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ABSTRACT

With rapid technical advances, single cell RNA-seq
(scRNA-seq) has been used to detect cell subtypes
exhibiting distinct gene expression profiles and to
trace cell transitions in development and disease.
However, the potential of scRNA-seq for new dis-
coveries is constrained by the robustness of subse-
quent data analysis. Here we propose a robust model,
BCseq (bias-corrected sequencing analysis), to ac-
curately quantify gene expression from scRNA-seq.
BCseq corrects inherent bias of scRNA-seq in a data-
adaptive manner and effectively removes technical
noise. BCseq rescues dropouts through weighted
consideration of similar cells. Cells with higher se-
quencing depths contribute more to the quantifica-
tion nonlinearly. Furthermore, BCseq assigns a qual-
ity score for the expression of each gene in each
cell, providing users an objective measure to select
genes for downstream analysis. In comparison to ex-
isting scRNA-seq methods, BCseq demonstrates in-
creased robustness in detection of differentially ex-
pressed (DE) genes and cell subtype classification.

INTRODUCTION

Single cell RNA-seq (scRNA-seq) reveals cellular hetero-
geneity and enables tracing of cell transitions in devel-
opment and disease by gene expression (1-3). However,
scRINA-seq is confronted with two major analysis hurdles
to unleash its full potential. First, the limited sequencing
depth poses special challenges in gene expression quanti-
tation. Second, the confounding technical noise is excep-
tionally high for isolating true signals. These two difficult
issues cast a shadow over quantitation of cell-to-cell tran-
scriptomic variation. Appropriate solutions to these chal-
lenges will not only increase reproducibility but also have
the potential of finding novel biological insights.

To develop a robust analytical method for scRNA-seq,
we incorporated statistical fitting, bias correction, and sig-
nal enhancement (schematic diagram in Supplementary
Figure S1). Previously, we developed a series of statistical
models to separate expression signals from technical bias,
including a generalized Poisson (GP) model (4,5). The GP
model effectively fits position-level read counts and exhibits
advantages over commonly-used negative binomial models.
We included the GP model in our new method BCseq (bias-
corrected sequencing analysis). Consequently, BCseq cor-
rects the bias in expression quantification without the need
to specify the source or format of the bias. The bias estima-
tion is essentially data-adaptive.

After bias correction, BCseq uses joint modeling of mul-
tiple cells to allow information sharing between cells. This
approach takes advantage of a commonality of typical
scRNA-seq experiments profiling multiple similar cells to
delineate signature patterns and identify transcriptome-
based cell subtypes. BCseq lets each cell borrow gene expres-
sion signals from other cells, which is particularly crucial for
experiments with low sequencing depth. To further improve
quantification, we designed a two-step weighting scheme in
BCseq, which assigns a larger weight to a cell with higher se-
quencing depth and achieves an optimal estimator. Finally,
BCseq assigns a quality score for the expression measure of
each gene in each cell.

BCseq is more robust in detection of differentially ex-
pressed (DE) genes than existing scRNA-seq methods.
Rudimentary scRNA-seq analysis applies methods origi-
nally developed for bulk-RNA-seq to call DE genes. More
recently, some statistical methods were specifically designed
for scRNA-seq (reviewed in (6)). Two recent studies com-
pared the performance among different methods regard-
ing DE gene identification from scRNA-seq (7,8). Jaakkola
et al. (7) concluded that ROTS (9) and MAST (10) were bet-
ter than SCDE (11), DESeq (12) and Limma (13). Subse-
quently, MAST, SCDE and edgeR (14) were shown to be
worse than BPSC in Vu et al.’s study (8). We therefore com-
pared BCseq with ROTS and BPSC and found enhanced
performance from BCseq.
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BCseq also shows advantages in classification of cell
types over existing sScCRNA-seq method. We compared clus-
tering results based on quantifications from (i) BCseq, (ii)
traditional gene-level transcript-per-million (TPM) mea-
sures after the STAR alignment (15), (iii) gene-level quan-
tification (i.e. the sum of transcript-level TPM measures
for each gene) after the Kallisto alignment (16) and (iv)
Kallisto’s transcript-compatibility counts (TCC) normal-
ized by total TCC. TCC summarizes read counts mapped
to each set of transcripts, and was reported to perform bet-
ter than the gene- or transcript-level quantification for cell
clustering in scRNA-seq analysis (17). We have found BC-
seq is the best in this comparison.

