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Abstract

We consider the recovery of a continuous domain piecewise constant image from its non-uniform 

Fourier samples using a convex matrix completion algorithm. We assume the discontinuities/edges 

of the image are localized to the zero level-set of a bandlimited function. This assumption induces 

linear dependencies between the Fourier coefficients of the image, which results in a two-fold 

block Toeplitz matrix constructed from the Fourier coefficients being low-rank. The proposed 

algorithm reformulates the recovery of the unknown Fourier coefficients as a structured low-rank 

matrix completion problem, where the nuclear norm of the matrix is minimized subject to 

structure and data constraints. We show that exact recovery is possible with high probability when 

the edge set of the image satisfies an incoherency property. We also show that the incoherency 

property is dependent on the geometry of the edge set curve, implying higher sampling burden for 

smaller curves. This paper generalizes recent work on the super-resolution recovery of isolated 

Diracs or signals with finite rate of innovation to the recovery of piecewise constant images.

Index Terms

Off-the-Grid Image Recovery; Structured Low-Rank Matrix Completion; Finite Rate of Innovation

I. Introduction

The direct recovery of continuous domain signals by convex optimization is emerging as a 

powerful alternative to traditional discrete domain compressed sensing [1]–[3]. The ability 

of these continuous domain “off-the-grid” schemes to minimize discretization errors makes 

them attractive in practical applications, where only the low-pass measurements of the signal 

are available. The history of such continuous domain signal recovery algorithms dates back 

to Prony [4], where the recovery of a linear combination of exponentials from uniform 

samples is considered. Prony-like algorithms recover the signal by estimating an annihilating 

polynomial whose zeros correspond to the frequencies of the exponentials. Work by Liang et 
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al. [5], [6] and the finite rate of innovation (FRI) framework [7] extended Prony-like 

methods to recover more general signals that reduce to a sparse linear combination of Dirac 

delta functions under an appropriate transformation (e.g., differential operators, 

convolution). Recently, several authors have further extended FRI methods to recover such 

signals from their non-uniform Fourier samples [3], [8]– [11] by exploiting the low-rank 

structure of an enhanced matrix built from Fourier data (e.g., a Hankel matrix in 1-D). 

Recovery guarantees exists for certain classes of these signals when the singularities are 

isolated and well-separated [2], [3], [12].

The signal models discussed above have limited flexibility in exploiting the extensive 

additional structure present in multi-dimensional imaging problems. In particular, the edges 

in multidimensional images are connected and can be modeled as smooth curves or surfaces. 

While discrete image representations to capture this structure have been the subject 

extensive research [13], [14], similar continuous domain representations have attracted less 

attention. We recently introduced a novel framework recover piecewise polynomial images, 

whose edges are localized to smooth curves, from their uniform [15], [16] and non-uniform 

[11] Fourier samples; our framework generalizes a recent extension of FRI models to curves 

[17]. We assume that the partial derivatives of the signal vanish outside the zero level-set of 

a bandlimited function, which is only true for piecewise smooth signals. This relation 

translates to a linear system of convolution equations involving the uniform Fourier samples 

of the partial derivatives, which can be compactly represented as the multiplication of a 

specific structured matrix with the Fourier coefficients of the bandlimited function. We have 

introduced theoretical guarantees for the recovery of such images from uniform samples 

[15], [16]. Our earlier work has shown that the structured matrix built from the Fourier 

coefficients of piecewise constant images is low-rank [11], [16], which we used to recover 

the image from its non-uniform Fourier samples with good performance in practical 

applications. We have also introduced an computationally efficient algorithm termed as 

GIRAF, which works on the original signal samples rather than the structured high-

dimensional matrix [18], [19]; the computational complexity of this algorithm is comparable 

to discrete total variation regularization, which makes this scheme readily applicable to 

large-scale imaging problems, such as undersampled dynamic magnetic resonance image 

reconstruction [20].

The main focus of the present paper is to introduce theoretical guarantees on the recovery of 

continuous domain piecewise constant images from non-uniform Fourier samples via a 

convex structured low-rank matrix completion algorithm. Our main result shows number of 

non-uniform samples to recovery the image is proportional to the complexity of the edge set, 

as measured by the bandwidth of the edge set function, and an incoherence measure related 

to the edge set geometry. We additionally show that the recovery is robust to noise and 

model-mismatch.

The proof of the main result builds off of [3], which proved similar recovery guarantees for 

the recovery of multi dimensional isolated Diracs from non-uniform Fourier samples by 

minimizing the nuclear norm of an “enhanced” multi-level Hankel matrix. This work 

showed that the number of samples necessary for recovery depends the number of Diracs 

and on an incoherence measure of the signal, that can be defined solely in terms of the 
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relative locations of the Diracs. However, the theory in [3] relies heavily on an explicit 

factorization of the enhanced matrix (e.g., Vandermonde factorization of a Hankel matrix in 

the 1-D case), which is only available when the number of singularities are isolated and 

finite. Since the singularities in the proposed class of piecewise constant images (i.e., the 

image edges) are not isolated nor finite, the recovery guarantees in [3] cannot be directly 

extended to our setting. Instead, to achieve our result, we give a new characterization of the 

row and column spaces of the structured matrix arising in our setting. We show this new 

characterization allows us to derive an incoherence measure based solely on geometric 

properties of the edge set. In particular, we derive an upper bound for the incoherence 

measure that is related to the size of edge set curve. The results show that high sampling 

burden is associated with the estimation of images with smaller piecewise constant regions, 

which is consistent with intuition.

We note that the signal models in [1]–[3] do not include the class of piecewise constant 

images considered in this work. In particular, all of the above models assume the 

discontinuities to be finite in number and well separated, unlike in our setting. Recently, [12] 

adapted the results in [3] to introduce recovery guarantees for Fourier interpolation of a 

variety of finite-rate-of-innovation signal models [7], including piecewise constant functions. 

However, these results are limited to the 1-D setting and share the assumption than the 

discontinuities/innovations of the signal are finite and isolated. Furthermore, the structured 

matrix lifting considered in this work is different than those considered in [3] and [12]. 

Specifically, the structured matrix lifting in this work consists of two vertically concatenated 

multi-level Toeplitz matrices (i.e., block Toeplitz with Toeplitz blocks), whose entries are 

built from the weighted Fourier coefficients of the images. This is substantially different 

from the structured matrix liftings considered in [3] (unweighted, one block, single block 

multilevel Hankel) and [12] (weighted, one block, single-level Hankel). Finally, we note that 

a preliminary version of the results presented in this has been published previously in the 

conference paper [21] without proofs. The present work includes considerably more details 

and proofs, and major improvements to the main theorem.

A. Notation

Bold lower-case letters x are used to indicate vector quantities, bold upper-case X to denote 

matrices, and calligraphic script  for general linear operators. We typically reserve lower-

case greek letters μ, γ, etc. for trigonometric polynomials (3) and upper-case greek letters 

Λ,Ω, etc. for their coefficient index sets, i.e. finite subsets of the integer lattice ℤ2, with 

cardinality denoted by |Λ|. We write Λ+Ω for the dilation of the index set Ω by Λ, i.e. the 

Minkowski sum {k + ℓ: k ∈ Λ, ℓ ∈ Ω}, and write 2Λ to mean Λ + Λ, 3Λ = 2Λ + Λ, etc. We 

also denote the contraction of Ω by Λ by Ω:Λ = {ℓ ∈ Ω: ℓ − k ∈ Ω for all k ∈ Λ}.

II. Background

A. 2-D Piecewise Constant Images with Bandlimited Edges

In this work we consider a continuous domain piecewise constant model for images,
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f (r) = ∑
i = 1

N
ai 1Ui

(r), for all r = (x, y) ∈ [0, 1]2, (1)

where ai ∈ ℂ, 1U denotes the characteristic function of the set U, and each Ui ⊂ [0, 1]2 is a 

simply connected regions with piecewise smooth boundaries ∂Ui. We study the recovery of 

such an image from a sampling of its Fourier coefficients f̂ specified by

f [k] = ∫
[0, 1]2

f (r)e− j2πk · r; k ∈ Ω ⊂ ℤ2 . (2)

Following [16], we further assume that the edge set of the piecewise constant image, 

specified by E := ∪i∂Ui, coincides with the zero set of a 2-D bandlimited function:

E = {r ∈ [0, 1]2: μ(r) = 0}, with μ(r) = ∑
k ∈ Λ

c[k] e j2πk · r, (3)

where the coefficients c[k] ∈ ℂ, and Λ is a finite subset of ℤ2. We call any function μ in the 

form (3) a trigonometric polynomial, and we say μ is bandlimited to Λ, i.e., the Fourier 

coefficients μ̂ are supported within Λ. For short, we will write {μ = 0} for the zero set of μ 
considered as a subset of [0, 1]2.

