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Background: The variability of responses to plasticity-
inducing repetitive transcranial magnetic stimulation 
(rTMS) challenges its successful application in psychiat-
ric care. No objective means currently exists to individu-
ally predict the patients’ response to rTMS.  Methods:  We 
used machine learning to develop and validate such tools 
using the pre-treatment structural Magnetic Resonance 
Images (sMRI) of 92 patients with schizophrenia enrolled 
in the multisite RESIS trial (http://clinicaltrials.gov, 
NCT00783120): patients were randomized to either active 
(N = 45) or sham (N = 47) 10-Hz rTMS applied to the left 
dorsolateral prefrontal cortex 5 days per week for 21 days. 
The prediction target was nonresponse vs response defined 
by a ≥20% pre-post Positive and Negative Syndrome Scale 
(PANSS) negative score reduction.  Results: Our models 
predicted this endpoint with a cross-validated balanced 
accuracy (BAC) of 85% (nonresponse/response: 79%/90%) 
in patients receiving active rTMS, but only with 51% 
(48%/55%) in the sham-treated sample. Leave-site-out 
cross-validation demonstrated cross-site generalizability of 
the active rTMS predictor despite smaller training samples 
(BAC: 71%). The predictive pre-treatment pattern involved 
gray matter density reductions in prefrontal, insular, 

medio-temporal, and cerebellar cortices, and increments 
in parietal and thalamic structures. The low BAC of 58% 
produced by the active rTMS predictor in sham-treated 
patients, as well as its poor performance in predicting pos-
itive symptom courses supported the therapeutic specificity 
of this brain pattern.  Conclusions: Individual responses 
to active rTMS in patients with predominant negative 
schizophrenia may be accurately predicted using struc-
tural neuromarkers. Further multisite studies are needed 
to externally validate the proposed treatment stratifier 
and develop more personalized and biologically informed 
rTMS interventions.

Key words:   schizophrenia/repetitive transcranial 
magnetic stimulation/neuroanatomical pattern 
classification/machine learning/voxel-based 
morphometry/treatment outcome prediction/response 
heterogeneity

Introduction

Repetitive transcranial magnetic stimulation (rTMS) 
offers unique possibilities for the induction of long-term 

mailto:nikolaos.koutsouleris@med.uni-muenchen.de?subject=
http://clinicaltrials.gov
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excitability and plasticity changes at the neural-sys-
tems level.1 Due to these plasticity-inducing proper-
ties, rTMS has been systematically evaluated as a novel 
treatment option for various neuropsychiatric disorders. 
Encouraging therapeutic effects were reported in stroke,2,3 
depression,4 and schizophrenia5—however with equivo-
cal results particularly in the latter disorder.5–13 This het-
erogeneity may result from genetic,14 neuroanatomical,15 
neurofunctional,16 connectivity-based,17 and sociodemo-
graphic factors18 mediating the variability of rTMS effec-
tiveness, but none can yet explain the large variability 
observed at the single-patient level. The discovery and 
validation of such rTMS response predictors operating 
reliably in the individual patient could increase effec-
tiveness and broad applicability of rTMS. Furthermore, 
identifying neuromarkers of rTMS-related treatment 
outcomes may elucidate pathophysiological mechanisms 
that control impaired neural plasticity in mental disor-
ders,19 thus propelling biologically informed, and hence 
more targeted noninvasive brain stimulation strategies.

Using longitudinal structural neuroimaging, we 
recently showed that outcome heterogeneity may emerge 
from the affected brain’s varying capacity to structurally 
adapt hippocampal-precuneal brain networks following 
a plasticity-inducing rTMS intervention.20 This observa-
tion may point to a link between the longitudinal varia-
bility of treatment-induced dynamic brain changes and 
the cross-sectional structural and functional brain heter-
ogeneity of the “group of schizophrenias”.21,22 Recently, 
this heterogeneity has been decomposed using cognitive 
and electrophysiological clustering, revealing distinct 
biotypes associated with different degrees of clinical 
impairment and structural brain alterations.23 Similarly, 
a recent study deconvolving depression into 4 biotypes 
by clustering resting-state functional MRI data showed 
that these biotypes confer highly different response likeli-
hoods to rTMS.24 Hence, these links between cross-sec-
tional heterogeneity and therapeutic outcome variability 
raise the intriguing possibility that pre-treatment neu-
roanatomical signatures may be harnessed to predict 
rTMS-induced treatment outcomes in patients with 
severe mental illnesses.

