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Abstract

Planktonic archaea are thought to play an important role in ammonia oxidation in marine

environments. Data on the distribution, abundance, and diversity of ammonia oxidizers in

the coastal sea-surface microlayer (SML) are lacking, despite previous reports of high abun-

dance of Thaumarchaeota in the SML of estuaries and freshwater lakes. Here, we failed to

detect the presence of ammonia-oxidizing bacteria in any of our samples taken from a semi-

enclosed marine inlet in Japan. Therefore, we shifted our focus to examine the archaeal

community composition as well as the Thaumarchaeota marine group I (MG-I) and ammo-

nia monooxygenase subunit A (amoA) gene copy numbers and composition in the SML and

corresponding underlying water (UW, 20 cm). amoA gene copy numbers obtained by quan-

titative PCR were consistent with the typical values observed in the surface waters of oce-

anic and coastal environments where nitrification activity has been detected, but the copy

numbers were two- to three-fold less than those reported from the surface layers and UW of

high mountain lakes. Both amoA and MG-I 16S rRNA gene copy numbers were significantly

negatively correlated with chlorophyll-a and transparent exopolymer particle concentrations

in the SML. Communities of archaea and ammonia-oxidizing archaea in SML samples col-

lected during low wind conditions (�5 m s–1) differed the most from those in UW samples,

whereas the communities in SML samples collected during high wind conditions were simi-

lar to the UW communities. In the SML, low ratios of amoA to MG-I 16S rRNA genes were

observed, implying that most of the SML Thaumarchaeota lacked amoA. To our knowledge,

our results provide the first comparison of ammonia-oxidizing communities in the coastal

SML with those in the UW.

Introduction

Nitrification is an important process in the nitrogen cycle. The nitrification process involves a

two-step biological conversion of ammonia to nitrate via nitrite. Ammonia oxidation—the

first, and rate-limiting, step in nitrification—was once thought to be restricted to ammonia-

oxidizing bacteria (AOB) belonging to the phylum Proteobacteria [1,2]. The discovery of the

putative archaeal ammonia monooxygenase subunit A (amoA) gene [3] and the subsequent

PLOS ONE | https://doi.org/10.1371/journal.pone.0202636 August 20, 2018 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wong S-K, Ijichi M, Kaneko R, Kogure K,

Hamasaki K (2018) Ammonia oxidizers in the sea-

surface microlayer of a coastal marine inlet. PLoS

ONE 13(8): e0202636. https://doi.org/10.1371/

journal.pone.0202636

Editor: Fabiano L. Thompson, Universidade Federal

do Rio de Janeiro, BRAZIL

Received: November 19, 2017

Accepted: August 7, 2018

Published: August 20, 2018

Copyright: © 2018 Wong et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the Japan

Society for the Promotion of Science (KAKENHI

Grant Numbers 24121004, 24241002 and

18K14787). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0202636
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202636&domain=pdf&date_stamp=2018-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202636&domain=pdf&date_stamp=2018-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202636&domain=pdf&date_stamp=2018-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202636&domain=pdf&date_stamp=2018-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202636&domain=pdf&date_stamp=2018-08-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202636&domain=pdf&date_stamp=2018-08-20
https://doi.org/10.1371/journal.pone.0202636
https://doi.org/10.1371/journal.pone.0202636
http://creativecommons.org/licenses/by/4.0/


isolation of Nitrosopumilus maritimus, a member of the ammonia-oxidizing archaea (AOA)

[4] that belongs to the phylum Thaumarchaeota, have provided new insights into the distribu-

tion of AOA and their roles in the nitrogen cycle. In marine environments, AOA are consid-

ered to be more abundant, and to play a more important role in ammonia oxidation, than

AOB [5].

The sea-surface microlayer (SML) is a thin surface film located at the interfacial point

between the sea surface and the atmosphere. SML archaeal communities differ from those in

the underlying water, and SML-exclusive archaeal groups have been detected [6,7]. In high

mountain lakes, members from the phylum Thaumarchaeota dominate the surface-layer

archaeal community, whereas members of the phylum Euryarchaeota were more abundant in

the subsurface waters [8–10]. Despite intensive studies of the ubiquitous distribution of AOA

in marine environments, in the case of the SML, AOA community structure and abundance

have been described only in a high mountain lake [11]. The presence of Marine Group-I Thau-
marchaeota (MG-I) and amoA genes in the SML indicates the potential for ammonia oxidation

in this layer. Furthermore, ammonia, the substrate needed for ammonia oxidation, is known

to accumulate in the SML [12,13]. However, to date, no data are available on the ammonia-oxi-

dizing communities in coastal and oceanic SML environments. Much less is known about the

ammonia-oxidizing community in the SML than about ammonia oxidizers in other aquatic

systems.