Define the degree of a trigonometric polynomial μ, denoted by deg(μ) = (K,L) to be the 

linear dimensions of the smallest rectangle containing the support set {k : μ̂ [k] ≠ 0}. In [16] 

we proved that for every curve E given by the zero set of a trigonometric polynomial, there 

exists a unique minimal degree trigonometric polynomial1 μ0 such that E = {μ0 = 0} and if μ 
is any other trigonometric polynomial with {μ0 = 0} ⊂ {μ = 0}, then deg(μ0) ≤ deg(μ) 

entrywise. By extension, we define the degree of a curve E to be equal to the degree of of its 

minimial degree polynomial μ0. We also say the curve E is bandlimited to Λ0 ⊂ ℤ2, where 

Λ0 is the minimal rectangular index set containing the support of μ̂. Intuitively, the degree/

bandwidth of a curve gives a quantitative measure of its complexity. For example, in [16] we 

show the number of connected components of a curve is bounded in terms of its degree.

B. Recovery from uniform Fourier samples

We have shown in [16] that when μ is any trigonometric polynomial that vanishes on the 

edge set of the piecewise constant image f, the gradient ∇f = (∂xf, ∂yf) satisfies the property

μ∇ f = 0, (4)

1More precisely, μ0 is unique up to multiplication by a phase factor ej2πk·r for some k ∈ ℤ2.
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where equality in (4) is understood in the sense of distributions (see, e.g., [22]). The spatial 

domain annihilation relation (4) translates directly to the following convolution annihilation 

relation in Fourier domain:

∑
k ∈ Λ

∂ f [ℓ − k] μ[k] = 0, ∀ℓ ∈ ℤ2 . (5)

Here ∂ f [k] = j2π(kx f [k], ky f [k]) for k = (kx, ky). Note the equations in (5) are linear with 

respect to the coefficients μ̂.

Suppose we have access to samples of the Fourier coefficients f̂ on a finite rectangular grid Γ 
⊂ ℤ2, and suppose μ is bandlimited to Λ1 ⊂ Γ. Then we can build the system of equations in 

(5) for all ℓ belonging to the index set Λ2 ⊂ Γ, where Λ2 is the set of all integer shifts of Λ1 

contained in Γ. In this case (5) can be compactly represented in matrix form as

𝒯( f )h =
𝒯x( f )

𝒯y( f )
h = 0, (6)

where x(f̂), y(f̂) ∈ ℂ|Λ2|×|Λ1| are matrices corresponding to the discrete 2-D convolution 

with the arrays kx f̂[kx, ky] and kx f̂[kx, ky] for (kx, ky) ∈ Γ, respectively (after omitting the 

inconsequential factor j2π). Here we use h to denote the vectorized version of the filter (μ̂ 

[k] : k ∈ Λ1), where the index set Λ1 is called the filter support. The matrices x(f̂) and 

y(f̂) have a block Toeplitz with Toeplitz blocks structure. See Figure 2 for an illustration of 

the construction of  (f̂).

Equation (6) shows that  (f̂) is rank deficient, since it has the non-trivial vector h in its 

nullspace. In addition, when the filter support Λ1 defining  (f̂) is sufficiently big, we can 

also show  (f̂) is low-rank. This is because if μ0 is the minimal degree polynomial for the 

edge set, then any multiple of μ = γ · μ0 bandlimited to Λ1 will satisfy the annihilation 

equation (4). In Fourier domain, this means the vector

h = ((μ0 ∗ γ )[k]: k ∈ Λ1) (7)

is in the nullspace of  (f̂). Hence if the filter support Λ1 is larger than support Λ0 of μ0, 

(f̂) has a large nullspace and is low-rank. The following result from [16] gives an exact 

characterization of the rank of  (f̂), which will be important for this work:

Theorem 1—[16] Suppose f is a piecewise constant image (1) whose edge set E = {μ0 = 0} 

is the zero set of a trigonometric polynomial μ0 bandlimited to Λ0. Let  (f̂) be built with 
filter size Λ1 ⊇ Λ0, then
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rank 𝒯( f ) ≤ ∣ Λ1 ∣ − ∣ Λ1:Λ0 ∣ (8)

where |Λ1| is the number of indices in Λ1 and |Λ1: Λ0| is the number of integer shifts of Λ0 

contained in Λ1. Moreover, equality holds in (8) if Γ ⊇ 2Λ1+Λ0 and if the edge set does not 
contain any singular points. In this case, the nullspace of  (f̂) consists of all vectors in the 
form (7).

Note that R := |Λ1| − |Λ1: Λ0| is a measure of the bandwidth of μ0 and hence is indicative of 

the complexity of the edge set curve E = {μ0 = 0}. In the remainder of this work we assume 

the conditions in Theorem 1 that guarantee the equality rank  (f̂) = R holds, in particular Γ 
⊇ 2Λ1+Λ0.

If we take Λ1 = Λ0, the above result shows Fourier samples of f̂ in Γ ⊇ 3Λ0 is sufficient for 

the recovery of the minimal degree polynomial μ0, since in this case μ̂0 can be identified as 

the unique non-trivial nullspace vector of  (f̂). The following theorem states that once μ0 is 

available, f is the unique solution to the annihilation equations (4) and (5):

Theorem 2—[16]. Suppose f is a piecewise constant image (1) whose edge set E = {μ0 = 

0} is the zero set of a trigonometric polynomial μ0 bandlimited to Λ0. Suppose the Fourier 
sampling set Γ ⊇ Λ0. If g ∈ L1([0, 1]2) satisfies

μ0∇g = 0 subject to g[k] = f [k] for all k ∈ Γ, (9)

then g = f almost everywhere.

In principle, this result allows us to solve for the amplitudes of regions of the piecewise 

constant function f by plugging in the known μ0 into the equation (9) and solving a linear 

system, similar to Prony’s method. However, for complicated piecewise constant images 

with many regions, it may be more practical to use the approximations introduced in [16].

III. Recovery from non-uniform Fourier samples

The theory presented in Section I shows that the exact recovery of a continuous domain 

piecewise constant image with a bandlimited edge set is possible when we collect Fourier 

samples of the image on a sufficiently large uniform grid in Fourier domain. However, the 

recovery procedure breaks down when we have non-uniform or missing samples, which is 

often the case in practical settings, e.g., compressed sensing MRI [23]. Therefore, we 

propose and analyze a method to interpolate the missing samples to a uniform grid in 

Fourier domain, which guarantees full recovery of the image in spatial domain.

Recall that Theorem 1 says that the structured matrix  (f̂) built from the Fourier 

coefficients f̂ [k], k ∈ Γ, where Γ ⊂ ℤ2 is a uniform rectangular grid, is known to be low-

rank precisely when f is a piecewise constant image with a bandlimited edge set. Hence we 
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propose to recover f̂ [k], k ∈ Γ from its samples at non-uniform locations Ω ⊂ Γ as the 

solution to the convex matrix completion problem: min

min
g[k], k ∈ Γ

‖𝒯(g)‖∗ subject to g[k] = f [k] for all k ∈ Ω (10)

where ||·||* denotes the nuclear norm, i.e., the sum of the singular values of a matrix, which is 

the convex relation of the rank functional. Note that (10) is different than the standard low-

rank matrix completion setting studied in [24], [25] in that the low-rank matrix  (f̂) is 

structured and parameterized by the coefficient vector f̂. Similar structured low-rank matrix 

completion schemes have been proposed for the recovery of signals from non-uniform 

Fourier samples [3], [12] and used with empirical success in MRI applications [10], [11], 

[26]. The main focus of this paper is to determine the sufficient number of samples that will 

ensure exact recovery of the Fourier coefficients of f on the reconstruction grid Γ with high 

probability.

