50 mg/mL [38]. However, the chemical structure of these molecules has
not been elucidated.

CMH could inhibit MRSA adhesion which represents the initial stage of biofilm formation [35].
However, studies are needed to investigate possible synergism between CMHs from Rhizopus species
and the antibiotics used routinely for the treatment of MRSA infections.

4. Material and Methods

4.1. Microorganisms and Culture Conditions

Rhizopus stolonifer UPC1300 and Rhizopus microsporus var. microsporus UPC1304, isolated from the
Brazilian Caatinga area, were supplied by the Culture Collection (RENNORFUN) from the Catholic
University of Pernambuco, Recife, Brazil. Strains were maintained in Sabouraud agar solid medium
under refrigeration at 4 °C. Cells were inoculated in Erlenmeyer flasks containing 200 mL of potato
dextrose broth (PDB) and/or YEPD (glucose 2%, peptone 2%, yeast extract 1%), and incubated at room
temperature for 7 days with orbital shaking (pre-inoculum). Cultures (200 mL) were then transferred
to the same medium (3 L) and incubated for a further 7 days at the same temperature with shaking.
At the end, the mycelium was filtered, washed with distilled water, and stored at —20 °C.
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4.2. Extraction and Purification of CMH from R. stolonifer and R. microsporus

Total lipids from intact hyphae of R. stolonifer and R. microsporus grown in PDB or YEPD were
successively extracted at room temperature using chloroform/methanol at ratios 2:1 and 1:2 (v/v),
as described [7]. The crude lipid extracts were partitioned with chloroform/methanol/ 0.45% KCl
(8:4:3 v/v) as described by Folch et al. (1957) [39]. The Folch lower layer containing neutral lipids,
glycosphingolipids and phospholipids was fractionated on a silica gel column which was sequentially
eluted with chloroform, acetone and then methanol [12]. The recovery of glycosphingolipids by elution
with methanol was monitored by thin-layer chromatography (TLC), on silica gel plates developed
with chloroform/methanol/2 M ammonium hydroxide, 40:10:1 (v/v). The spots were visualized with
iodine and by charring with orcinol/H»SOj.

4.3. Sugar Analysis

Glycosphingolipids were hydrolyzed with 3 M trifluoroacetic acid at 100 °C for 3 h and the
released monosaccharides were characterized by HPTLC developed with n-butanol/acetone/water
(4:5:1 v/v) and visualized by spraying with orcinol-sulfuric acid reagent. The monosaccharides were
converted to their alditol acetate derivatives and quantified by GC using the chromatograph GC-2010
Plus-Shimadzu, with a SH-RTX-5 capillary column (30 m, 0.25 mm ID, 0.25 Um df), programmed for
an initial isothermal period of 10 min at 190 °C, and subsequent temperature increase of 2 °C/min,
until 210 °C were reached [40,41].

4.4. ESI-MS Analysis

CMHs were analyzed by electrospray ionization (ESI-MS) in positive (ESI+) ion mode, using
an ESl-Hon Trap instrument (Model Amazon SL, Bruker, Germany). CMHs were diluted in
chloroform/methanol/water (5:4:1 v/v), containing 1 mM lithium chloride and analyzed via direct
injection using a microsyringe pump (Hamilton) [42]. Nitrogen was used as nebulizer and carrier gas.

4.5. Antimicrobial Assay

4.5.1. Bacterial Strains

Burkholderia cepacea (American Type Culture Collection, ATCC 25416), B. terrea BS001 (Microbial
Ecology culture collection, University of Groningen, Groningen, The Netherlands), Escherichia coli
(American Type Culture Collection, ATCC11229), Micrococcus luteus (American Type Culture Collection,
ATCC4698) Methicillin Resistant Staphylococcus aureus-MRSA (American Type Culture Collection,
ATCC9393), Pseudomonas stutzeri R55 (Laboratory of Molecular Microbial Ecology and Microbial
Diversity Culture Collection, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio
de Janeiro/UFR]). Bacteria were grown at 37 °C in Luria-Bertani (LB) broth (peptone 10 g/L, yeast
extract 5 g/L and NaCl 5 g/L).