MATERIALS AND METHODS
Bias correction based on position-level read counts

For each considered gene g, we assumed that the position-
level read counts (Y, ) for cell i and position ¢ follows a GP
distribution with parameters 6; and A; (note that g was ig-
nored in subscripts for brevity):

P Yy =3ig) =00 (6 + pigha) " e g,

where ¢ is from 1 to / and [ represents the gene
length (i.e. total number of nonredundant exonic po-
sitions). The moment estimator for the bias parameter

Aoist A= 1—/7/s?, where j; = Z;Zl yig /1, s} =
22:1 (Vig — 7)* /(I — 1). The average bias estimator across

different cellsis A = Zf;l i / k, where kis the total number
of cells. We performed bias correction for gene-level read
count as: = 10007; (1 — A). Thus x; is the read count
after bias correction and normalized by gene length in kilo-
bases.

Weighting scheme for parameter estimation

We proposed a hierarchical model to the random variable
X; (i.e. the bias- and length-corrected read count for a con-
sidered gene) in cell i with sequencing depth #;:

X;16; ~ Poisson (6;), 6; > 0,

0;la, B ~ Gamma(w, B/n;),a > 0,8 > 0.

Define: p; = x; /n;. Note that n; was calculated as the
sum of bias- and length-corrected read counts (in millions)
across all considered genes. Thus p; is the bias-corrected
TPM measure.

To distinguish different contributions from cells with dif-
ferent sequencing depths, we considered:

. k w;p; k
m=p= Z 1 ’—p’,wherew = Z | Wi
1= w =

ko wi(pr)
myp = Zi:l —w .

Moment estimators for parameters o« and B were ob-
tained by setting m; and my, equal to their expectations
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for given weights: ¢ =

UZlen/

The optimal weight w; to minimize Var(p) for unbiased
p (E (p) = a/p) is the inverse of Var (p;) = “(’3+") . We

therefore proposed the following two-step procedures for
the weighting scheme:

Step 1): Set w; = n;, thus we put larger weights on exper-
iments with higher sequencing depths. We obtained & and
B based on the moment estimation mentioned above.

Step 2) To obtain the minimum variance of p, we set

2 ni
= a( ,3+ - which can be further simplified as w; = T

Thus, we still put larger weights on experiments with higher
sequencing depth. We obtain the final & and § based on the
moment estimation.

w; =

Gene expression quantification

Based on our hierarchical model, the posterior distribu-
tion of 6; follows: Gamma(x; + &, 8/n; + 1). Thus, p; =
0;/n; ~ Gamma(x; + &, 8 + n;). Our final gene expression
estimation in cell 7 is:
A X+ &
E(pl |)C,',O(, ﬂ) : ~
ni+ B

The corresponding quality score is assigned as the infor-
mation entropy of the gamma distribution which is a type
of dispersion measure.

H(pi |xi. &, B) = xi +& —log (n; + p)
+Hlog(I'(xi +@) + (1 —x —@) ¥ (x; +@).

Identification of differentially expressed genes

For DE gene identification, we considered the weighted
mean as well as its variance for each group of cells:

iy +1) /b,

k Zr =1 w2(10g2 (pi +
k—1 w32
Then, the comparison between cell group 1 and cell group

2 is obtained through the consideration of the null situation
that

{ ﬁ)ilogz ([3,

1) —log, (p + 1))

Var (2) =

=50

~ t distribution with
V/Var (3)) + Var (%,)

(Var (21) + Var (%,))

(Var(21))* (Var(~ )
ky—1 + 2

df =

Data processing

The RNA-seq data used in this study are scRNA-seq
from the NCBI GEO database (https://www.ncbi.nlm.nih.
gov/geo/) including mouse dorsal root ganglion neurons
(GSE63576) (18), cells from three Yoruba African (YRI)
human iPSC lines (GSE77288) (19), and cells in the mouse
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Figure 1. Relationship between cell weight and sequencing depth. For each
of the 3005 scRNA-seq, the median weight across all genes was calculated
and plotted against (A) uncorrected sequencing depth (i.e. total number of
mapped reads) or (B) corrected sequencing depth (i.e. n;).