A. Role of incoherence

Several authors have shown that the sufficient number of samples for low-rank matrix 

recovery by nuclear norm minimization to succeed is dependent on the incoherence of the 

sampling basis with respect to the matrix to be to be recovered [3], [25]. Similarly, our 

results depend on an incoherence measure derived from the structure of the matrix  (f̂) and 

properties of the piecewise constant image f. In particular, define ℘U and ℘V to be the 

orthogonal projections onto the column space and row space of  (f̂), respectively, i.e., if 

(f̂) = UΣV* is the rank-R singular value decomposition then ℘UX = UU*X, ℘VX = XVV*. In 

Appendix B, we show that the structured matrix  (f̂) can be expanded using orthonormal 

basis of matrices Ak such that

𝒯( f ) = ∑
k ∈ Γ/{0}

f [k]w[k]Ak (11)

where w[k], k ∈ Γ/{0} are a set of positive weights that do not depend on f̂. Similar to 

results in [3], [12], [25], we prove that nuclear norm minimization (10) recovers the exact 

low-rank solution with high probability provided we can uniformly bound the norms of the 

projections of the sampling basis matrices Ak onto the row and column spaces of  (f̂):

Proposition 3—Consider  (f̂) of rank R corresponding to a piecewise constant function f 
whose edge set coincides with the zero set of μ0, let ρ be the incoherency measure associated 
with μ0 to be defined in the sequel, and set cs = |Γ|/|Λ1|. Then we have

max
k ∈ Γ

‖𝒫UAk‖
F
2 ≤

ρ R cs
∣ Γ ∣ , (12)
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max
k ∈ Γ

‖𝒫V Ak‖
F
2 ≤

ρ R cs
∣ Γ ∣ (13)

The proof in Section VIII-F relies on the row and column spaces of  (f̂) derived in Lemma 

8 and Lemma 6 in the next section. These results will be used in the derivation of the main 

theorem in Section IX.

B. Main Results

We now present our main results, which determine the sufficient number of random Fourier 

samples for the convex structured low-rank matrix completion program (10) to succeed with 

high probability. Our first theorem addresses the case of recovery from noiseless Fourier 

samples:

Theorem 4—Let f be a continuous domain piecewise constant image (1), whose edge-set is 
described by the zero-set of the trigonometric polynomial μ0 bandlimited to Λ0 (see (3)). Let 
Ω ⊂ Γ be an index set drawn uniformly at random within Γ. Then there exists a universal 
constant c > 0 such that the solution to (10) is f̂ with probability exceeding 1 − |Γ|−2, 
provided

∣ Ω ∣ > c ρ cs R log4 ∣ Γ ∣ , (14)

where R = |Λ1| − |Λ1 : Λ0| = rank  (f̂), cs = |Γ|/|Λ1|, c is a universal constant, and ρ ≥ 1 is 
an incoherence measure depending on the geometry of the edge-set, to be defined in the 
sequel.

To better understand the dependence of the bound in (14) on the filter size Λ1 and the edge 

set bandwidth Λ0, assume for simplicity that Λ1 is some dilation of Λ0, that is, Λ1 = αΛ0, 

where α > 1 is an integer. In this case, the factor cs R in (14) simplifies to

∣ Λ1 ∣ − ∣ Λ1:Λ0 ∣
∣ Λ1 ∣ ∣ Γ ∣ ≤ α2 − (α − 1)2

α2 ∣ Γ ∣ ≤ 2 ∣ Γ ∣
α . (15)

Therefore, assuming the other constants in (14) are fixed, the number of measurements 

sufficient for exact recovery is proportional to the reciprocal of the dilation factor α. This 

suggests taking the filter size Λ1 to be as large as allowed by Theorem 4. Namely, Λ1 should 

satisfy 2Λ1 + Λ0 = Γ, i.e., the side-lengths of filter support Λ1 should be roughly half those 

of the reconstruction grid Γ. Fixing the filter support Λ1 to obey this bound, then Γ = (2α 
+ 1)Λ0, and so |Γ| ≤ (2α + 1)2|Λ0|. Inserting this bound into (15) gives
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csR = O (α ∣ Λ0 ∣ ) . (16)

Combined with (14), this shows that the number of measurements sufficient for exact 

recovery is on the order of |Λ0|, up to incoherence and log factors.

The proof of Theorem 4, detailed in Appendix B, is in line with the approach of [3]. In 

particular, we prove the result by constructing an approximate dual certificate using the well-

known “golfing scheme” of [25]. The main differences between in the proof of the above 

result and that in [3] results from the differences in the matrix structure and hence the 

characterization of the incoherency between the row and column subspaces of  (f̂) with the 

sampling basis. In particular, the matrix  (f̂) we consider is obtained by stacking two block 

Toeplitz with Toeplitz blocks (BTTB) matrices whose entries are the weighted Fourier 

coefficients of f, as opposed to a single unweighted BTTB matrix in [3]. The approach in [3] 

relies on an explicit low-rank factorization of a BTTB matrix in terms of Vandermonde-like 

matrices2. Since this factorization is not available in our setting, we use algebraic properties 

of trigonometric polynomials to give a new characterization of the row and column spaces of 

the matrix. In particular, we show in Section IV that similar Vandermonde-like basis 

matrices exist for the row and column space of the lifted matrix, and use these to derive a 

related incoherence measure that satisfies the bounds in Prop. 3.

C. Recovery in the presence of noise and model-mismatch

We now generalize (66) to the setting where we have noisy or corrupted Fourier samples

f n[k] = f [k] + η[k], k ∈ Ω, (17)

where η[k] ∈ ℂ is a vector of noise. In this case, we pose recovery as

min
g

‖𝒯(g)‖∗ subject to‖𝒫Ω( f n − g)‖2 ≤ δ . (18)

where δ > 0 is an estimate of the ℓ2-norm of the error ||η||, and ℘Ω denotes projection onto Ω. 

We make no assumptions on the statistics of the noise η. In particular, η can represent errors 

due to model-mismatch, such as when the image is not perfectly piecewise constant, or when 

the edge set of the image does not coincide perfectly with the zero level-set of a bandlimited 

function.

2The structured matrices considered in [3] are block Hankel with Hankel block matrices (BHHB), but this difference is purely 
cosmetic: every BTTB matrix can be re-expressed as BHHB after a permutation of its rows and columns. In particular, the 
Vandermonde-like factorization of BHHB matrices in [3] carries over to BTTB matrices.
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The following theorem shows that when the deviation of f̂n from f̂ is small, the modified 

recovery program (18) recovers a solution that is close in norm to f̂ under the same sampling 

conditions as Theorem 4.

Theorem 5—Let f be specified by (1), whose edge-set is described by the zero-set of the 
trigonometric polynomial μ0 bandlimited to Λ0 with associated incoherence measure ρ. Let 
Ω ⊂ Γ be an index set drawn uniformly at random within Γ such that |Ω| satisfies the bound 
(14) in Theorem 4. If the measurements f̂n satisfy ||℘Ω(f̂n − f̂)||2 ≤ δ, then the solution ĝ to 
(18) satisfies

‖𝒯( f ) − 𝒯(g)‖F ≤ 5 ∣ Γ ∣2δ . (19)

with probability exceeding 1 − |Γ|−2.

See Section IV in the Supplementary Materials for proof. The bound (19) allows us to 

quantify the effect of model-mismatch on recovery. In particular, suppose the image fn 

represents a perturbation from an ideal piecewise constant image f such that their difference 

in L2-norm is δ-small:

‖ f n − f ‖
L2
2 = ∫

[0, 1]2
∣ f n(r) − f (r) ∣2dr

1
2 ≤ δ . (20)

Then by Parseval’s theorem, the measurements of f̂n satisfy ||℘Ω(f̂n − f̂)||2 ≤ δ, hence 

Theorem 5 applies. From (19) we obtain the bound ||  (f̂) −  (ĝ)||F ≤ 5|Γ|2||fn − f||L2. This 

shows that if the image fn is close to the ideal piecewise constant image f in spatial domain 

L2-norm, then the matrix  (ĝ) we recover using (18) will be close in norm to  (f̂) with 

high probability.

IV. Row and column spaces of  (f̂) and incoherence

In this section we define an incoherence measure ρ that satisfies the desired bounds in Prop. 

3. We show that the incoherence measure depends only on the geometry of the edge set of 

the image. The incoherence measure is derived from a new characterization of the row and 

column spaces of the matrix  (f̂) in terms of Vandermonde-like basis matrices.

A. Row and column spaces of  (f̂)

Our first lemma gives a basis for the row space of  (f̂):

Lemma 6—A basis of the row space of  (f̂) is given by the columns of the |Λ1| × R 
Vandermonde-like matrix
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Erow(P): = 1
∣ Λ1 ∣

e
j2πk1 · r1 … e

j2πk1 · rR

⋮ ⋮

e
j2πk ∣ Λ1 ∣ · r1

… e
j2πk ∣ Λ1 ∣ · rR

(21)

where {k1, …, k|Λ1|} is a linear indexing of elements in Λ1, and P = {r1, …, rR} is a set of R 
= |Λ1|−|Λ1 : Λ0| distinct points on the edge set curve {μ0 = 0} chosen such that the columns 
of Erow are linearly independent.