Here, we describe the archaeal community composition, and specifically the composition

of Thaumarchaeota MG-I, as well as, MG-I, AOA and AOB gene copy numbers and composi-

tion, in the SML and the corresponding underlying water (UW, 20 cm depth) of a semi-

enclosed marine inlet in Japan. Our findings regarding the ammonia-oxidizing communities

in the SML and UW of this coastal inlet should fill the fundamental gaps in our knowledge of

these globally important functional groups of microbes in one of the most under-studied areas

of the marine environment.

Materials and methods

Study site

Water samples from Aburatsubo Inlet, in the town of Misaki, in Kanagawa Prefecture, Japan,

were obtained from the pier of Misaki Marine Biological Station in September and December

2012 at high tide to avoid resuspended bottom sediments. The sampling site (35˚09.50N, 139˚

36.50E) was located approximately 30 m from land, with a maximum water depth of about 5 m

(Fig 1). The semi-enclosed inlet is located in a temperate coastal area adjacent to Sagami Bay,

which connects to the Pacific Ocean. The topography of the inlet was ideal for SML sampling,

as it reduced the effect of oceanic waves from Sagami Bay.

SML and UW sampling

SML water samples were collected by rotating a Plexiglas drum at a rate of 6 rotations min–1.

The rotating drum sampler is widely used to sample large volumes of water from the SML of

various environments, including the open ocean and coastal waters [14–16]. Water adhering

to the drum was scraped off by using a Teflon scraper into a sterile collection bottle. To condi-

tion the drum surface, the first 1 L of SML water sample collected was discarded. Duplicate

water samples from the SML were collected by using the drum sampler, and these duplicate

samples were pooled for further filtration and analysis. The thickness of the SML sampled by

the drum sampler was determined by dividing the volume of water sampled by the surface

area of the sampler and the number of drum rotations. The thickness of the sampled SML was

36 ± 4 μm. At the same time as the drum samples were taken, a sterile bottle was submerged to
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a depth of 20 ± 5 cm to collect UW samples. To prevent contamination with SML water, the

cap of the sterile bottle was opened and closed at a depth of 20 cm.

In total, 12 samples (six pooled samples from the SML and six samples from the UW) were

collected. The samples were labeled, in sequence, according to the sampling month (Septem-

ber: S; December: W), sample number (e.g. 1, 2) and depth (SML samples collected using

drum sampler: D; UW: U). A set of paired samples (SML and UW) was collected daily over 2

or 3 consecutive days from the same sampling point. The temperature and salinity of surface

water samples were monitored by using a YSI Model 85 handheld meter (YSI Incorporated,

Yellow Springs, USA). The development of a distinct microbial community in the SML

requires relatively calm surface conditions and low wind speed [17]. Therefore, the wind speed

during sampling was constantly recorded by using a handheld anemometer (GA-06, Be-s Co.

Ltd, Osaka, Japan).

Chlorophyll-a and transparent exopolymer particles as proxies for SML

formation

Concentrations of transparent exopolymer particles (TEP) and chlorophyll-a (Chl-a) were

measured as proxies of organic matter concentrations in the SML. TEP concentrate in the

SML and are a major component of it [18]. TEP concentration was quantified as previously

described [19,20]. Triplicate 10- to 20-mL subsamples for TEP quantification were filtered

onto 0.4-μm-pore-size polycarbonate membrane filters (Isopore HTTP, Millipore, Tokyo,

Japan), stained with 500 μL of 0.02% 8GX alcian blue solution (Sigma-Aldrich, Tokyo, Japan)

in 0.06% acetic acid (pH 2.5), extracted in 80% sulfuric acid for 2 h, and then measured

spectrophotometrically.

Fig 1. Sampling location. The location of the Misaki Marine Biological Station is indicated by the yellow dot, and the sampling point is indicated by

the red dot.

https://doi.org/10.1371/journal.pone.0202636.g001
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For Chl-a analysis, 50 mL each of duplicate subsamples were filtered onto 25-mm GF/F fil-

ters (GE Healthcare, Tokyo, Japan) extracted with N,N-dimethylformamide, and stored at

−20˚C until further analysis [21]. Chl-a concentrations were measured fluorometrically with a

model 10-AU Field and Laboratory Fluorometer (Turner Designs, San Jose, USA).

