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Abstract

Background—Adverse cardiovascular events have been linked with PM2.5 exposure obtained 

primarily from air quality monitors, which rarely co-locate with participant residences. Modeled 

PM2.5 predictions at finer resolution may more accurately predict residential exposure; however 

few studies have compared results across different exposure assessment methods.

Methods—We utilized a cohort of 5679 patients who had undergone a cardiac catheterization 

between 2002–2009 and resided in NC. Exposure to PM2.5 for the year prior to catheterization was 

estimated using data from air quality monitors (AQS), Community Multiscale Air Quality 

(CMAQ) fused models at the census tract and 12km spatial resolutions, and satellite-based models 
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at 10km and 1km resolutions. Case status was either a coronary artery disease (CAD) index >23 or 

a recent myocardial infarction (MI). Logistic regression was used to model odds of having CAD or 

an MI with each 1-unit (µg/m3) increase in PM2.5, adjusting for sex, race, smoking status, 

socioeconomic status, and urban/rural status.

Results—We found that the elevated odds for CAD>23 and MI were nearly equivalent for all 

exposure assessment methods. One difference was that data from AQS and the census tract CMAQ 

showed a rural/urban difference in relative risk, which was not apparent with the satellite or 12km-

CMAQ models.

Conclusions—Long-term air pollution exposure was associated with coronary artery disease for 

both modeled and monitored data.
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1. Introduction

Most previous epidemiology studies that associate PM2.5 concentrations with adverse 

cardiopulmonary outcomes have used data from central site monitors to characterize 

ambient exposures fine particulate matter (PM2.5). These studies assume measurements at a 

single site are representative of air quality over a larger area. Further, monitoring networks 

are usually placed in highly populated urban areas; thus, the measurements may not 

accurately reflect exposure for rural populations. More sophisticated emerging exposure 

estimation approaches may better characterize air pollution exposure and overcome some of 

these limitations.

The Community Multiscale Air Quality (CMAQ) is a publicly available modeling system 

that combines information from a meteorological model, an emissions model, and 

simulation of chemical and physical processes to predict air pollutant concentrations at 12-

km grids throughout the United States. Recent models have “fused” (defined here as the 

integration of different data sources) 12km CMAQ simulated and ground-based measured 

pollutant concentrations with resulting predictions at the census tract level (Berrocal et al. 

2010) or 12km spatial resolution (Friberg et al. 2016). Several recent epidemiological 

studies have used these fused models to characterize PM2.5 exposure in relation to birth 

outcomes (Gray et al. 2014; Warren et al. 2016) asthma symptoms, (Mirabelli et al. 2016; 

Sacks et al. 2014) and pediatric emergency visits (Xiao et al. 2016).

Recent epidemiological studies have also incorporated satellite information on aerosol 

optical depth (AOD) into air pollution models to better characterize exposure. In order to 

address missing data due to cloud coverage and help model fit, these satellite-based air 

pollution models often calibrate the aerosol optical depth (AOD) retrievals with data from 

ground monitoring stations. Several recent epidemiological studies have used AOD retrievals 

calibrated with monitoring data at a 10km spatial resolution (Lee et al. 2012; van Donkelaar 

et al. 2010). Hyder et al. (2014) applied satellite-based estimates developed by Lee et al. 

(2012) to examine the effect of using combined ground-based and satellite-derived 
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measurements in examining associations with birth outcomes. They found that the satellite-

based models, calibrated with data from monitors had an overall better fit compared to using 

the ground-based measurements alone. Further, Kloog et al. (2011) calibrated AOD 

retrievals with ground-based measurements, but additionally incorporated land use terms and 

meteorological variables. Studies have used these estimates to assess associations with 

myocardial infarctions, mortality, and birth outcomes (Kloog et al. 2012; Kloog et al. 2013; 

Madrigano et al. 2013). Recent satellite-based estimates have been developed at finer spatial 

resolutions using the multiangle implementation of atmospheric correction (MAIAC) AOD 

retrieval algorithm (Chudnovsky et al. 2014; Di et al. 2016; van Donkelaar et al. 2016). In 

addition to ground-based and satellite-derived measurements, several of these models used a 

hybrid approach that incorporated information on land use terms and data from chemical 

transport models to estimate ambient pollutant concentrations. Jerrett et al. (2016) recently 

compared several model approaches for estimating PM2.5 concentrations, and found that the 

1km satellite-based models that were calibrated with ground-based measurements and 

incorporated land use terms, had an overall better model fit than using remote sensing data 

alone. Further, Chudnovsky et al. demonstrated that the correlation between PM2.5 and AOD 

decreased significantly as AOD resolution was degraded and also indicated large spatial 

variability in particle concentration at a sub-10 km scale (Chudnovsky et al. 2013).