The careful reader will have noticed that Lemma 6 takes for granted the existence of a set of 

points P = {r1, ...., rR} ⊂ {μ0 = 0} such that the columns of Erow(P) is linearly independent. 

Call such a set P a set of admissible nodes for the curve {μ0 = 0}. The following result 

shows that sets of admissible nodes always exist and are easy to construct:

Lemma 7—Let μ0 be bandlimited to Λ0. Any set of M ≥ R + |Λ0| distinct points on the 
curve {μ0 = 0} contains a subset of R points that are a set of admissible nodes.

The next lemma shows that we can characterize the column space of  (f̂) in a similar way 

as the row space:

Lemma 8—A basis of the column space of  (f̂) is given by the columns of the 2|Λ2| × R 
weighted Vandermonde-like matrix:

Ecol(P) = 1
∣ Λ2 ∣

w1, x
‖w1‖e

j2πk1 · r1 …
wR, x
‖wR‖e

j2πk1 · rR

⋮ ⋮
w1, x
‖w1‖e

j2πk ∣ Λ2 ∣ · r1
…

wR, x
‖wR‖e

j2πk ∣ Λ2 ∣ · rR

w1, y
‖w1‖e

j2πk1 · r1 …
wR, y
‖wR‖e

j2πk1 · rR

⋮ ⋮
w1, y
‖w1‖e

j2πk ∣ Λ2 ∣ · r1
…

wR, y
‖wR‖e

j2πk ∣ Λ2 ∣ · rR

, (22)

where where {k1, …, k|Λ2|} is a linear indexing of elements in Λ2 and P = {r1, ...., rR} is a 
set of admissible nodes for the curve {μ0 = 0}. The weight vectors wi = (wi,x, wi,y), are 
described by the formula (52) in Appendix VIII, and depend only on the edge set {μ0 = 0}, 
the nodes P, and the filter support Λ1.

See Section VIII-C for the proofs of Lemmas 6 and 7, and Section VIII-E for the proof of 

Lemma 8.
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B. Incoherence measure

We now show how to define an incoherence measure ρ that satisfies the desired bounds in 

Prop. 3. Consider the Gram matrix G(P) = [Erow(P)]*Erow(P), where P is any set of R points 

r1, …, rR on the edge set curve {μ = 0}. It is easy to see from the definition (21) that the 

entries of G(P) are specified by

(G(P))i, j = 1
∣ Λ1 ∣DΛ1

(ri − r j), 1 ≤ i, j ≤ R, (23)

where DΛ1(r) := Σk∈Λ1ej2πk·r is the Dirichlet kernel supported on Λ1. Note that G(P) has 

ones along the diagonal, and the magnitude of the off-diagonal entries is dictated by the 

distances |ri − rj | and the filter support Λ1. We now define the incoherence measure ρ 
associated with the edge set E = {μ0 = 0} in terms of G(P).

Definition 9—Suppose the edge set curve E = {μ0 = 0} has bandwidth Λ0 (see (3)), and set 
R = |Λ1| − |Λ1: Λ0|. Define the incoherence measure ρ by

ρ = min
P ⊂ {μ0 = 0}

∣ P ∣ = R

1
λmin[G(P)] , (24)

where λmin[G(P)] is the minimum eigenvalue of G(P).

Put in words, among all possible arrangements of R points along the edge-set {μ0 = 0}, we 

seek the arrangement such that the minimum eigenvalue G(P) is as large as possible. 

Intuitively, the optimal arrangement will maximize the minimum separation distance among 

the R points, and ρ can be thought of as a measure of this geometric property. In particular, 

edge set curves that enclose a small area, and hence require the points P to be closely spaced 

along the curve, will result in a large value of ρ. According to Theorem 4, the measurement 

burden will be high for such curves.

Note that curves corresponding to a particular bandwidth can come in different sizes. 

Specifically, for a fixed μ0 with bandwidth Λ0 consider the family of curves {μ0 = α}, where 

α is a scalar. One can change α to obtain multiple curves with exactly the same bandwidth, 

each of which correspond to a different levelset of μ0. These level-sets will have different 

incoherence measures, depending on how large or small the level-set curves are. This shows 

the incoherence of an edge set captures something besides its bandwidth. See Figure 3 for an 

illustration.

We can give incoherency measure of an edge set a more precise geometric interpretation 

based on the minimum separation distance of a set of admissible nodes. We generalize a 

bound on the condition number of Vandermonde matrices derived in [27] to the case of the 
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Vandermonde-like matrix (21), and use this to derive a bound for the incoherence parameter 

ρ.

Theorem 10—Assume that the points P = {(xi, yi)}i = 1
R  belonging to the curve {μ0 = 0} 

satisfy |xi − xj | > Δ and |yi − yj | > Δ for all i ≠ j. Assume the filter support Λ1 ⊂ ℤ2 is a 
square region symmetric around the origin of size ∣ Λ1 ∣ × ∣ Λ1 ∣. Then

ρ ≤ 1 − 1
∣ Λ1 ∣ Δ

−2
, (25)

where ρ is the incoherence parameter (24) associated with the curve {μ0 = 0}.

See Section I of the Supplementary Materials for the proof. The bound in (25) shows that the 

incoherence is close to one (i.e., is as small as possible) when Δ ≫ 1/ ∣ Λ1 ∣. Since Δ is the 

spacing between each pair of points on the curve, to achieve a larger Δ spacing, and hence a 

smaller ρ, requires a larger curve. This suggests that fewer measurements are required to 

recover a larger curve, which is consistent with the findings in the isolated Dirac setting 

[27], [28].

V. Numerical Experiments

A. Algorithms

For small to moderate problem sizes the nuclear norm minimization problem (10) can be 

solved efficiently with the alternating directions method of multipliers (ADMM) algorithm, 

which results in a modification of the singular value thresholding (SVT) algorithm [29]. This 

approach has been proposed for related structured low-rank matrix completion problems in 

several works, e.g., [3], [11], [12], [30]. We adopt this approach here as well for our small-

scale numerical experiments. A detailed implementation of this algorithm can be found in, 

e.g., [28]. However, we note that for large scale problems, such as those encountered in 

realistic imaging applications, more efficient approaches need to be adopted, because often 

in these cases the lifted matrix is too large to be held in memory. A fast algorithm for 

solving an approximation to (10) for large-scale problems is given in [19].

B. Phase transitions

In Fig. 4, we study the probability of exact recovery under different assumptions on the filter 

size and edge set of the image. For these experiments the reconstruction grid Γ was of size 

65 × 65. We generated synthetic random piecewise constant functions with known edge set 

bandwidth (see Fig. 3(c)), and attempted to recover their Fourier coefficients in Γ from 

random samples in Ω at the specified undersampling factor. For each set of parameters we 

ran 10 random trials. We count the recovery as “exact” if the recovered coefficients f ̂ 

satisfied ||f̂ − f0||/||f̂0|| < 10−3, where f̂0 is the ground truth. The exact recovery rate was then 

obtained by averaging over the 10 trials.
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First, in Fig. 4(a), we studied the effect of changing the filter size Λ1 on the recovery while 

keeping other parameters constant. We fixed the edge-set bandwidth to |Λ0| = 9×9 and varied 

the filter size as |Λ1| = (2K +1)×(2K +1) for K = 1, …, 30. We call K the filter bandwidth. 

Note that Theorem 4 has restrictions on how large Λ1 can be. The maximum filter 

bandwidth for which Theorem 4 holds in this case was K = 15 (red line in Figure 4(a)), 

however we extended the filter size to observe the behavior of the algorithm outside of this 

regime. As predicted by Theorem 4, we find that the optimal performance is obtained when 

Λ1 is the largest as allowed by Theorem 4 (roughly half the size of Γ in each dimension).

Next, in Fig. 4(b), we study the recovery as a function of the bandwidth of the edge-set of 

the image. The filter bandwidth was fixed at K = 15, and we varied the edge-set bandwidth 

as |Λ0| = (2K0 +1)×(2K0 +1). The phase transition shows dependence |Ω| = O(|Λ0|) as 

predicted by Theorem 4.

C. Comparison with TV minimization on real MRI data

We also compare the proposed Fourier domain interpolation scheme against standard 

discrete TV minimization in spatial domain:

min
u ∈ ℂN

TV(u) subject to PΩ(Fu) = PΩ(Fu0) . (26)

Here u ∈ ℂN with N = NxNy is a 2-D array representing a discrete Nx × Ny image, u0 ∈ ℂN 

is the image to be recovered, F ∈ ℂN×N denotes the unitary 2-D discrete Fourier transform 

(DFT) matrix acting on N1 × N2 arrays, PΩ is projection onto the index of sampling 

locations Ω ⊂ [Nx]×[Ny], and TV (·) denotes the (isotropic) total variation semi-norm:

TV(u) = ∑
i = 1

N
( ∣ (∂1u)

i
∣2 + ∣ (∂2u)

i
∣2)

1
2 (27)

where ∂1 and ∂2 are finite difference operators in the horizontal and vertical directions, 

respectively. The problem (26) has been studied extensively [31]–[36] as a model for 

undersampled MRI reconstruction and other inverse problems in imaging.