Machine learning applied to the baseline structural 
Magnetic Resonance Images (sMRI) of patients with 
major depression has already demonstrated potential to 
predict response to electro-convulsive therapy (ECT) at 
the single-subject level.25 Similarly, pattern recognition 
techniques were recently reported to successfully predict 
therapeutic outcomes of ECT in patients with schizo-
phrenia using resting-state functional MRI.26 In contrast 
to classical univariate statistics, machine learning algo-
rithms can sift the complex brain patterns underlying 
neuropsychiatric disorders for clinically relevant predic-
tive fingerprints.27,28 However, major unresolved chal-
lenges question these translational claims, particularly 

concerning the current lack of investigations assessing 
the proposed biomarkers’ specificity for chosen treatment 
and outcome endpoints based on randomized clinical 
trial designs, or validating their generalizability across 
sites, scanners, and populations.29

Based on the currently largest study database of 
patients who received “Repetitive Transcranial Magnetic 
Stimulation (rTMS) for the Treatment of Negative 
Symptoms in Schizophrenia (RESIS),”6 we tested for the 
first time whether machine learning enables the single-sub-
ject prediction of rTMS-induced therapeutic responses 
in schizophrenia with predominant negative symptoms 
based on single-timepoint sMRI data recorded prior to 
treatment start. Leveraging the multisite, randomized, 
double-blinded, placebo-controlled, multiple-timepoint 
design of the RESIS trial,6 we probed the proposed mod-
els’ treatment and outcome specificity, their temporal sta-
bility in differentiating good vs poor responders, as well 
as their leave-site-out generalizability.

Methods

Study Subjects and Endpoints for Individualized 
Prediction

Patients with an ICD-10 diagnosis of schizophrenia 
enrolled in RESIS met the following criteria: Positive and 
Negative Syndrome Scale (PANSS) Negative Subscore 
(PANSS-NS) > 20 points, 1 PANSS-NS item ≥4, no 
PANSS-NS reduction ≥10% in the 14 days before treat-
ment start, and an illness duration of ≥1  year.6 From 
the Intention-To-Treat (ITT) population (N  =  157), 96 
patients had pre-treatment sMRI (active/sham rTMS: 
N = 45/47) and primary PANSS-NS outcome endpoints 
defined as follows6,30: ∆PANSS–NS% = (PANSS–NST1 
– PANSS–NST0) * 100/(PANSS–NST0 – 7). PANSS-NS 
response was defined as ≥20% improvement between base-
line and day 21.6,9,30 Accordingly, patients were assigned 
to response or nonresponse groups, with assignments 
serving as targets for the machine learning analyses. The 
same approach defined a PANSS positive (PANSS-PS) 
endpoint based on the respective pre-post score change.

Intervention

Patients received either 10 Hz active or sham rTMS 
applied to the left DLPFC according to the EEG-10–20 
system (F3-electrode, 5 sessions/wk during the 3-week 
period, 1000 stimuli/d, 50 stimuli/train) with 110% of the 
individual resting motor threshold (RMS).6 Clinical data 
were recorded before stimulation (baseline/T0) and after 
day 21 (T1), day 28 (T2), day 45 (T3) and day 105 (T4) 
(supplementary figure 1). As reported previously, in the 
ITT population no significant differences in the primary 
outcome, other clinical outcomes and cognition could be 
detected between active and sham rTMS.6,9
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MRI Imaging Data Acquisition and Processing

Structural MR images were obtained on two 3T systems 
(Siemens Trio) and one 1.5T system (Siemens Sonata) 
using T1-weighted sequences.20 All images were qual-
ity-controlled (N.K.) and 4 subjects had to be removed 
due to poor image quality. The sMRI of the remain-
ing 92 patients underwent automated tissue segmen-
tation and high-dimensional stereotactic registration 
with Diffeomorphic Anatomical Registration Through 
Exponentiated Lie Algebra (DARTEL),31 producing gray 
matter density (GMD) images registered to the MNI-152 
template and smoothed with an 8 mm Gaussian kernel. 
We did not modulate the GMD images with the Jacobian 
determinants obtained from DARTEL as this step may 
decrease the sensitivity of voxel-based morphometry to 
detect mesoscopic brain alterations due to “multiplicative 
noise,” ie, the interindividual macroscopic brain shape 
differences captured by the Jacobian determinants.32 
We tested the effects of modulation in a supplementary 
analysis (see below). Further image acquisition and pre-
processing details are described in the supplementary 
methods.

Neuroanatomical Pattern Classification
We generated 3 overall predictive models using our 
freely available machine learning tool NeuroMiner 
(https://www.pronia.eu/neurominer/): one to predict 
the PANSS-NS response criterion in patients receiv-
ing active rTMS, and—to validate model specificity—
one to predict this endpoint in sham-treated patients, 
and a third model to predict PANSS-PS outcomes 
in active rTMS. As in our previous work33,34 and rec-
ommended for predictive modeling,35 we employed 
repeated nested cross-validation with 10 permuta-
tions × 20 folds at the outer cross-validation cycle, 
and 1  ×  19 folds at the inner cycle to prevent infor-
mation leaking between patients used for training, 
testing, and validating our models. This enabled the 
unbiased estimation of  these models’ generalizability 
to new patients. Following preprocessing steps were 
applied to each inner partition of  the nested cross-
validation cycle (supplementary methods): First, 
the GMD training data were standardized based on 
their voxel-level mean and SDs. Standardized data 
were site-adjusted using an established multivariate 
correction method36: Principal Component Analysis 
(PCA) reduced the training patients’ standardized 
GMD images to 20–25 principal components (PCs), 
accounting for 80% of  the variance in the images.37 
Then, analysis of  variance (ANOVA) fitted 3 predic-
tors encoding the training subjects’ site membership 
to their loadings on each PC. PCs explaining the site-
encoding design matrix with R2 > .16 were removed 

