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Abstract

Chronic and widespread diseases such as obesity, diabetes, and hypercholesterolemia require 

patients to monitor their food intake, and food journaling is currently the most common method 

for doing so. However, food journaling is subject to self-bias and recall errors, and is poorly 

adhered to by patients. In this paper, we propose an alternative by introducing EarBit, a wearable 

system that detects eating moments. We evaluate the performance of inertial, optical, and acoustic 

sensing modalities and focus on inertial sensing, by virtue of its recognition and usability 

performance. Using data collected in a simulated home setting with minimum restrictions on 
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participants’ behavior, we build our models and evaluate them with an unconstrained outside-the-

lab study. For both studies, we obtained video footage as ground truth for participants activities. 

Using leave-one-user-out validation, EarBit recognized all the eating episodes in the semi-

controlled lab study, and achieved an accuracy of 90.1% and an F1-score of 90.9% in detecting 

chewing instances. In the unconstrained, outside-the-lab evaluation, EarBit obtained an accuracy 

of 93% and an F1-score of 80.1% in detecting chewing instances. It also accurately recognized all 

but one recorded eating episodes. These episodes ranged from a 2 minute snack to a 30 minute 

meal.
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1 INTRODUCTION

Fueled by the ubiquity of sensing and computation, the interest in automatic food intake 

monitoring is flourishing. There are three main aspects to food intake monitoring: (1) when 
does eating take place [13, 14]; (2) what is eaten [25, 42]; and (3) how much is eaten [11, 

37]. To answer these questions, nutritionists typically rely on self-reports. While these tools 

suffer from several limitations, bootstrapping the user with semi-automated tracking of how 

often, at what time, and for how long they ate holds significant promise. Similar to step 

counting applications, where even a coarse estimate of activity levels can motivate users to 

improve their behavior [27], monitoring when food is consumed can perhaps help in 

modifying and improving unhealthy behaviors. Over the last decade, a significant amount of 

research has explored various approaches to fully automate food intake monitoring. Devices 

ranging from a microphone on the neck [38] to EMG-measuring eyeglasses [40] to in-ear 

microphones [16] have been explored. Since an important first step in research is to achieve 

reasonable lab-controlled performance, most work so far has thus occurred in laboratory 

settings with reasonable results [3, 17, 36]. In the real world, however, eating is often 

accompanied by and occasionally occurs simultaneously with other activities, such as 

speaking and walking, and such behavior is rarely captured in laboratory settings. The leap 

from a lab’s controlled environment to the real world is too big; replicating laboratory 

performance in the real world, therefore, turns out to be extremely difficult [14].

In this paper, we present EarBit (Figure 1), an experimental, head-mounted wearable system 

that monitors a user’s eating activities while remaining resilient to the unpredictability of a 

real world setting.
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EarBit uses chewing behavior as a proxy for eating, resulting in instrumentation of the head. 

As an experimental platform, EarBit’s design allows for the collection of data from a 

number of sensing modalities (optical, inertial, and acoustic). We use these sensors to 

determine the combination of sensing modalities that is most effective for detecting the 

moment of eating. To reduce the gap between results from a controlled laboratory setting 

and the real world, the algorithms for these sensors (shown in Figure 1) were developed and 

evaluated in a semi-controlled home environment that acts as a living lab space. The results 

of this study indicated that an inertial sensor behind the ear (measuring jaw motion) in 

tandem with an inertial sensor behind the neck (monitoring body movement) produced good 

results in detecting eating activity, and was also the form factor considered most comfortable 

by the participants; particularly since the function of the inertial sensor behind the neck is 

used to detect activities like walking and could be replaced by a user’s smartphone or wrist-

mounted activity tracker.

Eating detection models trained on data from the semi-controlled study were then tested on a 

new dataset collected in a relatively relaxed ”outside the lab” environment. We recruited a 

new set of 10 participants, and instead of asking them to come to our study location, we gave 

them the EarBit prototype and asked them to use in their own environments. We collected 

data for a total of 45 hours. EarBit’s IMU is essentially a chewing sensor, and at a 1-second 

resolution, EarBit correctly recognized chewing activity with an accuracy of 93% and an F1 

score of 80.1%. When these Outside-the-Lab chewing inferences are aggregated into 

separate eating episodes, EarBit accurately recognized all but one recorded eating episodes 

(delay = 1 minute). These events ranged from 2 minutes snacks to 30 minutes meals.

The main contribution of this paper is a demonstration of the experimental EarBit system 

that successfully recognizes eating episodes in a real world setting. This contribution comes 

in three parts:

1. An evaluation of a wearable setup for eating detection based on off-the-shelve 

form factors.

2. A novel, semi-controlled laboratory protocol used to judge the effectiveness of 

combinations of three sensing modalities for eating detection.

3. A machine learning model that uses inertial data collected in the semi-controlled 

environment to reliably recognize eating episodes in a real world setting.

2 RELATED WORK

A wide variety of sensing approaches have been used to solve the complex problem of 

automatic food intake monitoring. The choice in sensing modality as well as sensing 

location is difficult because it must be effective in detecting eating instances and be robust 

against natural behaviors. Additionally, the sensing modality should be practical in a 

wearable form factor (i.e., portable and compact, energy efficient, and aesthetically 

pleasing). A comprehensive review of sensor-based methods and systems for automatic 

dietary monitoring can be found in [31]. This section will discuss some of the large body of 

work with an emphasis on two aspects: the sensing modality (acoustic, motion, and 
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multimodal) utilized and its potential for detecting eating events in unconstrained 

environments.

2.1 Acoustic Sensing

Acoustic-based systems have primarily been placed on the neck-region or in-the-ear for 

sensor-based dietary monitoring. Amft et. al. [1] used a microphone placed inside the ear 

canal to detect eating and to classify between four food types. To validate their method, 

researchers ran a lab study with four participants. Their system was able to recognize eating 

from other non-eating samples with up to 99% accuracy using C4.5 decision tree classifier. 

Using isolated chewing instances, the system achieved 80%–100% accuracy in classifying 

between eating chips, apple, pasta, and lettuce.