In Fig. 5 we perform an experiment comparing against TV minimization and the proposed 

approach on real MRI data. For this experiment we used a fully-sampled four-coil single-

slice acquisition consisting of 256 × 256 Cartesian k-space samples, which was compressed 

to a single virtual coil using an SVD-based technique [37]. The data in the single virtual coil 

was observed to have smoothly varying complex phase in image domain. To compensate for 

this source of model-mismatch, we further pre-preprocessed the data by removing the 

complex phase in image domain. We note that this preprocessing step is unrealistic for a true 

MRI experiment. However, the optimization problem (10) could be modified to incorporate 

an estimate of the smoothly varying phase in the measurement model; we omit this step for 

simplicity. Finally, we retrospectively undersampled the pre-processed virtual single coil 

data, taking 50% uniform random samples. We find that the proposed structured low-rank 
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recovery shows significant improvement recovery error over standard total variation as 

measured by SNR = 20log10(||f ̂||/||f̂* − f̂||), where f̂* is the recovered data and f̂ is the ground 

truth. The error images indicate the proposed method more faithfully recovers the true edges 

of the image.

VI. Discussion

Discrete domain total-variation minimization has played a central role in compressed 

sensing from its inception [31], [32], which models the image to be recovered as 

(approximately) piecewise constant. Since the present work can be thought of as an 

extension of compressed sensing type guarantees to the continuous domain setting, it is 

fruitful to explore the connections between our continuous domain model and discrete 

domain total variation.

At first glance, the structured low-rank matrix completion problem (10) may seem far 

removed from the TV-minimization problem (26). But, in fact, one can show TV-

minimization (26) is equivalent to nuclear norm minimization of a related structured matrix 

lifting in Fourier domain. Specifically, (26) is equivalent to

min
v

‖𝒞(Fu)‖∗ subject to PΩ(Fu) = PΩ(Fu0) . (28)

Here

𝒞(Fu) =
𝒞x(Fu)
𝒞y(Fu) ∈ ℂ2N × N (29)

and x(Fu), y(Fu) are block circulant with circulant blocks matrices whose first column is 

specified by the arrays vx = F∂xu and vy = F∂xu. Assuming circular boundary conditions, 

we can write (vx)[kx, ky] = (1 − ej2πkx/Nx)(Fu)[kx, ky] and (vy)[kx, ky] = (1 − ej2πky/Ny)(Fu)

[kx, ky].

We find it interesting to use this re-formulation of TV-minimization to better understand the 

proposed approach. In Table I we summarize the similarities and differences. One essential 

difference is the dimensions of the matrix liftings. In particular, the matrix lifting we 

propose has dimensions 2|Λ2| × |Λ1|, with |Λ1| ≪ |Λ2| whereas the matrix lifting associated 

with TV in (28) has dimensions 2N × N. If the reconstruction grid size is the same in both 

cases, i.e., |Γ| = N, then the proposed matrix lifting has substantially fewer columns than the 

one associated with TV. This is due to our assumption that edge set of the image has low 

bandwidth. In other words, we restrict the degrees of freedom of the model by constructing a 

lifting with fewer columns. We believe this difference may explain the success of the 

proposed method over TV-minimization observed empirically in Section V.
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VII. Conclusion

We derived performance guarantees for the recovery of piecewise constant images from 

random non-uniform Fourier samples via a convex structured low-rank matrix completion 

problem. This was achieved by adapting results in [3] to the case of a low-rank block two-

fold Toeplitz matrix with an additional weighting scheme that arises naturally when 

considering piecewise constant images. We also define incoherence measures that rely only 

on geometric properties of the edge set, which indicate that the sampling burden is higher for 

images with smaller piecewise constant regions.

The recovery guarantees in this work studied the case of uniform random samples. However, 

in practice we observe that recovery works well with when considering other types of 

variable density random sampling, where the low spatial frequencies are more heavily 

sampled. It would be interesting to adapt our results to a wider variety of sampling 

distributions, and to identify the optimal sampling strategy for signals belonging to our 

image model.
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VIII. Appendix A: Incoherence Bounds

A. Notation and Preliminaries

To simplify our arguments, we will convert the linear operators (f̂) and (f̂)* defined in 

Fourier domain to linear operators acting on spaces of trigonometric polynomials (3) in 

spatial domain. Specifically, for any index set Ω ⊂ ℤ2, let BΩ denote the vector space of all 

trigonometric polynomials that have coefficients supported within Ω. Similarly, we denote 

the space of vector fields ρ = (ρ1, ρ2) with components ρ1, ρ2 ∈ BΩ as BΩ
2 . We set (f) = ℱ

(f̂) ℱ−1, where ℱ is the Fourier transform of a periodic function on [0, 1]2. For any index 

set Λ, define the Dirichlet kernel DΛ1 (r) := Σk∈Λ1 ej2πk·r. For all φ ∈ BΛ1, the action of the 

linear operator 𝒮( f ):BΛ1
BΛ2

2  can be expressed compactly as

𝒮( f )φ = DΛ2
∗ (φ ∇ f ) ∈ BΛ1

2 , (30)

where φ∇f is understood as a tempered distribution, and the convolution is applied separately 

to each vector field component. Here convolution with DΛ2 is a bandlimiting operation. 

Simliarly, for ρ = (ρ, ρ2) ∈ BΛ2
2 , the adjoint (f)* acts as

𝒮( f )∗ρ = DΛ1
∗ (ρ · ∇ f ) ∈ BΛ1

(31)

which is the spatial domain equivalent of the adjoint matrix (f̂)*. More expliclty, if f = 1U 

where U is a simply connected region with smooth boundary ∂U, a straightforward argument 

using the divergence theorem shows that the function (f)φ is given pointwise as the 

weighted curve integral

(𝒮( f )φ)(r) = ∮
∂U

DΛ2
(r − r′) n(r′) ds(r′), (32)

for all r ∈ [0, 1]2, where n(r′) is the outward unit normal to the curve ∂U at r′, and ds is the 

arc-length element. Likewise, (f)*ρ is the function given pointwise by
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(𝒮( f )∗ρ)(r) = ∮
∂U

DΛ1
(r − r′) [ρ(r′) · n(r′)] ds(r′), (33)

for all r ∈ [0, 1]2. These formulas can be generalized to an arbitrary piecewise constant 

function f = Σi ai1Ui by linearity. However, in the remainder we focus on the case where f = 

1U to simplify our arguments.

B. Fundamental subspaces of (f) and dimensions

Under the conditions of Theorem 1, the nullspace of (f̂) is spanned by shifts of the 

minimal annihilating filter, μ0. In spatial domain, this space consists of all multiples of the 

minimal degree polynomial γ = η μ0 such that γ is bandlimited to Λ1. We denote this space 

by

(μ0)Λ1
: = {η μ0:η ∈ BΛ1:Λ0

} . (34)

Note that (μ0)Λ1 is a subspace of BΛ1 with dimension |Λ1: Λ0|. Therefore, the dimension of 

the kernel of (f), denoted by ker (f), is given by

dim ker 𝒮( f ) = ∣ Λ1:Λ0 ∣ . (35)

By the rank-nullity theorem, the dimension of the image of (f), denoted by im (f), is

dim im 𝒮( f ) = ∣ Λ1 ∣ − ∣ Λ1:Λ0 ∣ = R . (36)

Likewise, the dimension of the coimage im (f)* is also R. Furthermore, since im (f)* = 

[kerS(f)]⊥, we have

im 𝒮( f )∗ = (μ0)Λ1
⊥ (37)

This means that any γ ∈ BΛ1 is in the row space if and only if γ is orthogonal to every 

trigonometric polynomial of the form η μ0 ∈ BΛ1, or equivalently,

〈γ, η, μ0〉 = ∫
[0, 1]2

γ(r)η(r)μ0(r) dr = 0 (38)
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for all η ∈ BΛ1: Λ0.