from the training data. Finally, processed training 
data were scaled feature-wise from 0 to 1. Then, stan-
dardization, PCA-based dimensionality reduction, 
PC removal, and scaling parameters were applied to 
the respective test and validation subjects’ data.

In each training sample, we used the linear Support 
Vector Machine (SVM)38,39 to detect a decision bound-
ary that predicted patients’ outcome class  in given 
rTMS treatment arm using their site-adjusted PCA 
scores. All SVM models originating from an inner-cross 
validation cycle were then combined into an ensemble 
predictor,40 which was applied to the respective outer-
cycle validation patients. This process was repeated 
across all outer-cycle partitions of  the repeated nested 
cross-validation design and for each validation patient 
the obtained SVM decision scores were integrated into 
a probabilistic ensemble prediction using majority 
voting. The GMD baseline signature predicting sub-
sequent response vs nonresponse to active rTMS was 
described in figure 1.

We performed additional analyses to test model sig-
nificance, generalizability and therapeutic specificity: 
First, we determined whether the observed prediction 
performances of the active and sham predictors signifi-
cantly differed from a null distribution of the respec-
tive outcome labels by training and cross-validating 
SVM models on n  =  1000 random label permuta-

tions.41 Model significance was defined at α  =  .05 

as P n
i

n
= <

=

=∑ ( ) /BAC BACobserved permuted1

1000
, where 

BAC
sensitivity specificity= +( )

2
. Second, we assessed 

the models’ generalizability by implementing a leave-site-
out (LSO) approach: each of the 3 study sites was itera-
tively held back for validation, while the remaining data 
entered the inner cross-validation cycles. We observed 
that the LSO classifiers showed lower prediction perfor-
mances in the active rTMS condition than the pooled 
classifier (table 2). Neuroanatomical outcome probabili-
ties and Receiver-Operating Characteristics (ROC) plots 
generated by the 3 LSO classifiers on the held-back sites 
are presented in figure 2B along with the respective charts 
of the pooled cross-validation experiment (figure 2A). To 
assess whether this performance drop was due to residual 
site effects, or, alternatively due to the lower training sam-
ple sizes available in the LSO experiments, we trained LSO 
predictors on n = 1000 permutations of the patients’ site 
memberships. We rejected the null hypothesis of original 
LSO predictors having an equal or higher prediction per-
formance than the permuted predictors at α = .05, where 

P n
i

n
= ≥( )=

=∑ BAC BACLSO LSOobserved permuted
/

1

1000
. Third, we 

tested the treatment and outcome specificity of the active 
rTMS predictor, by measuring its prediction performance 

https://www.pronia.eu/neurominer/
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in sham-treated patients, and by comparing it against the 
PANSS-PS outcome predictor.

Further supplementary analyses were carried out in the 
active rTMS group to explore whether the analysis of (1) 
global gray matter, white matter, cerebrospinal fluid, and 
total intracranial volumes, or (2) modulated voxel-level 
GMD maps provided similar predictive performance as 
the analysis of unmodulated, voxel-level GMD maps 
(supplementary figure 5 and supplementary table 3). In 
addition, we assessed whether standard mass-univariate 
analysis methods detected a similar pattern of GMD 

differences between nonresponders vs responders as the 
multivariate pattern recognition pipeline described above 
(supplementary figure 6).

Post hoc Analyses

As only the active rTMS outcome prediction model was 
significant in the permutation analysis (see Results sec-
tion), we performed a series of post-hoc analyses using 
SPSS 23 (IBM; significance level: α = .05) to evaluate 
(1) how well the patients’ neuroanatomical nonresponse 

Fig. 1.  Reliability of the baseline gray matter density pattern predicting subsequent response vs nonresponse to active repetitive 
transcranial magnetic stimulation (rTMS). The reliability of the gray matter density (GMD) pattern elements was measured in terms of 
a Cross-Validation Ratio (CVR) map [CVR = mean(w) / standard error(w)], where w are the weight vectors of the 5111 Support Vector 
Machine (SVM) models generated in the study’s repeated nested cross-validation setup]. The CVR map was thresholded at a CVR of 
±3, corresponding to an alpha level of .01 reliable areas of GMD reduction in non-responders (NON-RESP) vs responders (RESP) are 
shaded in red colours, whereas areas of GMD increments are painted in green. The open-source 3D rendering software MRIcroGL (C. 
Rohrden) available at https://www.nitrc.org/projects/mricrogl/ was used to overlay the CVR map on the MNI single-subject template.