In the current paper, we compare five different data sources used to assign exposure in 

assessing associations between long-term PM2.5 exposure and adverse cardiovascular 

outcomes. First, we used direct measurements from central site air quality monitors, a 

common approach in many epidemiological studies. Next, we used CMAQ simulated values 

fused with ground-based measurements at the census tract and 12km grid spatial resolutions. 

Finally, we used 10km and 1km satellite-based models calibrated with monitoring data. We 

use the year prior to study visit as our long-term exposure window, as several previous 

epidemiological studies have done (Hoek et al. 2013).

Using data from these five sources, we assessed associations between long-term PM2.5 

exposure and measures of cardiovascular disease in a cohort of cardiac catheterization 

patients residing in North Carolina. Specific measures of cardiovascular disease included the 

coronary artery disease (CAD) severity index and myocardial infarction (MI). We evaluated 

the robustness of the associations with PM2.5 exposure estimates from the five different 

sources. We chose to focus on long-term exposure averages for our comparison analyses as 

chronic PM2.5 exposure has been most strongly related to severity of atherosclerosis in 

previous studies (Brook et al. 2010). The study additionally assesses whether the PM2.5-

CAD association differs by urban/rural status across the different exposure assignment 

approaches.

2. Materials and methods

2.1 Study Population

Study participants came from the CATHeterization GENetics (CATHGEN) study, a large 

cohort of 9334 participants primarily from North Carolina presenting to the Duke University 

Medical Center Cardiac Catheterization Laboratory from 2001 to 2010, inclusive (Kraus et 

al. 2015). Participants underwent a cardiac catheterization and coronary angiography for 
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suspected coronary artery disease. Intake clinical information was obtained from an intake 

questionnaire and medical records at the time of catheterization. All subjects received and 

signed informed consent prior to enrollment; CATHGEN has been approved by the Duke 

University Institutional Review Board.

Exposure data for the 10km satellite-based PM2.5 estimates were available from January 1, 

2002 through December 31, 2009, thus exposure data for all exposure assignment 

approaches were restricted to this timeframe for comparability across exposure metrics. 

Average PM2.5 concentrations for the 365-day time-period prior to each participant’s 

catheterization date was used as the exposure metric for each study participant in North 

Carolina. Therefore, patients were included in the current analysis if they resided in North 

Carolina and their catheterization procedure was performed from January 1, 2003 through 

December 31, 2009. Residential addresses were obtained from medical records and 

geocoded for the 5679 study participants who resided in NC and had a catheterization that 

occurred between 2003 and 2009.

2.2 Outcome Ascertainment

The Coronary Artery Disease (CAD) index was used to measure severity of coronary artery 

disease (Bart et al. 1997). The index ranges from 0 to 100 and is a risk indicator of events 

due to coronary atherosclerosis. A higher CAD index corresponds with an increased risk of 

ischemic events due to atherosclerosis. A binary measure of CAD was constructed, 

identifying individuals with a CAD index >23, representing having at least one 

hemodynamically significant lesion (>75% luminal stenosis) in one epicardial coronary 

artery. There were 610 individuals who underwent a therapeutic intervention and thus did 

not have a full catheterization, therefore the total sample size for the CAD index outcome is 

5069 participants.

We additionally assessed whether participants experienced an MI within a year prior to their 

catheterization. Participants were considered to be cases for the MI analyses if they had a 

documented MI in their medical records within a year prior to their catheterization visit. 

There were 5679 participants who had full MI outcome information available.