Amft and Troster [2] investigated the recognition of swallowing activity during food intake. 

Using gel electrodes and electret condenser microphone, the researchers recorded the surface 

EMG and sound from the neck after integrating the sensors in a collar like fabric. 868 

annotated swallows were collected in the lab from 5 participants. The study included 

different activities of eating and drinking. Signal intensity thresholding was used to evaluate 

the system performance in detecting swallowing form data streams. While achieving a recall 

of 70%, the precision remained low due to the large number of false positives. Feature 

similarity search was then used as a second method of evaluation, and it was able to improve 

the overall precision.

A neck-worn system was used for real-time swallowing detection in [28] and a recall 

performance of 79.9% and precision of 67.7% was achieved. Using a similar neck-worn 

system, [39] demonstrated the ability to identify 12 different activities; precision of detecting 

eating was 81.3%. While [28] conducted their study in the lab, [39] evaluated their system 

both in the lab and with a small-scale study in unconstrained environments.

Acoustic sensing has also been used for detecting food types. In these cases, the results of 

detecting when the user is eating is conglomerated with the results of identifying the food 

types being eaten. [1] compared six wearable microphone locations for recording chewing 

sounds and observed that the inner ear location provides the highest acoustic signal intensity. 

[9] presented the AutoDietary system for food type recognition and obtained an 84.9% 

accuracy in identifying food types between 7 types. Meanwhile, in [30], the authors 

modified a hearing aid to include two microphones (one in-ear and one for ambient noise), 

also in an attempt for food type classification. They achieved a user-dependent accuracy of 

79% and a user-independent accuracy of 66%. Rahman et. al. [34] developed a wearable 

system (BodyBeat) that place a piezoelectric microphone on the neck to detect non-speech 

body sounds. One of the activities they investigated is food intake. The BodyBeat system 

was able to recognize chewing and swallowing sounds to categorize the current activity as 

eating or drinking. Performing leave-one-user-out cross-validation, BodyBeat was able to 

recognize eating with 70.35% recall and 73.29% precision.

In general, a primary drawback of acoustic-based systems is that it can be significantly 

affected by environmental noise. This concern is indicated by the trend that the majority of 

the aforementioned studies use data collected solely in the lab or under controlled settings.
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2.2 Motion-based Sensing

Inertial sensors have been placed on the body in a number of different locations. In [35], the 

authors used the 3-axis accelerometer in a commercial smartwatch to detect the motion of 

bringing food to the mouth using the arm. Using a model trained from data collected in a 

laboratory setting, they achieved F-scores between 71.3% and 76.1% on data collected from 

8 participants in unconstrained environments. The metrics were produced looking at hour 

long segments of time, and these unconstrained environments studies lasted a week, with an 

additional study lasting an entire month. Similarly, the authors in [13] used a wrist-worn 

system consisting of an accelerometer and gyroscope for detecting eating periods in free-

living. Data was collected from 43 participants over a 12-hour period and results showed an 

accuracy of 81% at 1 second resolution.

GlasSense is a wearable system developed to recognize different facial activities by 

monitoring the movement of the temple [12]. GlasSense has two load cells embedded in the 

hinges of a 3D printed eyeglasses to measure the temporalis muscle activity, This signal is 

used to recognize facial activities such as: chewing, talking, head movement, and winking. A 

pattern recognition pipeline based on SVM classifier was used to classify between natural 

head movement, left chewing, right chewing, left wink, right wink, and talking. Using leave-

one-user-out cross validation on a dataset of 10 users collected in the lab, GlasSense was 

able to classify between the six activities with an average F1 score of 94%.

2.3 Multimodal Sensing

Multimodal systems are expected to be more robust than unimodal systems if sensors are 

combined in a way that each sensing modality contributes unique information toward the 

goal of dietary monitoring [31]. Examples of sensor combinations that have been evaluated 

in literature include vibration sensors located behind-the-ear combined with a nose-bridge 

electromyography sensor in an eyeglass form factor [41] as well as a camera and 

microphone combination in a headset form factor [22]. A headset form-factor has also been 

explored by [7], wherein they demonstrated a prototype of proximity sensor embedded 

inside an ear-bud that detected the deformation of the ear canal cause by jaw movements. 

Combined with an on-body gyroscope to detect body motion, the system was able to detect 

eating activities with 95.3% accuracy on data collected in the lab.

The technique of using a dedicated inertial sensor for detecting body motion was also 

explored by the Automatic Ingestion Monitor (AIM) system presented in [14], in which an 

accelerometer was used to better inform a novel artificial neural network algorithm. 

Combined with other sensing modalities (a jaw motion sensor and a hand gesture sensor) in 

a multi-unit system, the system was able to obtain an average accuracy 89.8% in detecting 

eating episodes of 30 seconds. The dataset comprised of 12 participants in unconstrained 

environments over a 24 hour period.

This paper is different from other works in the literature because we introduce a multi-modal 

wearable system to detect eating events in relatively unconstrained environments. We started 

with evaluating three sensing modalities: optical, inertial and acoustic, and evaluated the 

performance of the system in a semi-controlled lab study and outside-the-lab study. Our 
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evaluation assessed the performance of the system in detecting eating both at a 1 second 

resolution and at the event level.

Generally, it is hard to formally compare performance with previous work in the domain of 

automatic food monitoring. The primary reason is because systems are usually evaluated 

with different protocols for data collection (e.g, constraints, types of activities). However, if 

we made a general comparison between EarBit and some of the systems discussed above, 

which were evaluated in unconstrained environments [13, 14, 35], EarBit achieved a 93% 

accuracy in detecting chewing at a 1-second resolution and obtained an F1 score of 90.5% in 

detecting eating events with 72.2% coverage accuracy. These results show that EarBit 

mostly outperforms these systems on both the frame and event levels. However, these are 

only informal and preliminary comparisons, and even with EarBit’s relatively better 

performance, the problem of eating recognition is far from solved.