https://www.nitrc.org/projects/mricrogl/
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likelihoods generated by this classifier predicted their 
continuous PANSS score changes measured between T0 
and T1, and (2) whether the classifier’s stratification effect 
observed at T1 delineated rTMS after-effects that extended 
to the T3 and T4 time points. For the former analysis, 
we calculated the Spearman’s ρ correlation between the 
patients’ neuroanatomical nonresponse likelihoods and 
PANSS-NS change scores (figure 3A). For the latter, we 

performed a linear mixed model analysis by modeling the 
effects of the within-subject factor “TIME” (T0, T3 and 
T4) and the fixed between-subject factor ”PREDICTED 
OUTCOME” (response vs nonresponse prediction) on 
the dependent PANSS-NS score variable. We did not 
include the T1 (day 21) and T2 (day 28) examinations into 
the mixed model to avoid re-fitting the predicted outcome 
trajectories to the target endpoint of the machine learning 

Fig. 2.  Sorted neuroanatomical nonresponse likelihoods of patients treated with active repetitive transcranial magnetic stimulation 
(rTMS) (A1). For each patient in study population the active rTMS outcome predictor generated ensemble-based out-of-training 
probabilities of belonging to the nonresponse group (y axis). The figure shows these likelihoods sorted in ascending order, with red-
colored subjects indicating misclassifications. Using these outcome predictions, a Receiver-Operating Characteristic (ROC) analysis was 
conducted (A2). Based on the patients identified as support vectors by the Support Vector Machine (SVM) algorithm, voxel-level mean 
and standard deviation maps were computed and used to standardize patients in the active rTMS group. The standardized maps were 
separately averaged for the 2 prediction groups to illustrate the quantitative baseline gray matter density (GMD) differences between 
patients with predicted nonresponses (top) vs responses (bottom) to active rTMS. The bottom panel of the figure shows the sorted 
outcome probabilities and misclassification (circles) for each of the 3 RESIS sites (B1) as well as the respective ROCs and Areas-under-
the-Curve (AUC; B2).
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analysis and its closest follow-up interval (1-wk differ-
ence). The factor “‘SITE” was entered as random factor 
in the design. Additionally, we assessed the specificity of 
the PANSS-NS outcome predictor’s longitudinal stratifi-
cation effect by comparing it against mixed models which 
used the PANSS positive, GAF, and MADRS scores at 
T0, T3 and T4, instead of the PANSS-NS as dependent 
variables (supplementary analyses). Finally, we performed 
a supplementary regression analysis to explore whether 
the neuroanatomical response likelihoods of the patients 
randomized to active rTMS were significantly (α = .05) 
associated with the longitudinal hippocampal-precuneal 
volume increases reported previously.20

Results

Sociodemographic and Clinical Data
PANSS-NS did not differ between treatment groups at 
baseline and at T1 (t(90) ≤ 0.853, P ≥ .396) as previously 
shown in the ITT population.6 Similarly, we did find not 
find other clinical baseline differences except for higher 
PANSS-PS scores in active rTMS and similar trend effects 
in the PANSS general and PANSS total scores (table 1). 
Treatment responses observed in our MRI sample also 
agree with the ITT analysis, with both treatment groups 
improving similarly over time (PANSS: all F ≥ 10.51, all P ≤ 
.002; MADRS: F(1,89) = 17.27, P < .001; GAF: F(1,83) = 16.24, 
P < .001; supplementary table  2). Distributions of 

PANSS-NS responders and nonresponders were equal 
across rTMS conditions (active vs sham rTMS respond-
ers/nonresponders: 21/24 vs 22/25; χ(1)

2 0 001< . , P = .989). 
PANSS-PS scores were significantly higher in the active 
rTMS condition at baseline (t(87) = 2.565, P =  .012), but 
not at day 21 (t(87) = 0.876, P = .383).6

Neuroanatomical Prediction Performance

The MRI-based outcome classifier trained on the active 
rTMS group correctly separated PANSS-NS nonre-
sponders from responders with a cross-validated balanced 
accuracy (BAC; sensitivity, specificity) of 84.8% (79.2%, 
90.2%; table 2), resulting in Area-Under-the-Curve of 
0.92 (figure 2) and a positive Likelihood Ratio of 8.3. 
Hence, a positive/negative prediction increased a patient’s 
nonresponse/response likelihoods by +37.1%/+32.5%, 
summing up to a gain in prognostic accuracy of +69.6%. 
In contrast, the supplementary prediction analysis using 
global and total-intracranial volumes provided a cross-
validated BAC of 66.7% (Sensitivity: 66.7%, Specificity: 
66.7%; supplementary table 3). The lowest prediction per-
formance (BAC: 60.1%, Sensitivity: 58.3%, Specificity: 
61.9%) was observed when modulated GM maps were 
used instead of GMD maps.