2.3 Exposure Assessment

Five different exposure assignment approaches were used: data from a) central site air 

quality monitors; CMAQ fused predictions at the b) census tract level (CMAQ-PHASE), and 

c) 12km spatial resolution (CMAQ-DF); and satellite-based predictions at a d) 10km and e) 

1km spatial resolution. We used primary residence as indicated at the time of the most recent 

catheterization. Patients’ geocoded addresses were matched to the nearest EPA air quality 

monitor location, centroid of the 2000 census tract location (CMAQ-PHASE estimates), or 

centroid of the nearest 12km, 10km, and 1km grid locations (CMAQ-DF, Satellite 10km, 

and Satellite 1km). Daily PM2.5 exposure at the primary residence was estimated for the 

year prior to the catheterization and averaged over this period to estimate the annual average 

PM2.5 exposure. Some participants underwent multiple catheterization events during the 

study period. For those individuals, the most recent catheterization visit was linked with 

exposure data.
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2.3.1 Central Site Monitored Data—PM2.5 monitor data (daily average in µg/m3) were 

obtained from the Environmental Protection Agency’s (EPA) Air Quality System (AQS) 

Data Mart for the years 2002 to 2009 for the state of North Carolina (EPA 2016c). This 

network of monitors measures ambient PM2.5 concentrations either daily or every 1 in 3 

days. We used the closest air quality monitor to each participant’s residence that was active 

for the entire year prior to the participant’s catheterization date and had >90% available 

PM2.5 data. Monitored ozone data, which was available from April – October, was obtained 

to use in multipollutant models.

2.3.2 EPA CMAQ PHASE Downscaler Model—The CMAQ model combines input 

from a meteorological model and an emissions model with simulation of chemical and 

physical processes to describe pollutant transformation, transport and fate (EPA 2016a). A 

recently developed fusion model was created that uses a Bayesian space-time downscaler 

approach to combine CMAQ 12km gridded output with monitored data across the US (EPA 

2016b). This approach uses a weighted linear combination of the different data sources 

within a Bayesian framework. Thus, the probability of a calculated coefficient is updated 

daily, and the weighting is dependent on the estimated uncertainty of each of the data 

sources. The term “downscaler” refers to the scaling of the areal grid-cell CMAQ output to 

the point-level air monitoring data, with resulting outputs at the census tract level. Daily 

predictive surfaces of PM2.5 (daily average in µg/m3) were used for the years 2002 through 

2009 for the 2000 and 2010 US census tract centroid locations. More detailed information 

on this downscaler model has been described previously (Berrocal et al. 2010).

2.3.3 CMAQ-Observation Data Fusion Model—CMAQ-Observation Data Fusion 

(CMAQ-DF) is another method that fuses ground base monitored observations and chemical 

transport model (CTM) simulations (Friberg et al. 2016). The CMAQ model fields are used 

in conjunction with observations in a multi-step process, which has been described in detail 

previously (Huang et al. 2017). The final outputs capture spatially detailed information by 

the air quality model, as well as the coarser scale spatial and fine scale temporal information 

from the observations. The approach was applied from 2002 to 2010 over North Carolina 

(USA) to develop the spatiotemporal fields of 24hr-average PM2.5 concentrations used here, 

but has also been used to provide PM2.5 species and gaseous pollutant concentration fields 

as well.

2.3.4 10km Satellite-based Model—Daily PM2.5 concentrations were estimated at a 

10km spatial resolution for the state of North Carolina using recently developed statistical 

prediction models (Chudnovsky et al. 2012; Lee et al. 2011; Lee et al. 2012). These models 

estimate exposure using two main stages: calibration with monitored data followed by 

cluster analysis. For the first stage, satellite-based AOD data were used to estimate ground-

level PM2.5 concentrations for days when satellite data were available. A daily calibration 

approach using a mixed effects model was then applied to control for the inherent day-to-

day variability in the AOD-PM2.5 relationship. Next, cluster analysis was applied using 

AOD and PM2.5 ground monitoring data to predict PM2.5 concentrations on days when 

satellite data are not available due to the presence of clouds or snow (Lee et al. 2011). More 
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detailed information on the prediction model has been described previously (Chudnovsky et 

al. 2012; Lee et al. 2011; Lee et al. 2012).