The enrichment factors (EF) of TEP and Chl-a in the SML were calculated as the ratio of

the concentration in the SML to that in the UW. These parameters were considered enriched

in the SML when the EF value exceeded a ratio of 1.0 [22].

Nucleic acid extraction

Approximately 1 L of water samples collected from the SML and UW were filtered onto 0.22-

μm-pore-size Sterivex GP filter units (Millipore). The filters were immediately stored at −80˚C

until further analysis. DNA extraction was performed with a ChargeSwitch Forensic DNA

Purification Kit (Invitrogen, Tokyo, Japan) after bead beating with zirconia beads (FastGene,

Tokyo, Japan) at 5,000 rpm for 30 s. Each filter was extracted twice to maximize the DNA

yield.

Archaeal 16S rRNA gene pyrosequencing and data processing

The V1 to V3 hyper-variable regions of the archaeal 16S rRNA gene were amplified by using

the forward primer A20F [23] and reverse primer 519R [24]. PCRs for each sample were per-

formed in triplicate with 20 μL of mixture consisting of 6 μL of 10-fold diluted template DNA

(5 to 8 ng μL–1), 0.13 μM of each primer, 0.2 mM of each dNTP, 2 μL of 10× Ex Taq Buffer

(Takara, Shiga, Japan), and 0.5 U of Ex Taq HS (Takara). Touchdown PCR was performed for

a total of 35 cycles under the following conditions: initial denaturation at 94˚C for 3 min, 10

cycles of denaturation at 98˚C for 10 s, annealing at 68 to 59˚C for 30 s, elongation at 72˚C for

45 s; followed by 25 cycles of denaturation at 98˚C for 10 s, annealing at 58˚C for 30 s, elonga-

tion at 72˚C for 45 s; and final elongation at 72˚C for 10 min. The prepared PCR products

were purified with an AMPure system (Beckman Coulter, Brea, USA) and sequenced at the

Atmosphere and Ocean Research Institute, Chiba, on a Roche 454 GS Junior platform (Roche

454 Life Science, Brandford, USA) in accordance with the manufacturer’s instructions.

After the sequencing, the open-source software mothur 1.35.1 [25,26] was used for subse-

quent analysis in accordance with the 454 standard operating procedure (http://www.mothur.

org/wiki/454_SOP; accessed on 23 March 2015). Reads for downstream sequence processing

were retained if they had a minimum quality score of 30, and representative sequences were

assigned to operational taxonomic units (OTUs) by using the furthest-neighbor clustering

algorithm based on 97% identity.

Detection of ammonia-oxidizing bacteria

The betaproteobacterial and gammaproteobacterial amoA gene fragments were amplified by

using the amoAr-New/amoA-2R [27] and amoA3F/amoB-4R [28] primer sets, respectively.

PCR for each sample was performed in triplicate with 20 μL of reaction mixture consisting of

3 μL of 10-fold-diluted template DNA (5 to 8 ng μL–1), 0.2 μM of each primer, 0.2 μM of each

dNTP, 2 μL of 10× Ex Taq Buffer (Takara), and 0.5 U of Ex Taq HS Polymerase (Takara).

Thermal cycling was performed under the following conditions: initial denaturation at 95˚C

for 3 min, 40 cycles of amplification at 94˚C for 30 s, annealing at 47˚C (amoAr-New/amoA-

2R) and 48˚C (amoA3F/amoB-4R) for 1 min, elongation at 72˚C for 40 s, and a final elonga-

tion at 72˚C for 10 min. As the amplification of AOB amoA from all samples was unsuccessful,

no further analysis of AOB was done.
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Detection and quantification of ammonia-oxidizing archaea

The archaeal amoA gene fragments were quantified by using the Arch-amoA-for /Arch-amoA-

rev primer set [5], whereas MG-I 16S rRNA gene fragments were quantified by using the GI-

751F/GI-956R primer set [29] in triplicate by quantitative PCR (qPCR). Serial dilutions of

known plasmid numbers were used to generate an external standard curve for qPCR analysis