cortex and hippocampus (GSE60361) (20). For the latter
two datasets, we trimmed the first five or six nucleotides and
the following G’s before read mapping, because they repre-
sent unique molecular identifiers. The reads were mapped
by STAR (v2.4.2a) (15) to the mouse reference genome
(GRCm38) with the GENCODE M12 annotation (http:
/Iwww.gencodegenes.org/). Only genes longer than 500 nu-
cleotides were considered to exclude the strong confounding
effect of fragment length. The position-level read count for
each gene was summarized through featureCounts (21). For
comparison, we used the Bioconductor R package ROTS
(v1.2.0) (9) and the R package BPSC (v0.99.0) (19). We used
TPM expression from the STAR alignment as the input for
ROTS and BPSC. The Kallisto (v0.43.0) (6) mapping was
based on GENCODE M12 transcript sequences. The TCC
summarization was obtained by the Kallisto pseudo func-
tion. R packages kernlab (v0.9-25, specc function) (22) and
Rtsne (v0.11) (23) were used for cell clustering and visual-
ization. Our own algorithm of BCseq quantification after
the STAR alignment was written in C. P-value calculation
for DE analysis was obtained by simple R commands.

RESULTS
Cell weight and sequencing depth

Based on our two-step weighting scheme, the weight for
each cell is an increasing function of the corrected sequenc-
ing depth (n;), but not proportional to n;. In_step (1),
we set w; = n; to obtain gene-specific & and B . In step
(2), the final weight is updated as w; = i ﬁi!n,-)' The scat-
terplots in Figure 1 illustrate the relationship between the
final weights and the sequencing depths. Specifically, we
used 3005 scRNA-seq datasets from mouse cortex and hip-
pocampus cells (20). The median weight across all genes
within a cell is plotted against the uncorrected sequencing
depth (i.e. the total number of mapped reads, Figure 1A)
or the corrected sequencing depth (i.e. n;, Figure 1B). The
weight usually increases as the raw sequencing depth in-
creases, and it approached saturation when the raw sequenc-
ing depth is around two million (Figure 1A). Therefore, the
contribution from cells saturates at high sequencing depths.
This coincides with the observations that scRNA-seq li-
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Figure 2. BCseq improves the consistency between two scRNA-seq tech-
nical replicates from the same cell. Comparison of the two technical repli-
cates by (A) original STAR-derived TPM measures and (B) BCseq mea-
sures. Red dots represent dropouts that show high expression in one sample
but zero expression in the other according to TPM measures. (C) Counts
of genes with specified fold change (FC). The fold change is the TMP+1 or
BCseq+1 ratio between two replicates. Different filters based on the BC-
seq quality measures were applied. The three filters are assigned accord-
ing to the first quartile, the median, and the third quartile of all quality
scores. Filter 1: consider genes with quality scores larger than —33.2 (i.e.
first quartile of the quality scores) in both samples. Filter 2: consider genes
with quality scores larger than —0.2 (i.e. median of the quality scores) in
both samples. Filter 3: consider genes with quality scores larger than 1.5
(i.e. third quartile of the quality scores) in both samples.

braries are close to saturation when raw sequencing depth
is around 1~2 million (24,25). As expected, the weight in-
creases monotonically when the corrected sequencing depth
increases (Figure 1B).

Accurate quantification and quality score assignment for gene
expression measures of scRNNA-seq

The lack of gold standard for single cell expression quan-
tification makes it difficult to evaluate the performance of
any analysis tool. Perhaps the best strategy to date was from
Li et al. who carefully divided the transcriptome of a sin-
gle neuron into two parts, as technical replicates, for sepa-
rate sSCRNA-seq profiling (18). Ideally, expression measures
of each gene from two technical replicates should be the
same, since the RNA-seq libraries are sampled from the
same cell. However, traditional TPM measures without bias
correction led to many dropouts (red dots in Figure 2A,
i.e. genes exhibiting non-negligible expression in one library
and zero expression in the other library). The zero expres-
sion of a dropout is most likely due to sample loss during li-
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brary preparation. These dropouts confound identification
of truly differentially expressed genes, so require special at-
tention.

Our BCseq model effectively handles these dropouts and
decreases overall noises. BCseq utilizes information shared
by the profiled cells (~200 neurons in (18)) to derive a base-
line expression level, which compensates for the effect of
dropouts. The adjusted expression values from BCseq were
more consistent between the two technical replicates, partic-
ularly for genes of lower expression (Figure 2B). As a result,
less differentially expressed genes were identified between
the two technical replicates. A total of 126 gene showed ex-
pression fold change >2 based on TPM measures following
the STAR alignment, whereas only 85 genes met the same
criterion based on BCseq measures (Figure 2C). The su-
perior performance of BCseq between technical replicates
was ubiquitous across a wide range of thresholds in deter-
mining differential expression (Figure 2C). Other normal-
ization methods such as the trimmed mean of M values
(TMM) (26) was applied for the fold change calculation.
BCseq still identified the least number of DE genes (Supple-
mentary Table S1). The advantage of BCseq measures was
also independent of aligners, as BCseq outperformed TPM
measures from the Kallisto alignment (Supplementary Fig-
ure S2).