C. Basis for the coimage of (f) (corresponding to the row space of (f̂))

Let s ∈ [0, 1]2, and set φs ∈ BΛ1 to be the translated Dirichlet kernel:

φs(r) = DΛ1
(r − s) for all r ∈ [0, 1]2 . (39)

Equivalently, φs ∈ BΛ1 is the trigonometric polynomial specified in Fourier domain as

φs[k] =
e− j2πs · k if k ∈ Λ1
0 if k ∉ Λ1

. (40)

Observe that the inner product of φs with any other trigonometric polynomial η ∈ BΛ1 is 

given by the point-evaluation of η at s:

〈η, φs〉 = ∑
k ∈ Λ1

η[k]e j2πk · s = η(s) . (41)

Suppose now that the point s satisfies μ0(s) = 0. In this case, we see that φs is necessarily in 

the coimage im 𝒮( f )∗ = (μ0)Λ1
⊥  since we have

〈γμ0, φs〉 = γ(s)μ0(s) = 0. (42)

for any multiple of the minimal polynomial γμ0 ∈ BΛ1, i.e., any element in ker (f) = 

(μ0)Λ1.

We will now show how to construct a basis for the coimage of (f) out of elements having 

the form φri for some ri, i = 1, …,R belonging to the zero set of μ0. For an arbtirary 

collection of R points {ri}i = 1
R ⊂ {μ0 = 0}, we are not guaranteed that the set of functions 

{φri
}

i = 1
R  is linearly independent. However, we will show that there exists a constant M = 

M(Λ0,Λ1) such that for any M distinct points {ri}i = 1
M ⊂ {μ0 = 0} we can always find a 

subset of R linearly independent basis functions from the collection {φri
}

i = 1
M . The constant 

M is related the maximum number of isolated zeros that a system of two trigonometric 

polynomials can have. The following lemma, which is a consequence of the BKK bound in 
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enumerative algebraic geometry (see, e.g., [38]), puts a bound on M. See section II of the 

supplementary material for proof.

Lemma 11

Let Λ1 and Λ0 be rectangular index sets such that Λ0 ⊂ Λ1, and set R = |Λ1| − |Λ1: Λ0|. For 
any μ0, μ1 trigonometric polynomials bandlimited to Λ0 and Λ1, respectively, the maximum 
number M of isolated solutions of μ0(r) = μ1(r) = 0 is bounded as

M < R + ∣ Λ0 ∣ . (43)

We now prove equivalents of Lemma 6 and Lemma 7 in terms of the spatial domain operator 

(f):

Lemma 12

Let {r1, …., rN} be any collection of N distinct points on the curve {μ0 = 0}, where N ≥ R + 

|Λ0|. Then the coimage space im 𝒮( f )∗ = (μ0)Λ1
⊥  is spanned by the set of shifted Dirichlet 

kernels φi(r) = DΛ1 (r − ri) for all i = 1, …,N, i.e.,

span {φri
}

i = 1
N = (μ0)Λ1

⊥ . (44)

In particular, there exists a subset of R = |Λ1| − |Λ1: Λ0| elements of {φri
}

i = 1
N  that is a basis 

for the coimage space (μ0)Λ1
⊥ .

Proof—All the functions φri are in (μ0)Λ1
⊥  since we have ≪φi, γμ0〉 = γ(ri)μ0(ri) = 0 because 

each ri belong to the zero set of μ0. This implies that

span {φri
}

i = 1
M ⊆ (μ0)Λ1

⊥ . (45)

Our focus is on proving (44) with equality. For this, it is sufficient to show that any vector 

orthogonal to span{φi}i = 1
N  is in (μ0)Λ. Assume that there is a vector η(r) ∈ BΛ1 that is in the 

orthogonal complement space of span{φi}i = 1
N . This is only possible if
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〈η, φi〉 = η(ri) = 0, for all i = 1, …, N . (46)

Therefore, both η and μ0 have N zeros in common. By Lemma 11 this is only possible if η 
contains μ0 as a factor. This implies that all vectors in the orthogonal complement space of 

span{φi}i = 1
M  are in (μ0)Λ1, or equivalently

span {φri
}

i = 1
M ⊇ (μ0)Λ1

⊥ , (47)

which together with (45) proves (44).

Finally, we also know that the dimension of (μ0)Λ1
⊥  is equal to R <M. Thus, one can select a 

subset of R basis functions φi that are linearly independent and hence a basis for (μ0)Λ1
⊥ .

Translating this result to Fourier domain, we see that the row space of (f̂) is spanned by 

the vectors of Fourier coefficients (φi[k]: k ∈ Λ1) ∈ ℂ
∣ Λ1 ∣

, for i = 1, …,R. Equivalently, this 

can be expressed as the columns of the Vandermonde-like matrix Erow specified by (21), 

which proves Lemma 6 and 7.

D. Discretization of curve integrals: quadrature formula

Using the results from the previous subsection, we now introduce a quadrature formula for 

curve integrals, which we will use to determine the range space im (f) in the next 

subsection.

Let γ be any function in BΛ for any Λ ⊇ Λ0. Then from the orthogonal decomposition 

BΛ = (μ0)Λ ⊕ (μ0)Λ
⊥ we can decompose γ as

γ(r) = ∑
i = 1

S
aiDΛ(r − ri) + φ(r)μ0(r), (48)

where S = |Λ|−|Λ: Λ0|, and where {DΛ(r − ri)}i = 1
S  defines a basis of (μ0)Λ

⊥. Here, the 

coefficients ai in (48) are obtained uniquely as
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a1
⋮
aS

= D−1
γ(r1)

⋮
γ(rS)

, (49)

where D ∈ ℝS×S is the symmetric matrix with entries [D]i,j = DΛ(ri − rj) for 1 ≤ i, j ≤ S. The 

above expression can be compactly expressed as a = D−1g, where g = (γ(r1), …, γ(rS))T.

Lemma 13

Let f = 1U where U is a simply connected region with smooth boundary ∂U, which is the 
zero levelset of μ0 ∈ BΛ0 and let γ ∈ BΛ. Consider the curve integral of the form

q = ∮
∂U

γ(r) n(r) ds(r), (50)

where n(r) = ∇f(r)/|∇f(r)| is the unit normal on the curve ∂U. The curve integral can be 
evaluated using the quadrature formula

q = ∑
i = 1

S
γ(ri) wi, (51)

where the S = |Λ| − |Λ : Λ0| points {ri}i = 1
S  belong to the curve {μ0 = 0}, and the 

cooresponding weight vectors wi ∈ ℝ2, i = 1, .., S, are specified by

w1
⋮

wS

= D−1
v1
⋮
vS

. (52)

where vi = ∮∂U DΛ(r − ri)n(r)ds(r) ∈ ℝ2.

Proof—Decomposing γ(r) using (48), we obtain

∮
∂U

γ(r) n(r) ds(r) = ∑
i = 1

S
ai∮∂U

DΛ(r − ri) n(r) ds(r)

: = vi

(53)

The above sum can be expressed in the vector form as
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∑
i = 1

S
aivi = a∗V = g∗D−1V (54)

where V = [v1
T, …, vS

T]T ∈ ℂR × 2. Setting W = D−1V = [w1
T, …, wS

T]T ∈ ℂR × 2 we obtain (51).

E. Basis for the range of (f) (corresponding to the column space of (f̂))

We now introduce a basis set for im (f), which will be used to prove Lemma 8.

Lemma 14

The range of (f), denoted by im (f) is specified by

im 𝒮( f ) = span{wi DΛ2
(r − ri)}

i = 1
R (55)

for an appropriate choice of points {ri}i = 1
R ⊂ {μ0 = 0} with R = |Λ1| − |Λ1: Λ0|, and where 

the weight vectors wi are specified by (52).

Proof—Consider an arbitrary element ρ = (ρ, ρ2) ∈ im (f). We can express ρ as ρ = (f)ψ 
= ℬΛ2 (ψ∇f) = DΛ2 * (ψ∇f) for some ψ ∈ BΛ1. By the definition in (33), we have

ρ(r) = ∮
∂U

ψ(s) DΛ2
(r − s) n(s) ds

= ∑
i = 1

S
ψ(ri) DΛ2

(r − ri) wi,

(56)

where we Lemma 13 in the last step with S = |Γ| − |Γ : Λ0| since the integrand ψ(s)* DΛ2 (r 
− s) belongs to BΓ. The above relation shows that any ρ(s) ∈ im (f) can be expressed as the 

linear combination of the functions DΛ2 (s − ri)wi, for i = 1, .., S. Thus, we have 

im 𝒮( f ) ⊂ span{DΛ2
(r − ri) wi}

i = 1
S . We also know that dim (im (f)) = R < S. This implies 

that we can select a subset of R vectors from the set {DΛ2
(r − ri)wi}

i = 1
S  that are linearly 

independent, which will span im (f), and hence define a basis.