[amoA: kt162 plasmid, GenBank accession number: AB592102; and MG-I 16S rRNA gene:

kt779 plasmid, GenBank accession number: AB919347]. qPCR was performed in reaction

mixtures (20 μL) that contained 3 μL of 10-fold-diluted template DNA (5 to 8 ng μL–1), 10 μL

of 2× SYBR Premix Ex Taq with Tli RNase H (Takara), and 0.2 μM final concentration of each

primer. Assays for both primer sets were performed by using a Roche Light Cycler 480 II Real-

Time PCR system (Roche, Sussex, UK) with the following thermal cycling conditions: initial

denaturation at 95˚C for 30 s; and 45 cycles of amplification at 95˚C for 5 s, annealing at 58˚C

for 30 s, and elongation at 72˚C for 30 s, with a detection step at the end of each cycle. After

amplification, melting curve analyses were performed at 95˚C for 5 s, followed by a tempera-

ture gradient of 0.11˚C s−1 from 65 to 95˚C. The qPCR detection efficiency was 95.1% for

MG-I 16S rRNA genes and 90.0% for amoA genes.

Construction of an archaeal amoA clone library and clone library sequence

analysis

An approximately 256-bp fragment of archaeal amoA was amplified by using the Arch-amoA-

for/Arch-amoA-rev primer set. PCR was performed in triplicate using a 20-μL reaction mix-

ture consisting of 3 μL of 10-fold-diluted template DNA (5 to 8 ng μL–1), 0.2 μM of each

primer, 0.2 mM of each dNTP, 2 μL of 10× Ex Taq Buffer, and 0.5 U of Ex Taq HS (Takara).

The PCR thermal cycling conditions consisted of initial denaturation at 95˚C for 3 min; 40

cycles of amplification at 98˚C for 10 s, annealing at 58˚C for 30 s, and elongation at 72˚C for 1

min; and final elongation at 72˚C for 10 min. Amplified PCR products were pooled and puri-

fied by using a Qiaquick PCR Purification Kit (Qiagen KK, Tokyo, Japan). Cloning was per-

formed with a TOPO TA Cloning Kit for Sequencing (Invitrogen) and Escherichia coli DH5-α
competent cells (Takara). Positive clones with PCR products amplified through colony PCR

were purified by using USB ExoSAP-IT product cleanup reagent (Affymetrix Japan, Tokyo,

Japan) and sequenced by using an ABI Prism BigDye Terminator v3.1 Cycle Sequencing Kit

(Applied Biosystems, Tokyo, Japan) on an ABI 3730xl platform (Applied Biosystems).

A total of 387 sequences obtained from the clone library were aligned by using MEGA 6.0

[30] against reference sequences retrieved from the GenBank database, and sequences with

regions that were ambiguously aligned or with ambiguous amino acid sequences were

removed. The remaining sequences were clustered into OTUs by using CD-HIT [31] on the

basis of 95% nucleotide identity; this yielded 22 representative amoA OTUs. The 22 represen-

tative OTU sequences at 95% nucleotide identity (by CD-HIT) and the closest relative refer-

ence sequences from GenBank [32] were used to construct a neighbor-joining phylogenetic

tree with the Tamura-Nei model [33] of nucleotide substitution and 1000 bootstrap replicates,

implemented in MEGA 6.0.

Statistical analysis

Samples from both samplings (September and December) were pooled according to their

depth, SML or UW, for statistical analysis using R version 3.2.3 [34]. The correlation between

amoA or MG-I 16S rRNA gene copy numbers and Chl-a and TEP concentrations in all pooled

samples were calculated in R by using the non-parametric Spearman’s rank coefficient test.
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Differences in Chl-a and TEP concentrations between the SML and UW were tested by using

the non-parametric Mann-Whitney U-test in R. Principal coordinate analysis (PcoA) of

archaeal community structure based on weighted and unweighted UniFrac distances and of

AOA community structure based on amoA gene clones was conducted in R by using the phy-

loseq package [35]. Phylogenetic trees used in the UniFrac analysis were generated using the

clearcut function [36] in mothur 1.35.1 [25,26]. Differences between the SML and UW

archaeal 16S rRNA gene communities and amoA clone libraries were tested by using weighted

and unweighted UniFrac and analysis of molecular variance (AMOVA) functions in the

mothur 1.35.1 platform according to the default parameters.

Nucleotide sequence accession numbers

The amoA sequences reported here were deposited in GenBank under accession numbers

KU216137 to KU216158. The archaeal 16S rRNA gene sequences obtained by pyrosequencing

were deposited in the DNA Data Base of Japan Sequence Read Archive (http://trace.ddbj.nig.

ac.jp/dra/index_e.html) under the accession number DRA004205.