4.5.2. Antimicrobial Activity Assay

Antimicrobial activity of CMH [50 mg/mL in chloroform/methanol (2:1 v/v)] was determined
against all bacterial strains by the agar diffusion method with modifications. Briefly, 10 uL. of CMH
(50 mg/mL) were spotted on a Petri dish containing LB agar medium. After evaporation of the organic
solvents, an inoculum of each bacterial strain containing approximately 1.5 x 10® colony forming units
(CFU/mL) prepared in Luria-Bertani broth medium was spread out on the plates, and the plates were
incubated for 24 h at 37 °C. A positive control with inoculum without CMH was included. Growth
inhibition zones were evidenced using MTT (Thiazolyl Blue Tetrazolium Bromide—Sigma Aldrich, St.
Louis, MO, USA) [43].
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4.5.3. Determination of MIC and MBC

MIC was evaluated by the dilution method in LB broth. CMH concentrations ranging
from 15.7 mg/mL to 50 mg/mL were tested and 10 pL of the bacterial suspension containing
1.5 x 108 CFU/mL (0.1 ODggg nm) were added to each well and incubated at 37 °C for 24 h. DMSO
was used as control (5% in LB broth medium) and streptomycin/penicilin was used as a reference
compound (8-0.015 ug/mL). After 24 h, the plates were read at 600 nm to evaluate the MICs. After
MICs reading, MBC (minimal bactericidal concentration) was determined by subculturing an aliquot of
10 pL from each well that showed complete growth inhibition in LB agar medium without addition of
CMH and the bacterial growth was evaluated for the MBC determination. After 24 h, the MBC values
were defined as the lowest concentration of CMH able of eliminate bacteria [44]. The experiments were
carried out in duplicates. Following the MIC assays, cell viability was evaluated using XTT reduction
assay (XTT sodium salt—0.5 mg/mL—Sigma Aldrich, St. Louis, MO, USA) [45].

4.5.4. Effect of CMH on Inhibition of MRSA ATCC9393 Biofilm

50 pL of MRSA ATCC9393 suspension (0.1 ODgpp nm) in Tryptic Soy Broth (TSB) supplemented
with 1% glucose were mixed with 50 pL of CMH (12.5 and 25 mg/mL) from R. microspores and added
to each well of a 96-well polystyrene plate. Culture medium with the bacterial suspension was used as
negative control. After 24 h incubation at 37 °C, the formed biofilm was gently washed with sterile
distilled water to remove planktonic cells, air-dried for 10 min and stained with 0.5% crystal violet
for 10 min (total biofilm biomass) or 1% safranin for 10 min (biofilm matrix). The staining solutions
were discarded and the biofilms were rinsed gently twice with sterile distilled water. The crystal violet
impregnated in the biofilm was dissolved in 200 uL of ethanol (95%, v/v), and the colored solution
was read at an absorbance of 595 nm using a spectrophotometer (Spectra MAX 340 Tunable; Molecular
Devices Ltd., San Jose, CA, USA). Safranin was dissolved in water (100 pL), and the absorbance read
at 492 nm. Viability analysis of the cells in the biofilm was performed by XTT reduction assay. Biofilms
were washed with sterile distilled water, and 150 pL of XTT solution were added to each well. The XTT
solution was prepared by dissolving 5 mg of XTT in 10 mL of water, followed by the addition of 400
uL Menadione solution (0.17 mg/mL in acetone). After incubation at 37 °C for 1 h under protection
from light, the absorbance of the colored solution was measured at 490 nm.

4.6. Statistical Analysis

All statistical analyses were performed using GraphPad Prism 5.0 software (GraphPad, San Diego,
CA, USA). A variance two-way ANOVA was performed using Tukey’s and Bonferroni’s comparisons
tests to evaluate the biofilm formation.

Supplementary Materials: The following are available, Figure S1: Antimicrobial Activity of CMHs from
R. stolonifer and R. microsporus against a panel of Gram-positive and Gram-negative bacterium by agar disc
diffusion method. CMH or Folch lower layer (Folch|) were dissolved in chloroform/methanol (2:1 v/v) at a
concentration of 50 mg/mL. Each spot contained 10 pL. The control spot contained 10 uL of chloroform /methanol
(2:1 v/v). Growth inhibition zones were evidenced by MTT assay. Table S1: Effect of CMH on MRSA-S. aureus
biofilm formation. Analyses were done correlating the results of total biofilm biomass (evaluated by crystal
violet assay, Asygnm), production of extracellular matrix (evaluated by safranin assay, A9 nm) and metabolic
activity (quantified by XTT-assay, A490 nm). Mean, standard deviation (SD) and standard error (SE) are also shown.
(A = absorbance).
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