3 DATA COLLECTION

McGrath identified three key factors when conducting a study: precision, generalizability, 

and realism [24]. However, it is difficult to collect data that has all three elements. At one 

extreme, laboratory experiments allow researchers to accurately measure behavior because 

the researcher can control when and where behaviors of interest occur [10], but this data 

often lacks realism. At the other extreme, in situ observations allow researchers to capture 

real life behavior. However, this data often lacks precision due to the lack of proper 

instrumentation or control, resulting in poor ground truth data. Consequently, the leap from a 

controlled study to the in-situ study often becomes intractable for machine learning models.

3.1 Semi-controlled Lab Study

In order to bridge the gap between controlled and real life studies, we collected our training 

data in a simulated natural environment. We observed participants interacting in a sensor-

instrumented home (the Aware Home at the Georgia Institute of Technology) especially 

designed to support ubiquitous computing research [20]. This 3-storied building spans over 

5,000 sq. ft., and is embedded with various sensors to support data collection.

3.1.1 Scenario—The participants were invited to the Aware Home for dinner. Once at the 

house, a researcher facilitated the group’s activities over a 75-minute session. There were 3 

to 4 different participants in each session. In an attempt to catalyze conversation, participants 

were chosen such that each participant was familiar with at least one other participant at the 

dinner. In total, sixteen participants (19–25 years, 9 female & 7 male) participated in a total 

of 5 sessions.

After completing a brief demographic survey, the participants were asked to wear the multi-

sensor setup shown in Figure 1. Once the participants felt comfortable with the hardware, 

they either ate dinner, took a tour of the home, or engaged in free-flowing conversation 

while watching TV. Although the group had the freedom to chose the order of activities, all 

participants performed all activities in each session. Also, there was no restriction on the 

duration of each activity.
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The tour required walking through the home, including walking up and down a flight of 

stairs. The group decided whether to eat their dinner either in the dining area or the living 

room. The participants chose their dinner entree from local restaurants with different 

cuisines. While watching TV, participants were also offered snacks, such as potato chips, 

chocolate candy, peanuts, apples, and bananas. Additionally, participants were provided 

bottled water and assorted sodas to drink. Since participants already knew each other, they 

were comfortable with spontaneous, free-flowing, natural conversations that rarely required 

any host facilitation. Additionally, familiarity allowed the participants to eat in a natural 

manner without being self-conscious about their manners. For example, participants often 

talked and ate simultaneously.

Of the sixteen participants involved in the study, only ten participants provided usable data. 

Four participants had to leave prematurely due to a personal emergency, and two participants 

had corrupted or missing sensor data. Nevertheless, our semi-controlled dataset had 12.5 

hours of annotated data with almost 26% labeled as chewing.

3.1.2 Ground-truth—We used four video cameras to record participants’ activity. Three 

stationary video cameras were located in the dining area and living room, and a handheld 

camera was handled by a researcher. This camera followed participants when they went to 

areas outside the range of the stationary cameras (e.g., the stairs, kitchen). In order to sync 

the devices’ data with the cameras, each participant was asked to perform a gesture of tilting 

their heads from side to side. To sync the video cameras, we switched the house lights on 

and off three times at the beginning of each session.

Over the course of the scenario, user behaviors included walking, standing, sitting, talking, 

eating, laughing, watching TV, etc. At the conclusion of the scenario, participants completed 

a post-study survey. The survey covered: (1) comfort ratings for different hardware 

components of the experimental device; (2) comfort ratings for different combinations of 

components; and (3) an open question about their experience with the experimental device. 

Following the post-study survey, we engaged the participants in an informal focus group and 

discussed usability, comfort, and practicality.

3.2 Outside-the-lab Study

The semi-controlled Aware Home study put the participants in a social group and aimed to 

collect the data in a realistic setting. While we largely succeeded in collecting realistic 

behavior, the participants were still aware of multiple cameras and the data recording 

focused on capturing eating events. For example, it would be uncommon for a user to spend 

26% of their day eating. While a high percentage of eating episodes are an optimal approach 

to collect training data, it is not an ideal evaluation scenario. Hence, we decided to evaluate 

our algorithms in a slightly more relaxed and naturalistic environment. We outfitted 10 new 

participants (3 female and 7 male, aged 18 to 51) with EarBit and asked them to take it out 

of the lab and use in their natural environments. In this study, participants recorded data in 

diverse environments including houses, offices, cars, restaurants, prototyping workshops, 

streets and public transport. None of these participants were part of the previous study and 

the participants were advised to engage in at least one eating activity. We recorded up to two 
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3 hours sessions with each participant. The session length was limited by our groundtruth 

collection device: GoPro Hero 3.

Considering participants were going to use EarBit outside a controlled environment, 

groundtruth collection becomes hard. Traditionally, self-reporting any eating activity is a 

standard practice for determining ground truth for eating studies in unconstrained 

environments. However, a number of previous studies (e.g., [5]) and our own pilot study 

showed that self-reporting is not reliable. In an initial version of our study, several 

participants indicated that they forgot to write down eating times while they were eating. 

Instead, they wrote best guesses of time and duration. In other instances, participants did not 

remember to write down eating times until after the study was over. Hence, we revised the 

study to obtain ground truth via a chest-mounted GoPro Hero 3 camera. The camera faced 

upward towards the participant’s face and continuously recorded activities around the 

participant’s head (Figure 2a). Apart from asking participants to try and not occlude their 

mouth while eating (Figure 2c), there was no change to the instructions given to participants. 

They were told to conduct their normal, daily activities, and to self-report eating via manual 

logging. The GoPro sessions lasted for 3 hours, due to the battery constraints of the camera. 

In order to collect sufficient per-person data, participants were asked to complete two 

sessions. However, 5 of the participants were unavailable for a second session, and we had a 

total of 15 outside-the-lab sessions (3 hours each). 11% of the recorded data was identified 

as chewing and is representative of an average user’s daily life [8]

3.3 Video Annotation

To acquire ground truth for each user’s activities in both studies, we hand-annotated the 

video recordings from both studies. We used Chronoviz [15] to synchronize video and 

sensor data. Four coders annotated the data by manually inspecting the recorded audio and 

video. The annotations included six labels divided into two categories: body movement 

(moving or stationary) and jaw activity (chewing, drinking, talking, or other). Any labeling 

window can have one annotation from each of the two categories, but not two from the 

same. For example, a user could be walking (body movement) and eating (jaw activity), but 

cannot chew and talk (both jaw activities) simultaneously.