Results

Environmental conditions and enrichment of organic matter in the SML

Sea-surface temperature in Aburatsubo Inlet peaks (at 25 to 26˚C) with low salinity in August

and September (summer), and the temperature reaches its lowest (15 to 16˚C) with high salin-

ity in December (winter) [37]. The temperature and salinity ranges obtained during our sam-

pling in September (26.2 to 27.7˚C; salinity, 31.7 to 32.4) and December (14.3 to 15.9˚C, 34.1

to 34.2) corresponded to the summer and winter values previously reported by Yamaguchi

[37]. Salinity in the Aburatsubo Inlet remained similar to that of the surrounding ocean, with

slight seasonal changes; there is no known direct river input into the inlet [38]. Ammonium

and phosphate concentrations in the semi-enclosed inlet are also higher in summer (Septem-

ber) than in winter (December) [38].

EF ranged from 1.3 to 6.7 for TEP and 0.7 to 72.9 for Chl-a throughout the sampling peri-

ods in September and December (Fig 2). Chl-a and TEP concentrations were significantly pos-

itively correlated (P< 0.001; S1 Table). When the wind speed was low (�5.0 m s−1), the EF for

all Chl-a samples exceeded 1.0 (SML enriched) whereas the TEP was constantly enriched in

the SML regardless of the wind speed (Fig 2). The Chl-a (Mann–Whitney U, P = 0.06) and

TEP (Mann-Whitney U, P< 0.01) concentrations were also significantly higher in the SML

than in the UW at times of low wind speed. The highest EF values for Chl-a and TEP were

observed in December, when the wind speed was the lowest (Fig 2). At high wind speeds (�5.0

m s−1), the EF values in the SML for Chl-a were lowest and the TEP enrichment in the SML

was lower.

Archaeal community structure

The archaeal community from MG-II belonging to the phylum Euryarchaeota was more abun-

dant in the SML and UW (except in sample S1D) in the September samples than in the

December samples, with an average relative abundance of 77.6% ± 4.1% across both the SML

and UW combined (Fig 3A). In December, the major archaeal phylum from SML and UW

combined samples shifted to Thaumarchaeota, for which the relative abundance ranged from

71.3% to 90.0% (Fig 3A). Phylum Thaumarchaeota accounted for a large fraction of the

archaeal community in the SML samples, with an average relative abundance of 68.8% (range:

17.7% to 95.9%) across all SML samples, excluding samples S4D and W5D, for which PCR
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amplification was unsuccessful (Fig 3A). The relative abundance of the Soil Crenarchaeota

Group (SCG) (Fig 3B) was generally 50- to eight-fold higher in the SML samples from S1D

and W2D than in the paired UW samples collected from the respective samplings, whereas the

Terrestrial group was detected only in the S1D and W1D SML samples (Fig 2B). The PCoA

ordination plot based on weighted UniFrac distances showed that the archaeal community

composition and relative abundance in SML samples differed from those in the UW samples

and SML samples that was collected during high wind speed (S1 Fig). All of the UW archaeal

community was clustered closely together by sampling month. SML samples collected during

times of high wind speed (�5 m s–1) (S2D and W1D) were clustered close to the UW samples

collected from the same respective samplings.

Archaeal and bacterial amoA and MG-I 16S rRNA gene copy numbers

Interestingly, no beta- or gamma-proteobacterial amoA genes were detected in any of the SML

or UW samples.

The average archaeal amoA copy numbers ranged from 0.04 to 11.89 × 105 copies L−1 across

all SML samples (with the exception of sample S4D, for which the value fell below the qPCR

Fig 2. Enrichment factors of archaeal ammonia monooxygenase subunit A (amoA) gene copy numbers, archaeal Marine Group-I (MG-I)

16S rRNA gene copy numbers, transparent exopolymer particles (TEP) concentration, and chlorophyll-a (Chl-a) concentration in the

sea-surface microlayer (SML) in samples collected in September (S) and December (W). Enrichment value of 1.0 is indicated by a solid line

extending from the first y-axis in the case of amoA copy numbers, MG-I 16S rRNA gene copy numbers, and TEP concentrations and by a

dashed line extending from the secondary y-axis in the case of Chl-a concentration. Enrichment>1.0 indicates enrichment in the SML.

https://doi.org/10.1371/journal.pone.0202636.g002
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detection limit) and from 0.31 to 10.71 × 105 copies L−1 across all UW samples. The copy num-

bers of the MG-I 16S rRNA gene across the SML samples ranged from 0.14 to 24.7 × 105 copies

L−1 and from 0.40 to 22.64 × 105 copies L−1 across the UW samples (S2 Fig).