Correspondingly, the column space of (f̂) is spanned by the Fourier coefficients of the 

basis vectors wiDΛ2 (r − ri), or the columns of the 2|Λ2| × R weighted Vandermonde-like 

matrix Ecol specified by (22).
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F. Incoherence Bounds

1) Projection onto row subspace

Let Erow = Erow(P) be any basis for the row space V of (f̂) specified by (21), whose 

columns are vectorized Fourier coefficients of the translated and normalized Dirichlet 

kernels φi(r) = 1
∣ Λ1 ∣DΛ1

(r − ri), i = 1, …,R, for some set of admissible nodes P = {r1, …, 

rR} ⊂ {μ0 = 0}. Projecting the measurement basis matrix Ak onto V, we have

‖𝒫V Ak‖
F
2 = ‖AkErow(Erow

∗ Erow)−1
Erow

∗ ‖
F

2

≤ [λmin(Erow
∗ Erow)]−1‖AkErow‖

F
2

Since Ak selects |ω(k)| rows of Erow, each of which has R entries of magnitude 1/ ∣ Λ1 ∣, we 

have

‖AkErow‖
F
2 = 1

∣ ω(k) ∣ · R · ∣ ω(k) ∣ · 1
∣ Λ1 ∣ = R

∣ Λ1 ∣ =
R cs
∣ Γ ∣ (57)

where cs = |Γ|/|Λ1|. Hence,

‖𝒫V Ak‖
F
2 ≤ [λmin(Erow

∗ Erow)]−1 R cs
∣ Γ ∣ . (58)

Minimizing over all sets of admissible nodes P in the construction of Erow gives the final 

bound

‖𝒫V Ak‖
F
2 ≤

ρ R cs
∣ Γ ∣ . (59)

2) Projection onto column space

Let Ecol = Ecol(P) be a basis for the column space of (f̂) specified by (22), whose columns 

are vectorized Fourier coefficients of the translated and weighted Dirichlet kernels 

1
∣ Λ2 ∣

wi
‖wi‖

DΛ2
(r − ri), for some set of admissible nodes P = {r1, …, rR} ⊂ {μ0 = 0}. Observe 

the columns of Ecol are defined to have unit ℓ2-norm. Following the same steps as in the row 

space bound, we have
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‖𝒫UAk‖
F
2 = ‖Ecol(Ecol

∗ Ecol)
−1

Ecol
∗ Ak‖

F

2

≤ [λmin(Ecol
∗ Ecol)]

−1‖Ecol
∗ Ak‖

F
2

Expanding the norm ‖Ecol
∗ Ak‖

F
2

 gives

‖Ecol
∗ Ak‖

F
2 = 1

∣ Λ2 ∣ ∑
i = 1

R 1
∣ ω(k) ∣ ∑

ℓ ∈ ω(k)
ℓ

‖ℓ ‖,
wi

‖wi‖

2

≤ R
∣ Λ2 ∣ ≤

R cs
∣ Γ ∣ .

Hence, we have

‖𝒫UAk‖
F
2 ≤

ρ′R cs
∣ Γ ∣ . (60)

where ρ′ is defined similarly to ρ as:

ρ′ = min
P ⊂ {μ0 = 0}

∣ P ∣ = R

1
λmin[Ecol(P) ∗ Ecol(P)] , (61)

Finally, we show how to bound ρ′ by ρ in (60). Observe that we can re-define ρ and ρ′ in 

terms of the minimum singular value of the basis matrices Erow(P) and Ecol(P), according to 

the correspondences:

λmin(Ecol(P)∗Ecol(P)) = σmin
2 (Ecol(P)),

λmin(Erow(P)∗Erow(P)) = σmin
2 (Erow(P)) .

We will show σmin
2 (Erow(P)) ≤ σmin

2 (Ecol(P)), or equivalently, [λmin(Ecol(P)*Ecol(P))]−1 ≤ 

[λmin(Erow(P)*Erow(P)]−1, for any set P consisting of R points on the edge set. The claim 

then follows immediately by taking the minimum over all such sets P.

To ease notation, we drop the dependence on the set P in the following. Observe that we can 

express Ecol as
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Ecol =
E∼colWx

E∼colWy

(62)

where Wx = diag(
w1, x
‖w1‖ , …,

wR, x
‖wR‖), Wy = diag(

w1, y
‖w1‖ , …,

wR, y
‖wR‖), and Ẽcol ∈ ℂ|Λ2|×R is the 

Vandermonde-like matrix given entrywise by [Ẽcol]i,j = ej2πki·ri, for all ki ∈ Λ2, 1 ≤ j ≤ R. In 

other words, Ẽcol has the same structure as Erow, but is built with respect to Λ2 instead of 

Λ1. In particular, since we always assume Λ1 ⊂ Λ2, the matrix Erow can be embedded as a 

submatrix of Ẽcol by restricting the rows of Ẽcol to those indexed by Λ1. By the variational 

characterization of the minimum singular value of a matrix, we have

σmin
2 (Ecol) = min‖u‖ = 1 ‖Ecolu‖2

= min‖u‖ = 1 ‖E∼colWxu‖2 + ‖E∼colWyu‖2

≥ σmin
2 (E∼col)(‖Wxu‖2 + ‖Wyu‖2)

= 1

(63)

Finally, since Erow is a submatrix of Ẽcol, we also have σmin
2 (Erow) ≤ σmin

2 (E∼col), which 

together with (63) gives the desired inequality.

IX. Appendix B: Proof of Main Theorem

A. Reformulation in lifted domain

We now reformulate the recovery of f̂ as a matrix recovery problem in the lifted domain. The 

matrices x(f̂) and y(f̂) contain several copies of the weighted entries kx f̂[k] and ky f̂ [k], 

respectively. We use ω(k) to denote the set of locations (α1, α2) in the matrix x(f̂) or y(f̂) 
that contain the entry kx f̂[k] or ky f̂[k] (this set is the same in either case).

We define the sampling matrices Ak =
A1, k
A2, k

∈ ℂ
2 ∣ Λ2 ∣ × ∣ Λ1 ∣

, for each k = (k1, k2) ∈ Γ, 

where

(Ai, k)
α

=
ki

‖k‖ ∣ ωi(k) ∣ , if α = (α1, α2) ∈ ω(k)

0 else
(64)
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for i = 1, 2. The matrices {Ak}k∈Γ form an orthonormal basis for the space of matrices 

defined by the range of the matrix lifting ; we will call any matrix in the range of  a 

structured matrix. For any set of coefficients {ĝ[k]}k∈Γ we can expand the structured matrix 

(ĝ) as

𝒯(g) = ∑
k ∈ Γ

g[k] ‖k‖ ∣ wi(k) ∣Ak . (65)

We denote the projection operator corresponding to a single sampling location k by k(X) = 

〈Ak,X〉 Ak. Since {Ak}k∈Γ is an orthonormal basis, for any structured matrix X, we have 

Σk∈Γ k(X) = (X) = X. Since Ak is not the basis for a general X ∈ ℂ2|Λ2|×|Λ1|, we also 

define the projection operator to the space orthogonal to the space of structured matrices by 

⊥(X) = (ℐ − )(X), where ℐ is the identity operator. In particular, the constraint ⊥(X) 

= 0 implies that X is a structured matrix.

The recovery of f from its partial Fourier samples f̂[k], k ∈ Ω, can thus be reformulated as 

the completion of a structured matrix X from its measurements k, k ∈ Ω. Since the matrix 

is structured, we have ⊥(X) = 0. We thus reformulate (10) as the structured low-rank 

recovery problem:

minimizeX‖X‖∗ subject to 𝒬Ω(X) = 𝒬Ω(𝒯( f )), (66)

where Ω that satisifies [ Ω] = ℐ is defined as:

𝒬Ω = ∣ Γ ∣
∣ Ω ∣𝒜Ω + 𝒜⊥ (67)

B. Conditions for perfect recovery

The tangent space T of the matrix X is defined as 

T : = {UX1
H + X2VH :X1 ∈ ℂ

∣ Λ2 ∣ × R
, X2 ∈ ℂ

∣ Λ1 ∣ × R
} where X = UΛVH is the singular 

value decomposition of X. The orthogonal complement of T is denoted by T⊥. We first show 

that if ℘T ≈ ℘T Ω℘T, and if an approximate dual certificate that satisfies certain conditions 

exist, we obtain perfect recovery.