The neuroanatomical pattern predicting subsequent 
nonresponse to active rTMS particularly involved relative 
GMD reductions in the (1) dorsomedial and ventromedial 

Fig. 3.  (A) Correlation analyses between patients’ neuroanatomical likelihood of nonresponse to active (top) and sham (bottom) TMS 
and PANSS-NS absolute score changes measured between T0 and T1. (B) Descriptive absolute PANSS-NS trajectory graphs of patients 
with predicted nonresponse (red) vs response (green) to active (top) vs sham (bottom) repetitive transcranial magnetic stimulation 
(rTMS) spanning from baseline to day 105 follow-up examinations. Here, the T1 timepoint (day 21) was included in the figure for 
visualization purposes.
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prefrontal, frontopolar and cingulate cortices, (2) the 
insular, opercular, temporopolar and medial temporal 
cortices, and (3) the cerebellum (figure 1). Increased base-
line GMD predicting nonresponse was observed in the 
left-hemispheric somatosensory and parietal cortices 
with extensions to the lateral temporal and premotor 
structures, as well as in the thalamic nuclei, bilaterally. 
This pattern of relative GMD reductions and increments 
was much more extended than the differences detected 
by the univariate GMD analysis (supplementary figure 
6). There, we found only cerebellar and circumscribed 
medial prefrontal and frontopolar GMD reductions to 
be associated with subsequent nonresponse to rTMS. 
Permutation analysis showed that the BAC generated 
by the machine learning-based pattern was significant at  
P < .001. Furthermore, this pattern specifically separated 
nonresponders from responders in the active, but not in 
the sham treatment group: the trained active rTMS pre-
dictor’s BAC measured 57.5% (56.0%, 59.1%; table 2) in 
the latter patients. Moreover, our machine learning pipe-
line produced an accurate predictor for the PANSS-NS 
endpoint, but not for PANSS-PS (BAC = 35.9%; table 2). 
Finally, the active rTMS predictor was not significantly 
moderated by sociodemographic and clinical variables, 
antipsychotic treatment intensity (chlorpromazine equiv-
alents) at baseline and over the treatment period, type 

of psychopharmacological treatment (clozapine, antide-
pressants, mood stabilizers), as well as the scalp-to-cortex 
distances of Brodmann Areas 9 and 46, or the left resting 
motor threshold (RMT) (table 3).

When validating the active rTMS model’s LSO general-
izability, we measured an overall BAC (sensitivity, specific-
ity) of 71.1% (70.8%, 71.4%; P < .001; table 2). The lowest/
highest BAC of 64.1%/100% (each P < .05) was observed 
when the 22/6 patients from Regensburg/Duesseldorf 
were used for LSO validation (49%/13.3% of the active 
rTMS sample). These performances did not differ from 
the BACs obtained in the 1000 random permutations of 
the patients’ site membership (all P > .35, table 2) indicat-
ing that the BAC drop between pooled and LSO analysis 
was due to smaller training samples and not residual site 
effects. Finally, in contrast to the active rTMS outcome 
classifier, the predictive model trained on the sham rTMS 
sample produced a BAC of 51.3% (48.0%, 54.6%), which 
was nonsignificant and non-generalizable (table 2).

Neuroanatomical Nonresponse Likelihoods Relating to 
Outcome Trajectories

The neuroanatomical response probabilities obtained 
from the active rTMS predictor explained 34% of 
the variance in the PANSS-NS changes measured 

Table 1.  Sociodemographic and Clinical Differences at Baseline Between Patients Treated With Active vs Sham rTMS

Active rTMS 
(n = 45)

Sham rTMS 
(n = 47)

Active vs Sham

χ2 df P

Sociodemographic variables
  Gender (male: female) 39:6 37:10 1.010 1 .315a

  Site (Goettingen: Regensburg: Duesseldorf) 17:22:6 17:22:8 0.242 2 .886a

  Hand preference (right: not right) 39:5 39:6 0.080 1 .778a

Mean SD Mean SD t

Age (y) 34.00 9.93 35.64 9.37 0.814 90 .418b

Education (y) 11.43 1.91 11.34 2.13 0.215 89 .830b

rTMS functional and anatomical parameters
  Left Resting Motor Threshold (RMT) 46.72 10.31 47.95 11.78 0.519 85 .605b

  Scalp-to-cortex distance BA 9 (mm) 16.27 2.16 16.68 1.92 −0.951 90 .344b

  Scalp-to-cortex distance BA 46 (mm) 16.28 2.43 16.90 2.50 −1.211 90 .299b

Severity of illness and treatment
  PANSS negative symptoms 26.31 4.45 25.91 4.42 0.428 90 .669b