BCseq assigns a quality measure to each expression esti-
mation as an objective quality control parameter for down-
stream analysis. The quality measure is based on informa-
tion entropy, which reflects the dispersion of the posterior
distribution for gene expression in our modeling. By filter-
ing out genes of low quality scores, we obtained more con-
sistent expression values between the two technical repli-
cates, and fewer genes exhibited expression fold changes
(Figure 2C). Increasing the threshold for the quality mea-
sure (from filter 1 to filter 3) progressively improved the con-
sistency between two replicates. Thus, the quality measure
provides valuable information to guide selection of genes
for downstream analysis.

Robust and powerful DE gene analysis of scRNA-seq

We compared BCseq to existing sScRNA-seq analysis meth-
ods regarding identification of DE genes. Specifically, ROTS
and BPSC were selected because they had been reported to
be the best available tools for DE gene identification from
scRNA-seq data (7,8). The current practice in the field uti-
lizes scRNA-seq data mainly for comparison of cell type (or
subtype) groups, where each cell group consists of a popu-
lation of similar cells. In other words, the goal of DE gene
analysis is to discern the difference between cell groups us-
ing their ‘averages’. Therefore, ‘bulk’ RNA-seq of a homo-
geneous cell group is a valid benchmark and probably the
best standard. The comparison of two ‘single’ cells is less
meaningful, because the derived information may not be
generalized to other individual cells. Furthermore, compar-
ison of two ‘single’ cells hardly has technical replicates for
validation, because the cells would have been consumed by
the scRNA-seq experiment.

We chose the RNA-seq data set from Tung et al’s study
of three iPSC lines derived from three YRI individuals
(NA19098, NA19101, and NA19239), which was specifi-
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cally designed to study batch effect and scRNA-seq vari-
ance (19). In this well-designed data set, each cell line
has 288 homogenous single-cell biological replicates exper-
imented in the same condition but collected from three dif-
ferent 96-well plates (herein referred to groups 1, 2 and 3,
Figure 3A). Thus, each cell line has three plate groups and
each group has 96 replicates of scRNA-Seq. Three addi-
tional bulk RNA-seq replicates were also produced from a
homogenous population of each cell line.

False positives could be one of the biggest concerns in
scRINA-seq analysis. We studied the false positive issue by
comparing homogenous cell groups of the same cell line. We
conducted three pair-wise group comparisons (‘1 versus 2’,
‘1 versus 3” and ‘2 versus 3’°) for each cell line (Figure 3A).
Given this is a group comparison of the same cell line, a
small number of differentially expressed genes (i.e. false pos-
itives) is expected. Surprisingly, ROTS and BPSC identified
as large as a thousand of differentially expressed genes with
P-value < 0.01 (Figure 3B), many of which were presumably
false positives. In contrast, BCseq identified drastically less
false positives (Figure 3B). Application of a different sta-
tistical cutoff (FDR < 0.01) obtained the same conclusion
(Figure 3C), suggesting the superior performance of BCseq
was independent of statistical cutoffs. When a fold change
of >2.0 is further applied, the conclusion remains the same
(Supplementary Figure S3).

To assess the statistical power, we examined DE genes be-
tween different cell lines. First, we estimated the number of
false positives by comparing plate groups of the same cell
lines (‘1 versus 2°, ‘1 versus 3’ and ‘2 versus 3’). We then
estimated the number of true positives as the total number
of declared DE discoveries minus the number of estimated
false positives (Figure 3A). As shown in Figure 4, BCseq al-
ways identified more true positives showing larger statistical
power than other methods.