Moving included a wide variety of actions, like walking, body rocking, etc. Stationary, 

chewing, talking, and drinking are self explanatory actions. We used the other label for 

relatively infrequent but significant jaw actions such as laughing, coughing, and yawning. 

We did not annotate portions of the video when the participant could not be seen; though 

that was rare. We performed the annotation by considering non-overlapping 1 second 

window of video and labeling it as the activity that lasted the longest within the window. 

High granularity annotations allow us to learn from small, quick transitions. For example, 

Figure 3 shows a user having a meal over a 10 minute period. The user transitions through a 

number of activities while having his or her meal, and we are able to annotate small and 

sporadic periods of silence in addition to the main activity of chewing.

Additionally, a section of video can have more than one label, one from each of the two 

categories. For example, a person that is walking while eating simultaneously can have both 

of these labels for the same segment of data. A similar example is depicted at the end of the 
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expanded subplot in Figure 3, in which the subject was labeled to be both moving (from the 

body movement category) and talking (from the jaw activity category). However, when 

selecting frames for training and testing we resolve the confusion in mixed activities labels 

by giving different priority level for each class. The moving label has the highest priority, 

followed by other, drinking, chewing, talking, and finally stationary, respectively. The 

activity with the highest priority becomes the dominant label for the frame. Mixed activities 

that had eating overlapped with labels with higher priority represented only 2.2% in the 

semi-controlled lab (Aware Home) data set.

To annotate the video for the outside-the-lab study, we chose to provide only two labels 

(chewing and not-chewing). Therefore, it is important that the multi-class machine learning 

models trained using the semi-controlled study be ultimately converted into binary 

classification models for the outside-the-lab study. We will discuss this in detail in Section 

4.2.

For annotating the recorded videos, we employed 4 coders and then used Cohen’s Kappa to 

compute inter-rater reliability [21]. Kappa (K) was computed using a 15-minute video 

sample from the Aware Home dataset. This video was chosen so as to encompass a wide 

range of activities. Because any subset of activities could take place simultaneously or 

individually, the annotations are not conditionally-independent. Hence, we computed the 

inter-rater reliability for each activity separately, where 0.60 < K ≤ 0.80 represents 

satisfactory agreement and K > 0.80 represents near-perfect agreement. Our worst inter-rater 

reliability was K = 0.69 (for stationary) and our best was K = 0.99 (for other); average 

agreement across all activity labels was 0.84.

4 SYSTEM DESCRIPTION

In this section, we first describe the initial set of sensors identified to be suitable for 

detecting chewing/eating through instrumentation on/near the head. We then discuss the 

process of choosing an optimal subset of sensors leading to a revised design of EarBit and its 

machine learning algorithms.

4.1 Choosing the Right Sensor(s)

Our goal is to design a system that accurately detects the chewing activity as a proxy for 

food intake. We aim to achieve this using an optimal number of sensors, while considering 

the social acceptability and comfort of the form factor. To this end, we investigated a number 

of sensors and compared their performance and usability.

4.1.1 Sensor Selection—Previous research in food intake monitoring has focused on 

tracking various actions that occur during an eating activity, so-called proxies for eating. 

These include hand-to-mouth gestures, chewing, and swallowing. Although hand motion is 

involved in most eating activities, and has the advantage of leveraging common commercial 

sensing platforms that people already have (e.g., smartwatches or activity trackers), it has 

limitations (i.e., usually only one hand is instrumented) and we felt that detecting chewing 

and swallowing is more directly associated with eating and, therefore, sufficient to infer 
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eating episodes. Fontana et al. support our claim, indicating that in a naturalistic 

environment, jaw motion can be more indicative of eating activities than hand gestures [14].

To detect chewing, we exploit two sensing modalities: optical and inertial. The optical 

sensor is the VCNL4020 fully-integrated proximity sensor with an infrared emitter. Bedri et 

al. have used this sensor to track jaw motion for detecting chewing in a controlled 

environment [6, 7]. The sensor is placed at the entrance of the ear canal and measures the 

degree of deformation at the canal caused by the movement of the mandibular bone. The 

sensor is fixed inside a Bose IE2 ear-bud, and it features a wing to tuck under the outer-ear 

flap. The system does not require any calibration for different users and we evaluated its 

adaptability to different users in the prototype testing phase.

Apart from the in-ear proximity sensor, we augmented the outer-ear flap of the ear-bud with 

a 9 Degree-of-Freedom IMU (LSM9DS0). Rahman et al. used a similar sensor to detect 

eating events in a controlled setting [33]. The flap helps in coupling the IMU to the 

temporalis muscle. This is one of the four mastication muscles and links the lower jaw to the 

side of the skull covering a wide area around the ear. During chewing, the muscle 

continuously contracts and relaxes, and this movement can be picked up by the IMU. Figure 

4 shows an example of sensor stream of the behind-the-ear IMU while the user was talking, 

eating, and then walking.

The system also includes a microphone around the neck; a HBS-760 Rymemo Bluetooth 

headset (Figure 1). A similar microphone-based approach has been used to detect 

swallowing [38]. These works recommended placing a microphone coupled to the throat 

with some level of acoustic shielding. With the aim to increase comfort, we modified the 

type and placement of the sensor to be slightly more socially-acceptable. It leads to slightly 

degraded signal-to-noise ratio, but we accept it as a reasonable compromise. In addition to 

these sensors, we also placed a 9-DOF IMU behind the user’s neck (Back IMU in Figure 1). 

This IMU is used to measure large body motions, such as walking. In the future, such 

information could alternatively be extracted from a wrist-worn fitness device or a 

smartphone.