  PANSS positive symptoms 14.41 4.33 12.36 3.15 2.565 87 .012*b

  PANSS general symptoms 42.36 9.46 38.73 9.92 1.766 87 .081b

  PANSS total 83.23 14.23 77.27 14.76 1.939 87 .056b

  Global Assessment of Functioning 52.07 12.27 52.37 11.77 0.115 83 .908b

  Antipsychotic Dose (CPZ mg) 598.60 451.14 596.60 494.49 0.020 86 .984b

Depression severity
 � Montgomery–Åsberg Depression Rating Scale 

(MADRS)
14.48 5.48 13.83 5.59 0.557 89 .579b

Note: PANSS, Positive and Negative Syndrome Scale; CPZ: Chlorpromazine equivalents, BA: Brodmann Area; rTMS, repetitive 
transcranial magnetic stimulation. Sociodemographic and Clinical Differences Were Assessed Using Independent t tests and Chi-square 
tests in SPSS 23.
aP value obtained from Chi-square test on independence.
bP value obtained from independent t test. *P < 0.05. 
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between T0 and T1 (ρ = 0.583, P < .0001; figure 3A). 
Furthermore, the mixed-model analysis applied to the 
absolute PANSS-NS scores of  this patient group showed 
a significant main effect of  predicted outcome group 
on the PANSS-NS trajectories (F = 13.6, P < .001;  
figure 3B). The trajectories analyzed in the mixed model 
did not include the day 21 (T1) target of  the neuroana-
tomical classifier nor its closest day 28 (T2) time point, 
but spanned T0, T3 and T4, which indicates that the 
response vs nonresponse stratification was stable up to 
2 months after the completion of  treatment. Additional 
mixed-model analyses showed that patients stratified 

into PANSS-NS responders vs nonresponders also dif-
fered significantly in their GAF trajectories (supple-
mentary figure 4). Similar stratification effects were 
not observed for the respective PANSS-PS or MADRS 
courses (supplementary material).

Discussion

This is to our knowledge the first study reporting the 
successful application of MRI-based machine learning 
to the prediction of individual responses to the rTMS 
treatment of neuropsychiatric illness. The predictive 

Table 3.  Sociodemographic and Clinical Differences at Baseline Between Patients Predicted With a Day 21-Response vs Nonresponse to 
Active rTMS

Active rTMS (Predicted 
Nonresponse) (n = 21)

Active rTMS (Predicted 
Response) (n = 24)

Nonresponse vs Response

χ2 df P

Sociodemographic variables
  Gender (male: female) 19:2 20:4 0.495 1 .482
 � Site (Goettingen: Regensburg: 

Düsseldorf)
7:11:3 10:11:3 0.331 2 .848

 � Hand preference (right: 
non-right)

18:2 21:3 0.068 1 .795

Mean SD Mean SD t

  Age (y) 35.81 11.72 32.42 7.97 1.148 43 .257
  Education (y) 11.45 1.99 11.42 1.87 0.057 42 .955
rTMS functional and anatomical parameters

Left Resting Motor Threshold 
(RMT)

48.86 9.79 44.68 10.60 1.340 41 .188

 � Scalp-to-cortex distance BA 
9 (mm)

16.13 1.90 16.40 2.40 −0.416 43 .679

 � Scalp-to-cortex distance BA 
46 (mm)

15.76 2.12 16.74 2.63 −1.359 43 .181

Illness severity and functioning at baseline
  PANSS negative symptoms 26.52 4.94 26.13 4.10 −0.297 43 .768
  PANSS positive symptoms 13.95 4.15 14.83 4.53 −0.665 42 .510
  PANSS general symptoms 43.24 10.22 41.57 8.86 0.582 42 .564
  PANSS total 83.71 15.55 82.78 13.24 0.214 41 .831
 � Global assessment of 

functioning
49.40 13.93 54.50 10.30 −1.359 40 .182

Psychopharmacological treatment
 � Antipsychotic dose (CPZ mg) 

at T0
629.83 398.99 574.16 495.60 0.388 39 .700

 � Cumulative antipsychotic dose 
(CPZ mg) between T0 and T1

13226.39 8378.73 12112.25 10426.69 0.369 39 .714

χ2 df P

  Treated with clozapine (yes:no) 2:19 6:18 1.835 1 .176
 � Treated with antidepressants 

(yes:no)
10:11 7:17 1.622 1 .233

 � Treated with mood stabilizers 
(yes:no)