2.3.5 1km Satellite-based Model—We also assessed the use of PM2.5 concentrations 

estimated at a 1km × 1km spatial grid resolution, available from a previously published and 

verified hybrid model (Di et al. 2016). The hybrid prediction model incorporated satellite-

based AOD measurements, simulation outputs from a chemical transport model (GEOS-

Chem), land-use terms (population density, road density, NDVI, elevation etc.), 

meteorological variables (temperature, wind speed, humidity, etc.) and other ancillary data 

sets (e.g., climate types, vertical profile of PM2.5). The hybrid model used a neural network 

to calibrate all the predictors to monitored PM2.5 and was trained and validated with ten-fold 

cross-validation. Detailed information on this model has been described previously (Di et al. 

2016). Figure 1 shows the annual average 1km PM2.5 (µg/m3) concentrations for the state of 

North Carolina for the years 2002–2009, using input from the 1km model. A description of 

each of the five exposure assessment methods are contained in Table 1.

2.4 Confounders and Effect Measure Modifiers

Covariates were chosen based upon past associations with air pollution exposure and 

cardiovascular outcomes. Covariates of interest included: age, sex, race/ethnicity, body mass 

index (BMI), smoking status, area level attained education, urban/ rural status, history of 

hypertension, and history of diabetes. Participants were considered smokers if they smoked 

≥ 10 cigarettes/day currently or had quit smoking ≥ 10 cigarettes/day within the past 5 years.

Data from the 2000 U.S. Census was used to characterize each participant’s area level 

educational attainment, (U.S. Census Bureau 2000) which was the main SES indicator using 

in this study. We defined area level educational attainment as the percentage of individuals in 

the block group without a high school education. Participants were assigned to block groups 

and census tracts based on their address at catheterization visit. Educational attainment is a 

commonly used SES measure and is established as a strong predictor of cardiovascular 

disease (Havranek et al. 2015). Previous studies have found area level education to be 

related to PM2.5 concentrations (Hajat et al. 2013).

Rural-Urban Commuting Area Codes (RUCAs) at the census tract level were used to 

characterize each participant’s urban/rural status. These codes use data from the 2000 

decennial census urbanized area and urban cluster definitions to describe each U.S. census 

tract’s degree of urbanicity (Rural Health Research Center 2009). Urban census tracts were 

those defined as a metropolitan area core (primary flow within an urbanized area).

2.5 Statistical Analyses

We first reported descriptive statistics comparing the PM2.5 exposure assignment 

approaches. We then compared individual minimum and maximum differences of exposure 

assessment approaches across individuals to assess extent of variability between exposure 

models. Finally, we compared correlations between the annual averages of each of the PM2.5 

exposure assignment methods to assess the extent of agreement among the exposure 

assessment approaches.
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Logistic regression analysis was used to estimate odds ratios (OR) and 95% confidence 

intervals (CI) associated with a CAD index >23 or MI for each 1-µg/m3 increase in annual 

average PM2.5. Models were adjusted for sex, race/ethnicity, smoking status, area level 

attained education, and urban/rural status. We assessed associations in single and 

multipollutant models. Multipollutant models were additionally adjusted for seven-month 

average ozone concentrations using monitored ozone data during the warm season (April to 

October).

An additional objective of the current analysis was to assess whether urban/rural status 

modifies the association between long-term PM2.5 exposure and CAD. Therefore, we 

included an interaction term between continuous levels of PM2.5 for each of the exposure 

metrics and urban/rural status. We then compared these models with the main effects model 

without interaction terms. The Likelihood Ratio Test (LRT) was used to assess potential 

effect modification and a cutoff of p<0.10 was used to indicate presence of modification. 

Statistical analyses were performed using SAS version 9.3 (Cary, NC).

3. Results

The characteristics of the CATHGEN study population for this analysis are shown in Table 

2. There were 5,679 individuals who met the requirement of NC residence and had a 

catheterization between 2003–2009; however, there were 610 who did not have outcome 

information available for the CAD index, resulting in a final sample size of 5,069. There 

were 2,491 (49%) participants who had a CAD index score >23, indicating presence of 

significant CAD, and 704 (12%) had an MI within a year of their catheterization visit. The 

majority of the participants were male (61%), non-Hispanic white (73%), and were either 

overweight or obese (77%).

There were slightly more participants that lived in rural areas versus urban areas (N=3,243 

versus N=2,436). Additionally, rural participants had a higher prevalence of coronary artery 

disease and MIs compared to urban participants. Urban participants tended to live in areas of 

higher attained education and with higher median home values. There were also significant 

urban/rural differences for race/ethnicity and smoking status (Table 2).