The copy numbers of amoA were significantly higher in UW than in the SML (Mann-Whit-

ney U, P< 0.05) as evidenced by the enrichment values of amoA, which were depleted in the

SML (EF = 0.34 ± 0.40), except in the case of sample W1 (EF = 2.9) (Fig 2). No significant dif-

ferences were found between the SML and UW for MG-I 16S rRNA gene copy numbers from

all samples from both samplings (Mann-Whitney U, P = 0.21). MG-I genes in the SML were

enriched only in samples S1 and W1 (Fig 2). Significant positive correlations were found

between amoA and MG-I 16S rRNA gene copy numbers (S1 Table). The ratio of amoA to

MG-I 16S rRNA genes was, on average, 0.4 ± 0.2 in the SML and 0.7 ± 0.1 in the UW.

Both amoA and MG-I 16S rRNA gene copy numbers were negatively correlated with TEP

(amoA gene number: P< 0.001; MG-I 16S rRNA gene number: P< 0.01) and Chl-a concen-

trations (amoA gene number: P< 0.001; MG-I 16S rRNA gene number: P< 0.001; S1 Table).

In two samples from the SML (S4D and W5D) they either were present in very low abundance

or were undetectable using qPCR primer sets targeting the archaeal amoA and MG-I 16S

rRNA genes (S2 Fig). Furthermore, S4D and W5D samples were also unsuccessfully amplified

using the current archaeal 16S rRNA gene primer set for pyrosequencing (A20F/519R; Fig 3).

The patterns of low gene copy numbers or unsuccessful PCR amplifications from the two sam-

ples coincided with the highest peaks of both Chl-a and TEP in the SML during the respective

samplings (S2 Fig).

Community structure and diversity of AOA

Four major clusters were detected in the SML and UW samples obtained in September and

December; 329 of the clone sequences belonged phylogenetically to Cluster 1 (Fig 4), which

consisted mainly of sequences that were closely related to the ammonia-oxidizing archaeon

Nitrosopumilus maritimus. A majority of the phylotypes obtained from the SML and UW were

also ubiquitously distributed within Cluster 4, which consisted of sequences from Water Col-

umn Cluster A (WCA) or a surface cluster [29,39]. SML-specific phylotypes represented by

1S1D5, 1S1D25, and 2S5D31 from Cluster 1, as well as 1S1D18 and 1S1D4 from Cluster 2,

were found (Figs 4 and 5). These phylotypes were closely related to other clones obtained from

sand filters, soil environments, and sediment environments, but not to any closely described

species (Fig 5). Clone 1S1D10 from Cluster 3, which was found only in S1D (Fig 5), was clus-

tered close to Candidatus Nitrosotenuis chungbukensis and Candidatus Nitrosotenuis uzonen-

sis, which have been obtained from soil [40] and thermal spring enrichment cultures [41],

respectively (Figs 4 and 5).

AMOVA tests also showed significant differences between the SML and UW amoA struc-

tures (Fs = 3.02, P< 0.05). Additionally, both weighted (P< 0.001) and unweighted

(P< 0.01) UniFrac showed that the AOA community structure and composition in the SML

differed from those in the UW. All AOA communities from the UW were clustered closely in

both September and December samplings, especially in the weighted UniFrac PCoA plot (Fig

6). Weighted and unweighted UniFrac analyses (Fig 6) revealed that AOA communities in the

SML samples S2D and W1D, which were collected during high wind speed conditions, were

Fig 3. Relative abundances of archaeal taxonomic groups, obtained by using 454 pyrosequencing of the 16S rRNA gene, at the a) phylum and b) class levels for

surface microlayer (D) and underlying water (U) samples obtained in September (S) and December (W). Abundances are presented in terms of percentage of

total archaeal operational taxonomic units at a 97% identity level. “ND” indicates that the sample was not successfully amplified by using the A20F/519R primer

set for 454 pyrosequencing.

https://doi.org/10.1371/journal.pone.0202636.g003
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also clustered close to the UW communities. Weighted UniFrac showed that the SML AOA

communities from samples S1D, S4D, W2D, and W5D differed from their paired UW sam-

ples, whereas samples S1D, S4D, and W2D differed from their paired UW samples in the

unweighted UniFrac plots.