Data from the two IMUs and proximity sensor is sampled at 50 Hz using a Teensy 3.2 

microcontroller, which stores the received data on an SD card. The microcontroller, back 

IMU, and battery are housed in a casing and attached to the back of the Bluetooth headset, 

as shown in Figure 1. Audio from the wireless Bluetooth microphone is recorded at 22.05 

KHz and sent to an Android phone. We developed four copies of the prototype for 

instrumenting multiple users simultaneously for the semi-controlled lab study.

4.1.2 Sensors Comparison—Using only the dataset from the Aware Home semi-

controlled study, we compared different sensing modalities on the basis of their recognition 

performance and usability.

The activity recognition processing pipeline was based on prior literature and compared the 

performance of different sensors and all combinations of sensors using leave-one-user-out 

(LOUO) user-independent testing. We used the approach suggested by Bedri et al. to 
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develop the processing pipeline for the IMU and proximity sensor ([6], see Figure 5). Bedri 

et al. also recommended using Hidden Markov Models (HMMs) with 10 minute segments 

for the final classification. For the neck microphone, past work suggested using Mel-

Frequency Cepstral Coefficients (MFCCs) to differentiate between speech and non-speech 

activities [23, 29]. Such a capability can be valuable to differentiate between talking and 

other activities. Therefore, we calculated 26 MFCCs from the microphone data (100 ms 

using 20-filter bank channels) before calculating further features from the audio.

Figure 6 shows a preliminary comparison across the sensing modalities. The IMU placed 

behind the neck (back-IMU) was used in all sensor conditions because it helped to filter out 

movement based on more gross body activities (e.g., walking). The behind-the-ear IMU (E) 

performs better than other combinations. The combination of behind-the-ear gyroscope and 

proximity sensor (E+P) has comparable results to E, but there are no clear benefits of using 

the additional sensor. Beyond this preliminary performance evaluation, we decided to focus 

our attention only on the behind-the-ear gyroscope. While it had marginally better 

performance than other sensors, more importantly it was the most preferred sensor by the 

users.

Our post-session survey highlighted that the participants did not prefer using the in-ear 

proximity sensor. Respondents rated comfort and usability on a five point Likert scale. 

Wilcoxon Signed Rank Test showed that the users found back-of-the-ear IMU more 

comfortable than the in-ear proximity sensor (Md = 4 vs. Md = 3.5, p ¡ 0.05). In the informal 

focus group session as well, multiple users complained about the in-ear earbud.

”The [in] ear piece was uncomfortable. It felt piercing and itchy.”

”The Bose headphones felt uncomfortable after extended periods of use.”

”I’m not used to having something in my ear when I’m eating”

Thus, we decided to limit the evaluation of the Outside-the-lab study to the behind-the-ear 

IMU and used the back-IMU to cancel large body motions.

4.2 Redesign of recognition pipeline

The processing pipeline described in Section 4.1.2 was based on prior literature and we used 

it to do a preliminary comparison of performance of various sensing modalities. Instead of 

opting to continue to optimize our Hidden Markov Models, we decided to switch to a 

different machine learning approach. In general, HMMs are more suited for discovering 

patterns and transitions in temporal data sequences. They are ideal when the model needs to 

develop an understanding of the shape of the signal. However, Figure 4 shows that the 

behind-the-ear IMU acts as a very direct sensor that captures the oscillation patterns of the 

temporalis muscle when a user is chewing. The behind-the-ear IMU simplifies the machine 

learning problem to primarily differentiate between magnitude and periodicity of motion 

from different activities. For this problem, we believe summary statistical features and an 

algorithm like Random Forests should suffice.
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In the rest of this section, we provide full details of our machine learning pipeline, and 

provide explanations for various design decisions. Figure 7 shows the whole processing 

pipeline.

4.2.1 Signal Conditioning—The new pipeline starts with a preprocessing step to 

condition the raw signals. This step includes smoothing the 50 Hz gyroscope data using a 

Butterworth filter of order 5 (cut-off frequency = 20 Hz). Data is then segmented using 30 

second windows sliding at 1 second.

4.2.2 Feature Extraction—Our feature set aims to encode the relevant information about 

the motion of the temporalis muscle when the user’s jaw moves. For each 30 second 

window, we compute 78 features to characterize jaw movement while chewing. These 

features are essentially 13 features computed for each axes of the gyroscopes placed on the 

ear and back (i.e., 13 features × 3 axes × 2 sensors = 78 total features).

When a user chews, the jaw moves, and the back-of-the-ear IMU picks up the motion. In an 

ideal case, energy or magnitude alone will be very high for such motions and low when the 

user is doing some other activity. However, a user performs many activities that can generate 

significant motion that gets recorded on the behind-the-ear gyroscope; walking and talking 

are common examples. Figure 4 shows example data from the y-axis of the gyroscope when 

the user was talking, then transitioned to eating, and then walking. One valuable insight 

captured by Figure 4 is that chewing motion is more periodic than many other activities, 
such as talking. On the other hand, walking and some other large motions (e.g., exercises) 

are also periodic. Though in some cases the overall magnitude of motion while walking is 

significantly larger, it won’t always be true. For such cases, a separate IMU on the body (in 

our experiments behind-the-neck IMU, but in practice a wrist-worn or pocket-held device) 

can be used to detect these large motions, as shown in other research related to activity 

recognition [4, 18, 19]. Next, we list our 13 features that capture information about the 

magnitude and periodicity of motion for different axes and sensor locations. These features 

include time and frequency domain features that are commonly used in recognizing human 

activities from inertial data. Size of the FFT is same as the size of the feature calculation 

window (i.e, 30 seconds = 1500 samples). In [26]. Morris et. al. introduced a set of 5 

features based on signal auto-correlation to reliably recognize repetitive strength-training 

exercises using inertial sensor. In general, the auto-correlation of any periodic signal with 

frequency f will produce another periodic signal with peaks at lag 1/f, while a signal that has 

no periodic component will produce no peaks when it’s auto-correlated. Just like strength-

training exercises, chewing produces repetitive motion that can be captured using same 

features. Hence, our features set also includes auto-correlation features, and were computed 

using the same methods as applied in [26].