Because the bulk-cell RNA-seq had larger sequencing
depths to compare cell lines, the identified DE genes could
be more accurate and serve as a benchmark. Note that the
‘bulk” RNA-seq used in our analysis profiled a homoge-
nous cell population derived from a single cell clone instead
of a heterogeneous population. Pair-wise comparison of
NA19098, NA19101, and NA19239 using bulk-cell RNA-
seq generated three lists of high-confident DE (true positive)
and non-DE (true negative) genes between each pair. Subse-
quently, DE genes based on 288 (3 x 96) scRNA-seq of each
cell line were identified by BCseq, ROTS and BPSC, sepa-
rately. A more robust scRNA-seq analysis method should
recover more true positives, given a specific false positive
rate. As shown by the ROC curves in Figure 5, we observed
widespread better performance from BCseq than ROTS
and BPSC. When we considered genes with mean TPM > 1
in the bulk RNA-seq for each cell line pairs, the superiority
of BCseq was even more obvious (Figure 5SD-F). Thus, BC-
seq exhibits clear advantages over other methods in identi-
fying DE.

Cell clustering

To test whether gene expression quantification from BC-
seq is sufficient for accurate cell type clustering, we chose
the scRNA-seq dataset from mouse cortex and hippocam-
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as the average number of false positives for the within-cell line comparison. (A) Different P-value cut-offs for the DE analysis. (B) Different FDR cut-offs

for the DE analysis.

pus because their cell type information was available (20).
In Zeisel et al. (20), 3005 cells have been carefully sepa-
rated into nine major classes or 47 subclasses based on
known molecular markers and transcriptome profiling. In
Figure 6A, we performed the t-SNE (23) dimension reduc-
tion and visualization with the BCseq expression values.
BCseq clearly preserves the information necessary for accu-
rate cell clustering. To test BCseq’s robustness, we stressed
the clustering by reducing sequencing depth. Strikingly, cell

type separation based on BCseq was not affected by reduc-
ing input reads to only 10%, 5% or 1% total mapped reads
(e.g. Figure 6B-D).

To further study the capability of BCseq to detect cell
subtypes, we performed the spectral clustering (22) and cal-
culated F1 and G scores to evaluate clustering strengths
based on BCseq, STAR-derived TPM, Kallisto (gene-
level expression), and TCC-Kallisto (normalized transcript-
compatibility counts from Kallisto). F1 and G scores are
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Figure 5. Comparison of BCseq, ROTS and BPSC in DE analysis between different cell lines. ROC curves were based on ‘gold standards’ identified from
bulk RNA-seq data. Each cell line (NA19098, NA19101, and NA19239) contains three bulk RNA-seq replicates with large sequencing depth. T-tests of
DE genes were performed for each cell line pair. Genes with a P-value < 0.01 are treated as true positives and genes with a P-value > 0.1 are treated as true
negatives. DE analysis of scRNA-seq was performed by BCseq, ROTS, and BPSC, respectively. Each cell line contains 288 scRNA-seq. (A-C) all genes
were considered. (D-F) only genes with average TPM measures across the three bulk RNA-seq replicates >1 for both cell lines were considered.

harmonic and geometric means, respectively, of recall and
precision, which are commonly used to evaluate classifica-
tion accuracy. To increase the robustness of the comparison,
we tested multiple scenarios altering the number of centers
to be 9 or 47 as the original study classified these cells into
nine major groups or 47 subclasses. Additionally, we var-
ied the read number threshold of including cells into the
F1 and G score calculation (i.e., all selected cells, or only
cells with >250k, >500k, >750k or >1M mapped reads).
We randomly selected one third of cells for spectral cluster-
ing and F1/G score calculation. The analysis was repeated
50 times to derive the means and standard deviations of F1
and G scores. As shown in Figure 7, the clustering perfor-
mance based on BCseq is the best among the four measure-
ments.

DISCUSSION

ScRNA-seq analysis is hurdled by non-uniform read distri-
bution, limited sequencing depth, and transcript loss during
library preparation. BCseq tackled these challenges from
multiple aspects. BCseq corrects inherent biases of RNA-
seq via generalized Poisson modeling. BCseq takes advan-
tage of large sample size in a typical scRNA-seq design to
improve signal-to-noise ratio by allowing cells to borrow in-
formation from others. The two-step weighting scheme ef-

fectively assigns larger weights to cells of higher sequencing
depth, which results in minimum variance for the estima-
tor p (i.e. bias-corrected TPM measure). Note that BCseq
does not over-use ‘saturated’ cells containing more than 2
million reads. The posterior distribution of gene expression
(pilx;, @, B ) incorporates baseline expression across multi-
ple cells into individual cell-specific expression. These pro-
cedures benefit rescuing genes that are lost during library
preparation.