3:18 1:23 1.416 1 .234

Depression severity Mean SD Mean SD t
 � Montgomery–Åsberg 

Depression Scale (MADRS)
14.95 5.88 14.08 5.22 0.518 42 .607

Note: PANSS, Positive and Negative Syndrome Scale; CPZ, Chlorpromazine Equivalents, BA, Brodmann Area; rTMS, repetitive 
transcranial magnetic stimulation. Sociodemographic, Clinical and Psychopharmacological Treatment Differences Were Assessed Using 
Independent t and Chi-square tests in SPSS 23.
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model provided accurate outcome estimates in 8.4 of 10 
patients and the employed methods facilitated robust 
generalizability to new study sites despite the significantly 
lower training sample sizes in the leave-site-out analysis. 
Importantly, we did not find any sociodemographic, clini-
cal, or psychopharmacological treatment parameters to 
confound the active rTMS outcome classifier’s stratifica-
tion effects. These effects were not limited to a short-term 
separation between negative symptom responders vs 
responders but extended for 3 months into the post-treat-
ment naturalistic follow-up period. We also found that 
the PANSS-NS stratification effects generalized to the 
patients’ global functioning trajectories, suggesting that 
relative prefronto-temporo-limbic GMD reductions prior 
to treatment start moderate both a subsequent improve-
ment of negative symptoms and functioning induced by 
rTMS to the left DLPFC. This neuroanatomical baseline 
variance in patients with schizophrenia may represent an 
important, so far unknown biological factor driving the 
equivocal efficacy reported by previous rTMS studies in 
the field.5

Our validation analyses showed that the active rTMS 
outcome predictor was not only accurate but also thera-
peutically specific because the model did not distinguish 
globally between good vs poor symptom courses, as shown 
by our negative findings in the patients’ psychotic and 
depressive symptoms domains. The low prediction per-
formance of the active rTMS predictor in sham-treated 
patients further corroborated the detected structural 
brain pattern’s high predictive specificity for verum effects 
on the negative symptom trajectories. Moreover, the con-
trast between the accurate PANSS-NS and the weak 
PANSS-PS outcome classifier supports the predictive 
specificity of the detected neuroanatomical marker for the 
left-hemispheric DLPFC stimulation and its downstream 
neural system-level effects. This interventional specific-
ity agrees with 2 meta-analyses suggesting a superiority 
of (1) the left DLPFC as stimulation target for negative 
symptoms compared to other locations,42 and (2) the left 
temporo-parietal junction over other stimulation targets 
for the rTMS treatment of psychotic symptoms, ie, audi-
tory verbal hallucinations.43 The former meta-analysis 
extracted further potential predictors of DLPFC-rTMS 
efficacy on negative symptoms: a baseline PANSS-NS ≥ 
20, RMS stimulation intensity of 110%, rTMS frequency 
of 10 Hz and treatment duration of ≥3 weeks, as well as a 
duration of illness <8 years. Despite the implementation 
of all these recommendations in RESIS,6 we did not find 
any superiority of active vs sham treatment on clinical 
and cognitive outcomes.6,9 Our current findings suggest 
that these previous negative results may have been medi-
ated by a neuroanatomically determined response vari-
ability, which obscured active treatment efficacy in the 
randomized clinical trial design. Hence, prospective clini-
cal trials are needed to test whether matching of suitable 

patients to rTMS can enhance treatment outcomes based 
on pre-treatment MRI-based patient stratification.

A recent study investigated the predictive value of the 
neuroanatomical properties of the left temporal lobe on 
rTMS efficacy in treating refractory auditory verbal hallu-
cinations. The authors reported that the Scalp-to-Cortex 
Distance (SCD) and local GMD of this structure were 
predictive of treatment response.15 In contrast, we did not 
find any significant effects of the SCD over Brodmann 
Areas 9 and 46 on active rTMS treatment outcomes or on 
the structural adaptions of the left hippocampal-precu-
neal networks in our present or previous work (table 3). 
In turn, we explored whether changes in brain structure 
following active rTMS previously reported for a subset of 
33 RESIS patients20 could be predicted by our neuroana-
tomical model (supplementary results). In this subsample, 
we observed a significant association (F = 4.09, P = .015) 
between the patients’ PANSS-NS outcome probabilities 
generated by our active rTMS predictor (figure  2) and 
subsequent left hippocampal volume increases. This 
finding suggests that the model’s neuroanatomical deci-
sion rule, which involved reduced prefronto-limbic and 
cerebellar GMD as well as increased premotor-thalamic 
GMD at baseline, not only successfully stratified differ-
ent PANSS-NS courses, but also predicted longitudinal 
brain changes in the limbic system induced by active 
rTMS applied to the left DLPFC. Still, the relationship 
between the predictor’s mesoscopic32 structural brain pat-
tern and the underlying mechanistic surrogate remains 
unclear. Recent evidence suggested that the T1-weighted 
images analyzed here (and by the majority of structural 
neuroimaging studies) are significantly influenced by the 
microstructural properties of the brain tissue such as 
myelination, iron and water content.44 Further imaging 
studies using parallel quantitative MRI protocols may 
disentangle the contributions of these histopathological 
factors and thus shed light on the structural mechanisms 
determining a patient’s capacity to respond to rTMS.