1. Magnitude of motion.

a. Root Mean Square encodes the amount of energy in the signal.

b. Variance is square of RMS and encodes similar information. Having 

both RMS and variance can provide flexibility if there is non-linearity 

in some axes.
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c. Entropy reflects the amount of information (or conversely noise) in the 

signal. Entropy tends to be a strong feature in detecting silent and noisy 

activities, such as silence and speech. The normal formula for 

Shannon’s entropy was used to compute the entropy feature, but the 

bins are predefined in increments of 10, ranging from −50 to 50. The 

outliers were assigned to a separate bin.

d. Peak Power is the magnitude of the dominant frequency of the signal. 

If a signal is fairly repetitive (e.g., eating and walking in Figure 4), the 

magnitude of the main frequency can indicate the intensity of motion, 

and can help in differentiating between facial and whole-body motions.

e. Power Spectral Density is magnitude of power spectrum in 

logarithmic scale.

2. Periodicity of motion.

a. Zero Crossing captures the rough estimate of the frequency of the 

signal.

b. Variance of Zero Crossing. Zero crossing is going to be high for any 

high-frequency data, and can be severely affected by noise. We 

calculate the variance in the times at which signal crosses zero, to 

record the periodicity of zero crossings.

c. Peak Frequency is the dominant frequency of the signal, calculated 

through a frequency transformation.

d. Number of Auto-correlation Peaks. Abnormally high or low number 

of peaks here indicate noisy signal.

e. Prominent Peaks are the number of peaks that are larger than their 

neighboring peaks by a threshold (0.25). Higher number of prominent 

peaks suggest a repetitive signal.

f. Weak Peaks are the number of peaks that are smaller than their 

neighboring peaks by the same threshold (0.25) as Prominent Peaks.

g. Maximum Auto-correlation Value is the value of the highest auto-

correlation peak. A higher value suggests very repetitive motion.

h. First Peak is the height of the first auto-correlation peak after a zero 

crossing.

4.2.3 Feature Selection—Given the large number of computed features, we introduced a 

feature selection step in our pipeline. This step helps in avoiding the curse of dimensionality 

and enhances the generalizability of our eating detection models by reducing overfitting.

We implemented the feature selection process using the sequential forward floating selection 

algorithm (SFFS), which is proven to be very effective in searching for optimal feature set 

[32]. For feature evaluation, we used random forest classifiers to build models using out 
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semi-controlled lab dataset. A leave-one-user-out cross validation was performed at each 

step, and the exclusion and inclusion criteria for features was based on the F1 score of 

chewing detection.

The SFFS algorithm selected 34 out of 78 features as most effective for eating detection. 

These 34 features came from all 13 feature types across different axes. The most common 

selected feature types are entropy, peak frequency, the number of auto-correlation peaks, and 

first peak after a zero crossing.

4.2.4 Recognition—We use Random Forests (implemented with the Scikit-learn toolkit in 

Python) and leave-one-user-out validation to avoid overfitting. Furthermore, we keep all 

Random Forest-specific parameters at their default values to avoid any manual overfitting. 

This is where Random Forests are especially useful because they do not need much manual 

tuning and the only major parameter is the size of the trees. However, with separate feature 

selection phase, we do not need to control the size of the trees as well in most cases. 

Therefore, we only optimize some of our windowing parameters and we will discuss those 

in detail later in this section.

Detecting Chewing: The labels in the Aware Home dataset included: chewing, walking, 

talking, stationary, drinking, and other. Due to the very low number of occurrences in the 

dataset, the latter two labels, which represented 5.3% and 1.2% of the dataset respectively, 

were removed from training and classification tasks. Completely removing these instances 

from the dataset would skew the timeline. Therefore, the algorithm simply skips these 

instances during training and classification tasks, but still uses the sensor information to 

calculate features for other instances (remember that the features are calculated over 30 

second windows). In our dataset with 26% of data points labelled as chewing. This happens 

because our training data was collected in a social setting when the group of participants 

were socializing and a significant amount of time was spent eating. While this is not 

representative of an average day in a user’s life, it provides us with some robust training 

data.

In contrast to the Aware Home dataset, the Outside-the-lab dataset only had two labels: 

chewing and not-chewing. However our machine learning models made a four-class 

classification: chewing, walking, talking, and stationary. Instead of changing the classifier’s 

output classes to match the labels used in the Outside-the-lab dataset, we simply treat all 

non-chewing predictions as ”not-chewing”. Therefore, when we report results in Section 5, 

we convert our performance metrics to reflect the performance of a binary classifier. In the 

interest of uniformity, we do this conversion to binary classification for both the semi-

controlled lab (Aware Home) data set and the Outside-the-lab datasets.

The machine learning model produces recognition results every 1 second (recall that we 

used 30 second windows sliding by 1 second). Since, there is seldom any need for 1 second 

resolution for chewing inference, we apply a moving average on the confidence value 

returned by the Random Forests. Consecutive values were averaged together to produce the 

new confidence value for each second. The moving average window was centered on the 
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value to be predicted. The size of moving average window (optimal value = 35 samples) is 

tuned using the Aware Home dataset.

The output of the filter is converted into a binary decision by using a simple threshold of 0.5. 

An example of this post-processing is shown in Figure 8. The result of this tuning procedure 

will be discussion in Section 5.

Detecting Eating: Aggregating Chewing Inferences: Although EarBit acts as a chewing 

sensor, most users will be interested in identifying eating events. We aggregate individual 

chewing inferences into eating event inferences through a two-step process (shown as the 

last step in Figure 8): merging of events and filtering short events.

Merging of events helps in removing sporadic discontinuities in eating recognition. This is 

based on an assumption that a user won’t have two meals within 10 minutes of each other. 

Therefore, we merge all labeled and recognized eating events that occur within 10 minutes 

of each other. Here, we understand that time cannot be the only factor in segmenting meals. 

For example, a user might start eating an apple, leave for an urgent meeting, and then come 

back to continue eating the fruit. Perhaps a richer understanding of the user’s activities and 

intent would be necessary, but that is not the focus of this paper.