In our bias correction, the generalized Poisson (GP) dis-
tribution assumes an underlying Poisson process with rate
6 and a departure from the Poissonicity represented by the
parameter A. To understand the application of GP distri-
bution in RNA-seq data analysis, we can treat an RNA-
seq experiment as a branching process in which (i) the to-
tal number of RNA molecules in a sample is large, (ii) the
probability of being selected to be amplified and sequenced
is small for each molecule, (iii) each selected molecule be-
comes a spreader (biased to be more or less sequenced), (iv)
the number of members in the group where each spreader is
likely to spread is large. Then the total number of sequenced
molecules in each group follows a GP distribution (27).

Although alternative splicing could result in uneven read
distribution, but its contribution is significantly smaller
than the RNA-seq experimental bias. We applied real data
to test the impact of alternative splicing (more details in
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Figure 6. T-SNE clustering and visualization of brain cells based on BCseq measures. (A) 100% mapped reads, (B) 10% of mapped reads, (C) 5% of mapped
reads and (D) 1% of mapped reads were tested separately. BCseq accurately clusters cell subtypes in each scenario.

Supplementary Text). We found that the correlation be-
tween the read distribution heterogeneity and the expres-
sion was as high as 0.76. However, the correlation between
the heterogeneity and the number of annotated alterna-
tive transcript isoforms was only 0.06. Therefore, the major
contributor to the read count heterogeneity is experimental
bias. Additionally, our studies of false positives based on
scRNA-seq replicates show that BCseq outperforms other
methods for both single-isoform genes and multi-isoform
genes (Supplementary Figures S4 and S5). Therefore, our
handling of the bias is still valid without consideration of
alternative splicing. If a large number of alternative splicing
events are suspected for a certain experiment, users could
simply use constitutive exons and exclude alternative exons
for the analysis.

The comparisons of BCseq to existing methods demon-
strate the robustness of BCseq. Due to high noises and
non-uniform read distribution of scRNA-seq, high false
positives in DE analysis remain a significant challenge, as
highlighted by the analysis of homogenous cells from the
same iPS cell clone (Figure 3). With the best reported meth-
ods (ROTS and BPSC), falsely declared differentially ex-
pressed genes were in thousands (P-value < 0.01) or hun-
dreds (FDR < 0.01). BCseq significantly reduced the num-
ber of false positives (Figure 3). The true positive (Figure
4) and ROC analysis further (Figure 5) demonstrated the

robustness of BCseq on both false positive control and sta-
tistical power.

The more accurate single-cell transcriptome comparison
is essential for the detection of cell-to-cell variation. In-
deed, BCseq is the best among all considered measurements
to produce robust cell clustering, as assayed by F1 and G
scores (Figure 7). We note that current cell clustering ap-
proaches are still imperfect to detect subtle subtypes from
similar cells. For example, the F1 score for the cluster analy-
sis of 47 centers is much smaller than for the cluster analysis
of nine centers (0.2 versus 0.6 in Figure 7), indicating a need
for more powerful clustering methods.

In addition to improving expression quantification, we
included a quality measure based on information entropy.
The information entropy reflects the dispersion of the poste-
rior distribution for gene expression p;, which provides use-
ful information for prioritizing gene candidates and down-
stream analysis. For example, in addition to P-values and
fold changes, users can include the information-entropy-
based quality measures to prioritize DE genes (e.g. genes
with high quality measures).

In summary, we propose BCseq for accurate gene expres-
sion quantification of scRNA-seq. BCseq is a powerful tool
that significantly improves DE analysis and cell clustering
of scRNA-seq experiments.
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Figure 7. Evaluation of clustering performance. One third of cells were randomly selected each time and the spectral clustering was repeated 50 times.
Spectral clustering was performed on the sampled cells with (A, C) 47 centers or (B, D) nine centers. F1 score (A and B) and G score (C and D) were
calculated based on the precision and recall values. We counted each cell pair as true positive (tp) or false positive (fp) based on whether they were correctly

clustered together. We also counted true negatives (tn) and false negatives (fn) based on whether a cell pair was correctly assigned to different clusters.
Precision is calculated as 7 + f - Recall is calculated as 7 4 / .Then F1 = 2%% and G = /precision * recall. Five scenarios of cell inclusion for
F1 and G score calculatlon are presented: all selected cell pairs (‘all’), cell pairs with more than 250k, 500k, 750k and 1M mapped reads per cell. The mean

and standard deviation of F1 and G scores are shown.
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