Table 3 shows the distribution of exposure estimates for each of the exposure assessment 

methods. In general, there were fairly similar distributions across the exposure assessment 

methods, which may be because the satellite and CMAQ values were calibrated to monitored 

values. Mean annual average PM2.5 levels ranged from 12.32 to 12.79 µg/m3, with the 1km 

model showing the smallest mean annual average PM2.5 level. The monitored and CMAQ-

PHASE results showed the most variation with SDs of 1.22 and 1.27, respectively. In 

general, PM2.5 levels decreased in time from 2002 to 2009 for all exposure assessment 

methods, as seen in Supplemental Table 1. Additionally, PM2.5 levels were significantly 

higher in urban areas across exposure assignment methods (Supplemental Table 2).

Correlations between the annual averages of each of the PM2.5 exposure assessment 

methods are shown in Figure 2. There were strong positive correlations between the PM2.5 

monitored and modeled data, with coefficients ranging from 0.60 to 0.88. The highest 
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correlation was between the PHASE and DF CMAQ models, with a coefficient of 0.88. The 

CMAQ-PHASE model was slightly less well correlated with the satellite models, though it 

had a strong correlation with the monitor data (0.72). When conducting pairwise 

comparisons of the variation between the exposure assessment averages, the CMAQ-PHASE 

and CMAQ-DF models showed the least amount of variation in averages (Supplemental 

Table 3). Participants’ annual average exposure levels were highly correlated in each of the 

pairwise comparisons, and did not differ by CAD or MI outcome status (Supplemental 

Figures 1 and 2).

The adjusted odds ratios for CAD and recent MI in relation to the PM2.5 exposure metrics 

are shown in Table 4. There were positive associations seen with all of the PM2.5 exposure 

methods. Associations between a 1-µg/m3 increase in annual average PM2.5 and CAD 

ranged from an OR of 1.04 (95%CI: 0.99–1.10) for the monitored data to 1.13 (95%CI: 

1.06–1.21) for the 10km satellite-based PM2.5 estimates. The 10km results were slightly 

strongest in magnitude, though overall results were all did not differ across exposure 

metrics. For the PM2.5-MI analyses, the monitored and CMAQ-PHASE results were slightly 

more precise and the CMAQ results were slightly strongest in magnitude (CMAQ-DF OR: 

1.22, 95%CI: 1.11–1.33; CMAQ-PHASE OR: 1.20, 95%CI: 1.11–1.29), and again results 

were comparable across exposure assessment methods.

We investigated associations in multipollutant models to assess if annual average ozone 

levels confounded the PM2.5-CAD associations. Results were similar for multipollutant 

models adjusted for ozone (Table 4). For the PM2.5-CAD associations overall results 

increased in strength and precision when PM2.5 concentrations were adjusted for ozone 

concentrations. PM2.5-MI results were less influenced by adjustment for ozone 

concentrations.

We additionally assessed whether urban/rural status modified PM2.5-CAD associations. 

Figure 3 shows the results for the modification by urban/rural status. We found significant 

modification by urban/rural status for the monitored (p=0.02) and CMAQ-PHASE (p=0.05) 

models. For the monitored data there was an OR of 1.11 (95% CI: 1.03, 1.20) for those 

living in urban areas and an OR of 0.99 for those living in rural areas (95% CI: 0.92, 1.06). 

For the CMAQ-PHASE models, there was an OR of 1.13 (95% CI: 1.06, 1.22) for those 

living in urban areas and an OR of 1.03 for those living in rural areas (95% CI: 0.97, 1.10). 

PM2.5-CAD associations did not differ by urban/rural status for the CMAQ-DF or the 

satellite-based models.

4. Discussion

Epidemiologic studies have reported associations between long-term PM2.5 and adverse 

cardiovascular outcomes. However, exposure assessment methods vary by study, making the 

results difficult to compare across studies. In this paper, we examined the association among 

adverse cardiovascular outcomes and PM2.5 concentrations obtained using five different 

approaches: direct measurements taken from air quality monitors, derived measurements 

taken from two different models that use emissions inventories as the primary basis for 
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calculating PM2.5 concentrations, and two different models that primarily use AOD 

measurements obtained from satellites at either 10 km or 1 km resolution.