In addition to the merging step, we added a second layer of filtering to remove small isolated 

events that are less than 2 minutes in duration. This filtering step comes at the cost of 

skipping very short snacks, which is a compromise we made to improve precision in 

detecting full meals and snacks that are longer than 2 minutes.

Overall, we minimize the number of tunable parameters in our approach; Random Forests 

also implicitly minimize the need of tuning parameters (as discussed earlier). Therefore, the 

only tuning parameter for EarBit is the size of the moving average filter. All other 

parameters were based on domain knowledge and assumptions about the user’s behavior. 

For example, for merging events, we assume that a user won’t have two separate meals 

within 10 minutes of each other. This assumption was also confirmed when we analyzed the 

video recordings. None of the tunable and human-set parameters were optimized using the 

outside-the-lab dataset. That dataset was collected to evaluate EarBit’s performance and we 

made sure that none of EarBit’s parameters were optimized on it.

5 RESULTS

In this section we will discuss EarBit’s performance in detecting eating in our two studies. 

We started by developing and validating our algorithm on the Semi-Controlled Lab dataset 

and then we used those models to evaluate performance of the Outside-the-lab dataset. We 

completely sequestered the data from the Outside-the-lab dataset and analyzed it only after 

the algorithm was ”frozen”, that is, after satisfactory validation on the Aware Home dataset. 

This was done to avoid any unintentional and manual overfitting on the test data.

For evaluation, we test the algorithm’s performance on both frame-level (chewing detection) 

and event-level (eating episode detection). The main performance measures are F1 score, 

precision, recall and accuracy. For the event level analysis, we also reported delay, which 
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measures the time from the beginning of an eating event till EarBit starts recognizing it. 

Additionally, we also measure coverage, i.e., what percentage of actual event was 

recognized. For example, if a user spends 15 minutes having dinner, but EarBit predicts a 12 

minute eating event, then Coverage is 80%. In cases where the predicted event starts before 

or ends after the actual event, Coverage can give artificially high results. However, we did 

not have any case where the predicted event exceeded the time-bounds of the actual eating 

episode.

The main difference between coverage and recall as metrics in our evaluation is, recall is 

computed directly on prediction values produced by Random Forest. While coverage is 

computed after applying the filtering steps on the prediction results as shown in figure 8

5.1 Validation on Semi-controlled lab dataset

To validate the performance of EarBit’s algorithm, we used leave-one-user-out cross 

validation. We used these validations to tune our only tunable parameter: size of the moving 

average window.

Figure 9 shows chewing recognition results for semi-controlled lab study as a function of the 

moving average window size. The results stabilize at 35 seconds mark. EarBit’s cross-

validation accuracy is 90.1%, F1 score is 90.9%, precision is 86.2%, and recall is 96.1%.

For the event-level performance, with a 35 seconds moving average window, EarBit 

captured all 15 eating events in the dataset, and falsely recognized one non-eating episode as 

eating. It achieved 89.6% coverage and the average delay in event recognition is 21.3 

second. Once the moving average size and the machine learning models were final, we 

evaluated its performance on the Outside-the-lab dataset.

5.2 Outside-the-lab Study

For the Outside-the-lab data, with a 35 seconds moving average window, EarBit detects 

chewing with an accuracy of 93% (F1 score = 80.1%, Precision = 81.2%, Recall = 79%). 

When converted into eating episodes, EarBit successfully recognized 15 out of 16 eating 

episodes, and it only falsely recognized 2 additional eating episodes. The average delay is 

65.4 seconds and the mean coverage is 72.2%. After reviewing the dataset we found that 

during the 2 falsely recognized events the participants were talking, and for the single miss-

classified eating event the participant was eating a frozen yogurt. Since our models was 

trained on chewing instances, this explains why events that don’t contain regular chewing 

such as eating ice cream or soup cannot be fully recognized.

As we discussed earlier, the filtering step was added to help reduce the number of false 

recognized eating events. To evaluate the effect of this filtering step, we also ran our analysis 

after excluding it from the pipeline. As expected, the number of false positives increased to 

10 for the semi-controlled lab dataset and 20 for outside-the-lab dataset.
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6 DISCUSSION

The overall results from the semi-controlled lab study and outside-the-lab study show that 

EarBit was successful in detecting eating with high accuracy outside the lab. EarBit was able 

to recognize accurately almost all eating events in both environments we tested it on. The 

sole falsely recognized eating event was eating frozen yogurt, which doesn’t contain the 

regular chewing activity that our model is trained on. The high event coverage values (89.6% 

in-the-lab and 72.2% outside-the-lab) indicate EarBit capability in automating the food 

journaling process with a precise logging of meals and snack duration’s. EarBit also requires 

about a minute to recognize an eating episode. This low delay values allows EarBit to be 

used in applications that require just-in-time interventions.

6.1 What it means for the end user?

The outside-the-lab study has 45 hours of recorded data. In this duration, EarBit had only 2 

falsely recognized eating events. If we assumed that a typical user sleeps for 8 hours a day, 

our dataset has approximately 3 days worth of daily activities. That means that EarBit 

generates 0.7 false positives per day. For a typical user who eats 3 to 6 means and snacks 

daily, the false positives do not pose a significant usability challenge. Although this 

extrapolation would not always be accurate, it provides a reasonable trend of the results.

By reviewing our outside-the-lab dataset, we found that the falsely recognized events are 

mostly due to talking activities. After visualizing the entire dataset, we found a total of 26 

talking events. EarBit has only classified 7.6% of them as eating. We believe the features set 

we used helped in correctly recognizing most of these events as non-eating, but using EarBit 

with a modified user interface can improve its precision by incorporating more data from the 

user. For example, as soon as EarBit detects an eating event it can prompt the user with a 

question ”Are you eating?”, if the user’s response was positive the system carries on with 

the food journaling process, but if it was negative the system can ask the user for a label ”So 

what are you doing?” and then utilize this instance to generate a better user adaptive model.