Discussion

AOA and AOB gene copy numbers in the SML and UW

Our results provide insights into the gene copy numbers and diversity of AOA in the SML in

coastal waters compared with those in the UW. In contrast to Zhang et al. [42], we did not

Fig 4. Consensus neighbor-joining phylogenetic tree of archaeal ammonia monooxygenase subunit A (amoA) gene nucleotide sequences based

on Tamura-Nei distances. The tree contains 22 representative operational taxonomic units (OTUs) from this study (in bold) obtained at a cutoff

value of 0.05% by using the CD-HIT program. Bootstrap values (>50%) are indicated at the nodes of the tree. Accession numbers for the

representative OTUs and reference sequences are indicated in parentheses. Scale bar represents 0.05 amino acid substitutions per site.

https://doi.org/10.1371/journal.pone.0202636.g004

Fig 5. Relative abundances of archaeal ammonia monooxygenase subunit A (amoA) gene clones from surface microlayer (D) and underlying water (U) samples

collected in September (S) and December (W). Clones were grouped into four different clusters based on representative operational taxonomic units with 95%

sequence identity, obtained by using the CD-HIT program.

https://doi.org/10.1371/journal.pone.0202636.g005

Sea-surface ammonia oxidizers

PLOS ONE | https://doi.org/10.1371/journal.pone.0202636 August 20, 2018 11 / 19

https://doi.org/10.1371/journal.pone.0202636.g004
https://doi.org/10.1371/journal.pone.0202636.g005
https://doi.org/10.1371/journal.pone.0202636


Sea-surface ammonia oxidizers

PLOS ONE | https://doi.org/10.1371/journal.pone.0202636 August 20, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0202636


amplify any beta- and gamma-proteobacterial amoA from any of our coastal SML and UW

samples. Mincer et al. [29] and Beman et al. [43] also found that the gene copy number of

AOB tended to show them as absent, or at lower numbers than AOA, in photic zones. There-

fore, we surmise that ammonia oxidation in the SML and UW in our samples—if any—was

performed mostly by AOA. The amoA and MG-I 16S rRNA gene datasets reported here are

consistent with the typical values observed in the surface waters of oceanic and coastal envi-

ronments [29,43,44] where nitrification activity has been detected [45]. However, they are

two- to three-fold less than those reported in the surface layers and UW of high mountain

lakes [8].

Our qPCR assays indicated that the amoA to MG-I 16S rRNA gene copy number ratio was

within the reference ranges reported in oceanic regions [46–48]. However, the average amoA
to MG-I 16S rRNA gene copy number ratio was lower for SML samples than for UW, suggest-

ing that amoA genes in our samples were apparently less abundant than MG-I 16S rRNA

genes. Currently, all amoA to MG-I 16S rRNA gene copy number ratios obtained from meta-

genomic [29] and genomic [49] sequences have been close to 1. However, lower ratios of

amoA to MG-I 16S rRNA genes have also been reported previously [46,50]. The lower ratio

obtained here could indicate that not all of the MG-I Thaumarchaeota possess amoA, or alter-

natively that the primer set we used was not able to amplify all of the amoA genes present in

our samples. The primer set that we used has nucleotide mismatches, which may have led to

spurious qPCR results and the underestimation of amoA copy numbers in the deep meso- and

bathypelagic regions of the Pacific Ocean [47,51]. Despite the nucleotide mismatches, this

primer set by Wuchter et al. [5] is able to detect amoA clades from both epipelagic and high-

latitude regions [52,53].

Low ratios of amoA to MG-I 16S rRNA genes have also been attributed to a lack of amoA
genes in the Thaumarchaeota [46,50,54]. Previous isotopic [55,56] and genomic [49,57] studies

have shown that members of the phylum Thaumarchaeota are capable of assimilating organic

matter to sustain their growth. The high concentrations of organic matter in surface waters—

especially the SML—could theoretically attract heterotrophic Thaumarchaeota, thereby

increasing the reliance of any Thaumarchaeota present in the SML on chemoorganoheterotro-

phy rather than chemolithoautotrophy.