Lemma 15

Consider a multiset Ω that contains m random indices. Suppose the sampling operator Ω 
obeys
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‖𝒫T − 𝒫T𝒬Ω𝒫T‖ ≤ 1
2 (68)

and there exists a dual certificate matrix W satisfying

𝒬Ω
⊥(W) = 0 (69)

‖𝒫T(W − UV∗)‖
F

≤ 1
6n (70)

‖𝒫T
⊥(W)‖ ≤ 1

2 . (71)

Then, (f̂) is the unique solution to (66), where n = |Γ| and m = |Ω|.

See Section III-A of supplementary material for proof. Equation (68) suggests that Ω ≈ ℐ 
on the tangent space. The conditions (69), (70), and (71) indicates the existence of a W, 

which approximates the exact dual certificate UV*. The above lemma is in line with [3, 

lemma 1], with the exception of the third condition, indicated by (70). To satisfy (68), we 

bound the deviation of ℘T Ω℘T from ℘T in the following lemma.

Lemma 16

Suppose (12) holds. Then we have

‖𝒫T − 𝒫T𝒬Ω𝒫T‖ ≤ ε ≤ 1
2 (72)

with probability exceeding 1 − n−4, provided that m > c1ρR cs log(n).

We prove this using [39, Theorem 1.6]. (See Section III-B of supplementary material)

C. Construction of the approximate dual certificate W

We will now use the golfing scheme of [3], [25] to construct an approximate dual certificate 

W, which satisfies (69), (70), and (71). In particular, we generate j0 independent random 

sampling sets Ωi; 1 ≤ i ≤ j0, each containing m̃ = m/j0 samples corresponding to sampling 

with replacement. We start with F0 = UV*, and follow the following steps:
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1. F0 = UV* and set j0 − 3 log1
ε

n.

2. ∀i(1 ≤ i ≤ j0), Fi = ℘ (ℐ − Ωi)℘T (Fi−1)

3. W = ∑ j = 1
j0 𝒬Ωi

F j − 1

Step 3 ensures that W satisfies (69) since each term Wi = ΩiFj−1 satisfies 𝒬Ω
⊥(Wi) = 0. The 

recursive construction also satisfies (70). In particular,

‖𝒫T(W − UV∗)‖
F

= ‖𝒫TF j0
‖

F

≤ ε
j0‖F0‖

F
= ε

j0 R ≤ ε
j0n

Now we focus on showing that W satisfies (71). Note that if j0 is chosen as 3 log1
ε

n, 

assuming n > 6, we have (ε)
j0 n < 1

6 n .

Lemma 17

For any matrix M, there exists some numerical constant c2 such that

‖(ℐ − 𝒬Ω) (M)‖ ≤ c2
n log n

m ‖M‖𝒜, 2 +
c2n log n

m ‖M‖𝒜, ∞, (73)

with probability at least 1 − n−10. Here,

‖M‖𝒜, ∞ = max
k ∈ Γ

〈Ak, M〉
∣ ωk ∣ (74)

‖M‖𝒜, 2 = ∑
k ∈ Γ

∣ 〈Ak, M〉 ∣2

∣ ωk ∣ (75)

See Section III-C of supplementary material for proof.
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Lemma 18

Assume that there exists a constant μ5 such that ωk‖𝒫T(Ak)‖𝒜, 2 ≤
μ5R

n . For any matrix M, 

we have

‖𝒫T[(ℐ − 𝒬Ω)(M)]‖𝒜, 2 ≤ c3
μ5 R log n

m ‖M‖𝒜, 2 + n log n
m ‖M‖𝒜, ∞ ,

with probability at least 1 − n−10.

See Section III-D of the Supplementary Materials for proof.

Lemma 19

For any matrix M ∈ T, there exists some numerical constant c4, such that

‖𝒫T[(ℐ − 𝒬Ω)(M)]‖𝒜, ∞ ≤ c4
ρcsR log n

m
ρcsR

n ‖M‖𝒜, 2 +
c4ρcsR log n

m ‖M‖𝒜, ∞, (76)

with probability at least 1 − n−10.

See Section III-F of the Supplementary Materials for proof. From the golfing scheme, we 

have ‖𝒫
T⊥(W)‖ ≤ ∑ j = 1

j0 ‖𝒫
T⊥𝒬Ωi

𝒫TF j − 1‖. Using lemma 17 and substituting from lemma 

18 and lemma 19, we have

‖𝒫
T⊥𝒬Ωi

F j − 1‖ ≤ 1
2

j0 − 1
c2

n log n
m∼ ‖F0‖𝒜, 2 + n log n

m∼ ‖F0‖𝒜, ∞

The last inequality holds if m̃ = m/j0 ≫ max (μ5, ρcs)Rlog n. Substituting for j0 = 3 log1
ε

(n)

assumed in the golfing scheme, we require m ≫ c6 max (μ5, ρcs)Rlog2 n to satisfy the above 

inquality. See Section III-G of the Supplementary Materials for details. We will now present 

the lemmas bounding ||F0|| ,2 and ||F0|| ,∞, where F0 = UV*.

Lemma 20

With the incoherence measure ρ, one can bound

‖UV∗‖𝒜, ∞ ≤
ρ csR

n (77)
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‖UV∗‖𝒜, 2
2 ≤

c7μ3 cs log2 (n)R
n (78)

‖𝒫T( ωα Aα)‖𝒜, 2
2 ≤

c7μ3cs log2 (n)R
n , ∀α ∈ Γ (79)

for μ3 = 3ρ and c7 is some constant.

See Section III-H of the Supplementary Materials for proof. From (79), we see that the 

constant μ5 in lemma 19 can be chosen as μ5 = c7 μ3 cs log2(n) such that 

ωk‖𝒫T(Ak)‖𝒜, 2 ≤
μ5R

n . Substituting for μ5, we observe that the dominant term has its 

dependence on log4(n). Thus, ||℘T⊥ ΩiFj−1||< 1/2 if m > c6c7 cs (3ρ) R log4(n).
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Fig. 1. 
Annihilation of a piecewise constant function as a multiplication in spatial domain (top) and 

as a convolution in Fourier domain (bottom). The partial derivatives of a piecewise constant 

function are supported on the edge set. If there is a bandlimited function μ that is zero along 

the edge set, then the spatial domain product of μ with the gradient ∇f = (∂xf, ∂yf) is 

identically zero. In Fourier domain, this is equivalent to the annihilation of the arrays 

j2πkxf[kx, ky] and j2πkyf[kx, ky] by 2-D convolution with a finite filter determined by the 

Fourier coefficients μ̂.
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Fig. 2. 
Construction of the structured matrix lifting  (f̂) considered in this work. From a 

rectangular array of the Fourier coefficients f̂ [kx, ky] of a continuous domain image f(x, y), 

the weighted arrays kx f̂ [kx, ky] and ky f̂ [kx, ky] are constructed. The matrices x(f̂) and 

y(f̂) are then obtained by extracting all vectorized patches from the weighted arrays, and 

loading these into the rows of x(f̂) and y(f̂). The resulting matrices x(f̂) and y(f̂) have 

a block Toeplitz with Toeplitz blocks structure. Finally  (f̂) is formed by vertically 

concatenating the blocks x(f̂) and y(f̂).
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Fig. 3. 
Illustration of edge set incoherence measure ρ. In (a) are the level-sets of trigonometric 

polynomial μ0 bandlimited to Λ0 of size 3×3. These curves all have the same bandwidth, Λ0, 

but come in different sizes. In (b)–(d) we show R = 24 nodes on the curve giving the 

indicated bound on incoherence parameter ρ defined in (24), assuming a filter Λ1 of size 

7×7. Observe that the incoherence measure increases as the curve gets smaller. This 

indicates the smaller curves have a significant sampling burden.
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Fig. 4. 
Phase transition experiments. We generated random piecewise constant images with known 

edge-set bandwidth and study the success rate proposed structured low-rank matrix 

completion scheme under two conditions: in (a) we vary the filter size Λ1 while keeping the 

edge-set bandwidth K0 fixed, in (b) we vary the edge-set bandwidth K while keeping the 

filter size fixed. Examples of the randomly generated data are shown in (c).
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Fig. 5. 
Recovery of MRI data from 2-fold random uniform undersampling. Error images shown in 

bottom right.
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TABLE I

Comparison of proposed scheme with discrete total variation minimization

TV-minimization Proposed

Spatial domain discrete continuous

Derivative operator finite differences exact derivative

Singularity set discrete points connected curves

Frequency domain discrete discrete

Frequency weighting wi[k] 1 − ej2πki/Ni j2πki

Lifted matrix structure two-level circulant two-level Toeplitz

Rank of lifted matrix sparsity of discrete gradient bandwidth of edge set
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