6.2 Study design

Eating detection in most laboratory settings lacks ecological validity. At the same time it is 

often hard to collect accurate data in unconstrained environments. Our study design aimed to 

solve both problems. Researchers equipped the Aware Home for recording and monitoring 

various eating scenarios. At the same time, the nature of a house facilitates normal 

interactions and eating behaviors. Thus, the researcher is able to control the environment 

while the participant behaves in a more natural manner. However, it was obvious to the 

participants that they were video recorded and the researchers were present as well. These 

factors meant that the setting wasn’t entirely natural. Moreover, the proportion of eating 

events was higher than an average day in a user’s life. We addressed some of these issues in 

the outside-the-lab study. As the participants used the system in their own environments, the 

proportion of eating events was more natural in this study, but they had a chest-mounted 

camera for groundtruth. Hence, the data collection was not entirely naturalistic here as well. 

We believe our fine-grained labeling of activities, and the protocol of training and evaluating 

the model on data from significantly different settings produced repeatable and generalizable 
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results. However, the quest for a true evaluation of eating activity in unconstrained 

environments remains unfinished.

We believe our study can serve as a good starting point for future studies on eating detection, 

and we hope other researchers use and improve our pipeline to detect activities - like eating - 

in unconstrained environments.

6.3 Self Reporting

Self-reported eating is the predominant method used to record eating in unconstrained 

environments. However, this method of reporting is known to be inaccurate. For example, in 

a laboratory setting [5] found that both people with and without eating disorders under-

reported eating.

During our study, we found multiple issues with self reporting. When comparing ground 

truth between video footage and self report obtained from collecting data in unconstrained 

environments, we found that some participants forgot to report eating episodes, reported best 

guess eating times, and/or reported best guess eating durations. One participant reported the 

following:

”1:00 A.M.: Snacking some during movie

19:32 snacking some more

(There was probably more but I don’t remember how long it went)”

Another participant said, ”I forgot I was wearing the device and got caught up in a 
conversation we were having over lunch, so I totally forgot to write down what time I started 
eating. I think I ate for about 30 minutes”. Participants in the study were provided 

monetarily incentives to report eating activity, yet on occasion they still forgot to report. 

From this discussion, it is probable that many studies involving self-reported eating suffer 

from inaccurate and incomplete data. Since our evaluation tests the system’s performance on 

how accurately it recognizes chewing instances and eating events, we had to obtain more 

reliable ground truth. To overcome this issue, we decided to equip participants with a 

wearable camera to record their activities outside the lab. This condition imposed some 

limitation on the session duration due to the short battery life of the camera. The camera also 

can impose some restriction on the user behavior, but we believe this is a reasonable 

compromise for obtaining a reliable ground truth in unconstrained environments.

6.4 Form Factors

During our pilot study, we realized that in some cases the behind-the-ear IMU was not 

placed properly and was floating. Almost half of the earpiece was above the pinna, instead 

of being behind it. This issue meant that the sensor was not coupled to the temporalis 

muscle. We solved this issue by demonstrating the correct way to put the device to our 

participants and giving clear instructions to make sure that the sensor is placed properly. We 

largely succeeded in making sure there were no placement issues and a review of the video 

footage showed that there were no visible placement issues with the sensors. However, when 

a device like EarBit is used in the real world, it would be important for the system to be 

resilient and adaptive to placement issues. In our future prototypes, we are experimenting 
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with embedding the sensor in eye-glasses and using firmer silicone mounts in case of 

earbuds.

7 CONCLUSION

In this paper, we introduced EarBit, a wearable system that detects chewing instances and 

eating episodes in unconstrained environments. We started by evaluating three sensing 

modalities: optical, inertial and acoustic, and ended up settling on a behind-the-ear inertial 

sensor.

To assess the performance of EarBit, we conducted studies both in a semi controlled lab 

environment and outside-the-lab studies. In the former environment, participants engaged in 

a variety of prescribed activities, including eating, talking, walking, etc. Data from this study 

was used to train a supervised machine learning model. Next, we tested the model against 

data collected from our outside-the-lab study, and the trained model was found to detect 

chewing at the frame level with an accuracy of 92% and an F1 score of 80%. At the event 

level evaluation in unconstrained environments, EarBit accurately recognized all but one 

recorded eating episodes, which ranged from 2 minute snacks to 30 minute meals. EarBit 

brings us one step closer to automatically monitoring food intake, which can ultimately aid 

in preventing and controlling many diet-related diseases.
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Fig. 1. 
EarBit’s data collection prototype with multiple sensors. Our semi-controlled and Outside-

the-Lab evaluations show that the Behind-the-Ear IMU is enough to achieve usable 

performance. We envision such a sensor to be part of future eyeglasses or augmented reality 

head-mounted displays.
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Fig. 2. 
Outside-the-lab study configuration: a) A user wearing the EarBit system and GoPro 

camera. b) A picture from the GoPro camera of the user working at a desk. c) A picture from 

the GoPro camera of the user eating with a pair of chopsticks.
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Fig. 3. 
An example of annotations for eating activity. We annotated our video data at a 1-second 

resolution. In this 600-second example of a user having a meal, we capture all minute 

transitions and capture various 2-second intervals where the user stopped chewing. Mixed 

activities would have overlapping annotations as indicated in the example of walking and 

talking. For all the instances when the user is not moving a stationary label is also added.

BEDRI et al. Page 24

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2018 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Example data from the y-axis of the behind-the-ear gyroscope. The dots indicate local 

maxima with high energy in the signal. As compared to talking, the peaks for eating are 

more periodic and ”spiky”.
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Fig. 5. 
Flowchart for initial evaluation of the multi-sensor setup
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Fig. 6. 
Comparison between sensing modalities. E = behind-the-ear IMU, P = outer-ear proximity 

sensor, M = neck microphone. The back IMU is used in all condition to detect if the user 

was walking. The performance of behind-the-ear IMU (E) was most consistent for all three 

metrics. It was also considered most comfortable to wear by the users.
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Fig. 7. 
Flowchart for EarBit algorithm
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Fig. 8. 
An example of conversion of confidence values from Random Forests to frame-level results 

(chewing) and then to event-level predictions (eating episodes).
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Fig. 9. 
Chewing recognition results for semi-controlled lab
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