We observed positive associations among long-term PM2.5 exposure and severity of 

coronary artery disease as measured by the CAD index. We additionally found consistent 

associations between long-term PM2.5 exposure and prevalence of a recent MI. These 

findings were consistent across all five of the exposure assignment approaches. This was not 

surprising since the annual average PM2.5 values for the various approaches shown in Table 

3 were very similar, and there were strong positive correlations of the annual averages 

between the various exposure assignment methods. These findings increase confidence that 

the association between PM2.5 and coronary artery disease is robust and not due to 

measurement error or an anomaly in one of the exposure assignment methods.

In this study, PM2.5-CAD associations were similar among monitored and modeled 

estimates of exposure. When using data from central site air quality monitors, we make the 

assumption that measurements at a single site are representative of air quality over a larger 

area. In theory, one might have expected that increased resolution (10km vs 1km for satellite 

or census tract vs 12km for CMAQ) would result in less measurement error and more robust 

associations with health end points. However, this was not the case. More advanced 

modeling techniques may also bring additional uncertainty into the resulting estimates and 

interpretation of results (Baxter et al. 2013). Further, individuals are not only exposed at 

their place of residence, and thus increased spatial resolution may not adequately capture an 

individual’s complete time-activity pattern of exposure. Additionally, increased resolution 

may reduce measurement error for spatially heterogeneous pollutants such as carbon 

monoxide and nitrogen oxides (NOx), but potentially less so for more homogenous 

pollutants with less spatial variation such as PM2.5 and ozone (Baxter et al. 2013). 

Therefore, improvements in exposure assessment may be more meaningful for more 

spatially heterogeneous pollutants (Sellier et al. 2014). However, associations among short-

term PM2.5 exposure and health end points may benefit from increased resolution. Previous 

studies have observed that air quality monitors adequately capture individual long-term 

PM2.5 averages, while monitors less adequately capture short-term averages (Baxter et al. 

2013; Ebelt et al. 2000; Suh and Zanobetti 2010). Finally, PM2.5 in North Carolina is 

dominated by emissions derived from mobile sources. Some of these models may perform 

differently in regions where multiple sources contribute to PM2.5.

We did not observe differences between the outcomes. Both the CMAQ and satellite-based 

models used ground-based measurements to optimize estimates, which may explain some of 

the similarity in the results across exposure assessment methods. First, the CMAQ 12km 

gridded output was fused with ground-based measurements, with resulting estimates 

generated for each census tract (CMAQ-PHASE model) or 12km grid (CMAQ-DF model) 

centroid. In addition, both of the satellite-based models were calibrated to ground-based 

measurements. The 1km hybrid estimates also incorporated data from a chemical transport 

model (GEOS-Chem), as well as meteorological data and land use terms. Recent studies 

have shown the importance of calibrating remote sensing data to ground-based 

measurements (Jerrett et al. 2016).
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There have been a limited number of previous studies comparing exposure assessment 

methods in their associations with human disease. Associations between PM2.5 estimated by 

dispersion or Land-Use Regression (LUR) models and lung function in children were 

generally consistent for both exposure models (Wang et al. 2015). Adverse pregnancy 

outcomes were generally associated with PM2.5 measured at ambient monitors, LUR, and 

CALINE 4, though the size of the estimate depended on both temporal and spatial variations 

that were incorporated into the exposure assessments (Wu et al. 2011). Sellier et al. (2014) 

reported consistent associations between infant birth weight and PM10 measured by 

monitors and calculated by two dispersion models and a LUR model. Another recent study 

compared findings from several PM2.5 models; they observed stronger associations with 

cardiovascular mortality using the satellite-based models, particularly when land use terms 

and monitored data were incorporated into the models (Jerrett et al. 2016).