Archaeal and AOA community structures in the SML and UW

The Thaumarchaeota detected by amplicon sequencing and in the MG-I 16S rRNA gene

qPCR results were more pronounced in the December SML and UW samples than in the sam-

ples collected during September. Decline of Thaumarchaeota during spring and summer

[54,58,59] has been reported previously, suggesting the sensitivity of this group to photoinhibi-

tion or competition with bacteria [58]. Also, light is an important factor structuring the Thau-
marchaeota population in the water column [29,47]. Although surface Thaumarchaeota may

have developed pathways to help cope with UV-induced damage [60], it is still unclear whether

ammonia oxidation is directly affected by photoinhibition.

MG-II from the phylum Euryarchaeota in the photic zone possesses the light-driven proton

pump proteorhodopsin, providing an alternative pathway to support a photoheterotrophic life-

style [61]. The higher relative abundance of MG-II Euryarchaeota in the SML and UW samples

collected in September might indicate enhanced phototrophy in these surface waters in response

to increased irradiance, as reported elsewhere [62,63]. A time-series study of planktonic archaea

Fig 6. Principal coordinate analysis (PCoA) plots based on a) weighted and b) unweighted UniFrac distances of the

amoA community structure from clone libraries.

https://doi.org/10.1371/journal.pone.0202636.g006
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in the Santa Barbara Channel (Pacific Ocean off California, USA) has revealed that decreasing

chlorophyll-a coincides with sporadic MG-II blooms in the surface waters [64].

Our comparisons between 16S rRNA gene archaeal community structure and amoA diver-

sity and phylogeny showed that a portion of the archaeal communities in the coastal SML

could be of sediment or terrestrial origin. In some of our samples—especially those collected

when the wind speed was low and formation of the SML was thus maintained—phylotypes

belonging to the SCG and Terrestrial groups were found in higher proportions in the SML

than in the UW. AOA from soil environments (Clusters 2 and 3) were detected only in SML

samples. SML-specific phylotypes closely related to AOA originating from soil, sediments,

sand filters, and freshwater environments were present in our samples. This result is consistent

with those of Stolle et al. [17], wherein a few bacterial OTUs closely related to sequences found

in sediment environments were found specifically in the SML. The presence of these phylo-

types could indicate passive transport via sediment resuspension, or intrusion of groundwater

into the SML. It has also been speculated that the similarity of the chemical constituents in the

SML to that of a solid substratum such as sediment could enable these newly introduced com-

munities to be supported [65,66]. As these communities could have been passively transported

into the water column and remained in the SML and UW for a period of time, further studies

are needed to determine whether these SML-specific AOA communities are actively oxidizing

ammonia and expressing amoA in the SML.

Differences in both total archaeal and AOA communities were observed between the SML

and UW and were significantly correlated to the concentrations of organic matter (Chl-a and

TEP). amoA and MG-I 16S rRNA gene copy numbers were especially low in our SML samples

when Chl-a and TEP concentrations were high, and vice versa. Furthermore, the two SML

samples that could not be amplified by the pyrosequencing primer sets had the lowest amoA
and MG-I 16S rRNA gene copy numbers, indicating that archaeal abundance in the samples

could have been very low. Interestingly, these samples contained the highest Chl-a and TEP

concentrations in each sampling period. Negative correlations between amoA [62,67] or MG-I

[8] gene copy numbers and Chl-a concentrations have been reported previously. One possible

explanation is competition with phytoplankton [68]. It was recently discovered that competi-

tion with phytoplankton for ammonium could play a greater role than light intensity in regu-

lating AOA cellular activity and nitrification rates [67]. However, there may be multiple

factors regulating the Thaumarchaeota and the amoA composition and abundance: they could

be affected by a wide array of environmental parameters, such as temperature [69,70], ammo-

nia concentration [71], and even small changes in pH [72].

Insights into archaeal dynamics in the SML

The presence of amoA and MG-I genes in the SML samples indicates the potential for ammo-

nia oxidation in the top 1 mm of surface waters. However, the gene copy numbers of AOA

tended to be low when the SML was well formed during low wind conditions. The lower ratio

of amoA to MG-I 16S rRNA genes in the SML than in the UW could indicate that Thaumarch-
aeota present in the SML lack amoA and might rely on other substrates other than ammonia,

such as organic matter, as an energy source. Additionally, the difference in archaeal and AOA

community composition could reflect differences in nitrification between the SML and UW,

as different AOA communities and clades possess different physiological and metabolic char-

acteristics [45,52]. Because the physiology of AOA and the factors controlling their ammonia

oxidation rates are still not well defined, future work should include the nitrification activity

and gene transcript contents of AOA in the SML to help elucidate their role and adaptations to

ammonia oxidation.
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