Interestingly, early pre-post studies investigating rTMS-
induced short-term effects on cerebral blood flow and 
oxygenation in healthy controls and patients with major 
depression revealed activation patterns that qualitatively 
overlapped with the prefrontal, temporal and thalamic 
areas of the neuroanatomical prediction pattern reported 
here.45–47 Further system-level overlaps can be traced when 
comparing our pattern with a recent study assessing pos-
sible links between baseline resting-state fMRI connec-
tivity, clinical phenotypes of depression and subsequent 
response to rTMS in a large sample of 1188 patients, of 
whom 154 were treated with rTMS.24 This study detected 
4 distinct depression biotypes that differentially predicted 
rTMS efficacy: Biotype 1 characterized by anhedonia, psy-
chomotor retardation, and orbitofrontal as well as limbic 
hypoconnectivity showed the highest response likelihood 
to rTMS (82.5%) in contrast to biotype 4 (29.6%) which 
was characterized by hyperconnectivity in fronto-striatal 
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networks and higher anxiety scores. Evidence for an 
impaired anticorrelated coupling between the DLPFC-
based Central Executive Network (CEN) and the medial 
prefrontal, frontopolar and medial parietal regions of 
the Default Mode Network (DMN) has been provided 
by studies investigating the neural correlates of rTMS 
efficacy in depression.48,49 In fact, high-frequency rTMS 
may attenuate abnormally elevated within-DMN connec-
tivity50 and restore the anticorrelated activation patterns 
of DMN and CEN.51 Recently, these findings have been 
extended to schizophrenia showing DMN suppression 
deficits in cognitively impaired vs non-impaired patients 
with first-episode psychosis52 as well as altered connec-
tivity patterns between different DMN subnetworks and 
the CEN.53 Latter work also provided evidence that these 
alterations are associated with the severity of negative 
symptoms in schizophrenia and can be used to separate 
patients from healthy controls with >75% accuracy.53 If  
we relate the pattern of DMN-related GMD reductions 
and motor-thalamic increments observed in our study 
to this previous evidence, we may speculate that rTMS 
responders have a more functionally hyperactive DMN at 
baseline and thus increased GMD in these regions com-
pared to nonresponders who show extended structural 
deficits in DMN-related hubs, reducing their capacity for 
adaptive brain responses following rTMS.20

In the context of these hypotheses, the heterogeneity 
of neuroanatomical and clinical phenotypes underlying 
schizophrenia,22,23 and their overlaps with early-onset 
depression,33 point to complex biotypes conferring dif-
ferential response likelihoods to noninvasive brain stim-
ulation techniques through still unknown interactions 
between molecular, neuroanatomical, neurofunctional 
and neurophysiological factors. The present results link-
ing baseline neuroanatomical variation in schizophrenia 
with adaptive behavioral and structural brain changes 
following rTMS suggest the value of future in-depth 
mechanistic investigations analyzing large-scale patient 
samples using combinations of multi-modal MRI, brain 
stimulation and multivariate analysis techniques.

The predictive performance of the active rTMS predic-
tor reported here is comparable to those of a recent non-
controlled open-label neuroimaging study predicting the 
outcome of depressive and schizophrenic patients follow-
ing ECT.25,26 However, to the best of our knowledge, our 
study is the first to demonstrate the feasibility of a relia-
ble MRI-based prediction of rTMS-treatment outcomes 
based on the superior evidence levels provided by a state-
of-the-art controlled RCT design. This design enabled 
us to benchmark the leave-site-out generalizability, the 
interventional (active vs sham) and outcome domain 
specificity, as well as the temporal stability of the model’s 
predictions. The results obtained in these validation anal-
yses suggest that the high response variability to noninva-
sive brain stimulation observed in many trials using rTMS 
for the treatment of depression54,55 or schizophrenia5 may 

be successfully mapped to pre-treatment structural brain 
patterns. So far, variability rates up to 50% in rTMS 
protocols have hampered the overall clinical efficacy of 
rTMS in research and clinical care, challenging the pre-
diction of rTMS in any individual patient.56 Our findings 
suggest that MRI-based machine learning derived from 
a careful RCT design may foster a better understanding 
of and the ability to predict how different disease-related 
brain phenotypes contribute to the individual patient’s 
capacity to respond to brain stimulation. Further valida-
tion of the identified predictive pattern in larger, but cur-
rently unavailable external patient databases and future 
biomarker-stratified clinical trials57 could be important 
next steps to reduce the response variability, increase the 
clinical efficacy and propel the availability of rTMS as 
a valid treatment option for patients with predominant 
negative schizophrenia.

Supplementary Material

Supplementary data is available at Schizophrenia Bulletin 
online.
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