Because CATHGEN participants reside in both urban and rural locations across North 

Carolina, we were able to assess modification of the PM2.5-CAD association by urban/rural 

status using rural-urban commuting area codes at the census tract level to characterize each 

participant’s urban/rural status. When using the monitored and CMAQ-PHASE exposure 

assignment methods, we found stronger associations for those participants living in urban 

census tracts than those for rural residents. There are several plausible explanations for these 

findings. Air quality monitors are primarily located in heavily populated urban areas; thus, 

there is more likely to be greater exposure misclassification for those participants living in 

rural areas further away from monitors (Bravo et al. 2012). Recent studies have shown 

stronger associations between PM2.5 exposure and mortality for urban participants when 

using data from air quality monitors (Lee et al. 2016). For the CMAQ-PHASE models, the 

home addresses were tethered to census tract centroids. Census tracts are much larger in 

rural than in urban areas, which may potentially increase exposure misclassification more 

for rural participants. A recent study found stronger associations between PM2.5 and 

cardiovascular hospitalizations for those living in the most urban counties, when using 

CMAQ downscaler data (Bravo et al. 2017). Therefore, rather than true urban/rural 

exposure-response differences, it is possible that our monitored and CMAQ-PHASE model 

findings were due to more accurate exposure measurement for the urban participants (Sarnat 

et al. 2010). There were no differences among rural and urban participants for the satellite-

based models or CMAQ-DF models. Therefore, these models adequately capture PM2.5 

exposures for urban as well as rural participants. These findings additionally show the utility 

of using satellite-based models and CMAQ models at a finer spatial resolution, to assess 

health effects of air pollution for both urban as well as rural participants.

The current study is not without limitations. Cardiac catheterization patients represent a 

selective population and therefore results may not be generalizable to the general population. 

Additionally, because of their diagnosis, many of the Cathgen participants were taking 

multiple medications at the time of the study visit, which could modify or confound PM2.5 

associated health outcomes. Unfortunately, we did not have a complete record of medication 

usage. We controlled for area level attained education and urban/rural status in our analyses, 

which are both related to area level air pollution exposure, however we were unable to 

account for individual level SES indicators. Further, it’s possible that we may have 

incorrectly classified smoking status, however we did not have information on number of 
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cigarettes smoked per day. Despite these limitations, the current study has several strengths. 

It is the first study to associate adverse CV outcomes in a population with indications for 

cardiac complications, who may thus be more susceptible to air pollution exposures, with 

PM2.5 concentrations obtained from five different exposure assignment methods at different 

spatial resolutions. We used the coronary artery disease index as our main measure of 

coronary artery disease. CATHGEN additionally has an adequate sample size and spatial 

variability throughout the state to conduct our main and modification analyses by urban/rural 

status.

5. Conclusions

In summary, we found associations among long-term PM2.5 exposure using five different 

air-quality exposure methods and both CAD and acute coronary events (MI). Our study 

compared results from both monitored and modeled data, while making use of both satellite 

and CMAQ-based models at different spatial resolutions. The findings were robust to multi-

pollutant models. Overall our results were fairly similar across exposure assessment 

methods, for both the CAD and MI. Further, we found modification by rural/urban status for 

the monitored and CMAQ-PHASE exposure assessment methods. Future analyses should 

consider the comparison of exposure metrics for short-term analyses and multi-pollutant 

models, as results may vary by study design, pollutant of interest, geographical location, and 

length of exposure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Annual average 1×1 km satellite-based PM2.5 concentrations (µg/m3) for the state of North 

Carolina from 2002–2009.
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Figure 2. 
Correlation plots comparing the different exposure assessment methods.
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Figure 3. Modification of the PM2.5-CAD association by urban/rural status
Results are shown for each of the five exposure assessment methods. Black squares 

represent urban participants and grey squares represent rural participants. Vertical lines 

represent 95% confidence intervals.
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Table 1

Description of the included exposure assessment methods

Exposure
metric

Description Main data
inputs

Additional
data inputs

Spatial
resolution

Monitor Monitored PM2.5 data from the EPA's air quality 
system data mart

Monitor data Nearest monitor

CMAQ-PHASE Bayesian space-time downscaler model was used to 
fuse monitored data with 12km CMAQ data

CMAQ and monitor data Census tract

CMAQ-DF CMAQ-observation data fusion (DF) was used to 
combine monitored data with chemical transport 
model quality fields

CMAQ and monitor data 12km

Satellite 10km Satellite AOD data calibrated with monitored data Remote sensing and 
monitor data

10km

Satellite 1km Hybrid approach that combines satellite AOD data 
calibrated with monitored data and GEOS-chem 
predictions

GEOS-Chem, remote 
sensing and monitor data

Meteorological 
variables and land-
use terms

1km

Abbreviations: AOD, aerosol optical depth; CMAQ, Community Multi-scale Air Quality; DF, data fusion; EPA, Environmental Protection Agency;
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Table 2

Characteristics of the CATHGEN study population, N (%).

Total Cohort Urbana Rural

Total 5679 2436 3243

CVD outcomes

  CAD >23b* 2491 (49) 950 (45) 1541 (52)

  Recent MI* 704 (12) 239 (10) 465 (14)

Age at time of enrollment in years (mean ± SD) 60.8 ± 12.1 61.1 ± 12.2 60.6 (12.0)

Sex

  Male 3471 (61) 1487 (61) 1984 (61)

  Female 2208 (39) 949 (39) 1259 (39)

Body mass index (kg/m2)

  <18.5 (Underweight) 80 (1) 30 (1) 50 (2)

  18.5–24.9 (Normal weight) 1187 (21) 507 (21) 680 (21)

  25.0–29.9 (Overweight) 1987 (35) 881 (36) 1106 (34)

  ≥30.0 (Obese) 2399 (42) 1006 (42) 1393 (43)

  Missing 26 12 14

Racec*

  Non-Hispanic white 4146 (73) 1722 (71) 2424 (75)

  African American 1204 (21) 637 (26) 567 (17)

  Other 329 (6) 77 (3) 252 (8)

History of smoking*

  Yes 2664 (47) 1025 (42) 1639 (51)

  No 3015 (53) 1411 (58) 1604 (49)

History of diabetes

  Yes 1660 (29) 696 (29) 964 (30)

  No 4019 (71) 1740 (71) 2279 (70)

History of hypertension

  Yes 3882 (68) 1647 (68) 2235 (69)

  No 1797 (32) 789 (32) 1008 (31)

Neighborhood educational attainmentd*

  Low 2290 (40) 542 (22) 1748 (54)

  High 3389 (60) 1894 (78) 1495 (46)

Neighborhood median home value ($)*

  <82,700 1400 (25) 228 (9) 1172 (36)

  82,700–118,000 1403 (25) 477 (20) 926 (29)

  118,000–166,500 1436 (25) 656 (27) 780 (24)

  ≥166,500 1414 (25) 1052 (44) 362 (11)

  Missing 26 23 3

Abbreviations: CAD, coronary artery disease; CVD, cardiovascular disease; MI, myocardial infarction.

a
Urban status was defined as living in a metropolitan urban core census tract.
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b
Binary measure of CAD (>23 CAD index). The total sample size for the CAD outcome is 5,069.

c
Other race/ethnicity includes Native American, Hispanic, Asian, and unknown.

d
Low educational attainment includes those who live in block groups where ≥25% of males and females have less than a high school education.

*
Indicates p<0.05 for differences between urban/rural status.
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Table 4

Odds ratios and 95% confidence intervals for the associations between 1-ug/m3 increase in PM2.5 and select 

CVD outcomes. Results are shown for single and multipollutant models.

CAD index >23 MI in prior year

Single pollutant
models

Multipollutanta
models

Single pollutant
models

Multipollutant
models

PM2.5 Monitor 1.04 (0.99, 1.10) 1.07 (1.01, 1.13) 1.19 (1.10, 1.29) 1.19 (1.10, 1.28)

PM2.5 CMAQ-PHASE 1.07 (1.02, 1.13) 1.08 (1.03, 1.14) 1.20 (1.11, 1.29) 1.21 (1.12, 1.30)

PM2.5 CMAQ-DF 1.10 (1.04, 1.17) 1.14 (1.07, 1.22) 1.22 (1.11, 1.33) 1.21 (1.10, 1.33)

PM2.5 Satellite 10km 1.13 (1.06, 1.21) 1.14 (1.06, 1.22) 1.17 (1.06, 1.29) 1.17 (1.06, 1.29)

PM2.5 Satellite 1km 1.09 (1.03, 1.15) 1.12 (1.06, 1.18) 1.16 (1.07, 1.26) 1.17 (1.07, 1.27)

Abbreviations: CAD, coronary artery disease; CMAQ, Community Multi-scale Air Quality; DF, data fusion; EPA, Environmental Protection 
Agency; MI, myocardial infarction. Models are adjusted for sex, smoking status, race, area level attained education, and urban/rural status.

a
Multipollutant models are additionally adjusted for monitored warm season (April – October) ozone averages.
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