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Contrary to the notion that neurology but not psychiatry 
is the domain of disorders evincing structural brain altera-
tions, it is now clear that there are subtle but consistent 
neuropathological changes in schizophrenia. These range 
from increases in ventricular size to dystrophic changes 
in dendritic spines. A  decrease in dendritic spine density 
in the prefrontal cortex (PFC) is among the most repli-
cated of postmortem structural findings in schizophrenia. 
Examination of the mechanisms that account for the loss 
of dendritic spines has in large part focused on genes and 
molecules that regulate neuronal structure. But the simple 
question of what is the effector of spine loss, ie, where do 
the lost spines go, is unanswered. Recent data on glial cells 
suggest that microglia (MG), and perhaps astrocytes, play 
an important physiological role in synaptic remodeling of 
neurons during development. Synapses are added to the 
dendrites of pyramidal cells during the maturation of these 
neurons; excess synapses are subsequently phagocytosed by 
MG. In the PFC, this occurs during adolescence, when cer-
tain symptoms of schizophrenia emerge. This brief review 
discusses recent advances in our understanding of MG 
function and how these non-neuronal cells lead to structural 
changes in neurons in schizophrenia.
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Attempts to define structural brain alterations in schiz-
ophrenia during much of the 20th century failed to 
reveal consistent neuropathological changes. The state of 
affairs was so bad that the neurologist Plum1 famously 
referred to the field as “the graveyard of neuropatholo-
gists,” with Harrison2 subsequently commenting that 
the field was noteworthy for “generating more heat than 
light and … memorable quotes rather than durable data.” 
Fortunately, the last quarter of the 20th century saw the 
application of quantitative neuroanatomical methods to 

neuropathological studies and the advent of contempo-
rary in vivo imaging methods. These advances allowed 
researchers to detect subtle, but consistent, anatomical 
changes in the brain in schizophrenia, and led to the claim 
that “no longer can there be doubt that there is under-
lying brain pathology,”3 fulfilling the view of Kraepelin  
that schizophrenia is a brain disorder. Although some 
suggest that this view may be a bit optimistic,5 meta-anal-
yses of volumetric as well as longitudinal studies point 
to structural changes in schizophrenia (however, see also 
Heilbronner et al,6 Vita et al,7 Kambeitz et al,8 and Olabi 
et al.9).

Neuropathology of Schizophrenia

Neuron Pathology

A key finding by Eve Johnstone et al,10 using computed 
tomography, was ventricular enlargement in schizophre-
nia. Although  intially thought to reflect disease progres-
sion,11 subsequent studies noted ventricular enlargement 
in first-episode patients.12,13

If  the ventricles are enlarging, yet the brain is encased 
in an unyielding skull, what “gives”? Imaging studies have 
consistently revealed a decrease in gray matter volume in 
schizophrenia.12,14 These findings are corroborated by 
postmortem studies noting reduced cortical thickness.15 
Although these changes are not seen in each subject, 
group differences in ventricular enlargement, gray mat-
ter volume, and cortical thickness, particularly in the 
prefrontal and medial temporal cortices, are consistently 
observed in schizophrenia, including in studies of first-
episode and antipsychotic drug (APD)-naïve patients.16–19 
Such changes have even been reported in subjects deemed 
at high risk for developing the illness, although only 
a minority of high-risk patients subsequently develop 
schizophrenia,20 leaving open the possibility that this may 
not be specific to schizophrenia.
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The loss of cortical volume and thickness suggests 
that there may be a loss of cortical neurons in schizo-
phrenia. However, unbiased counts of total neocortical 
neuron number21 and the number of neurons in the pre-
frontal cortex (PFC)22 have uncovered no such differ-
ence. Instead, neuronal density is increased,23–25 leading 
Selemon and Goldman-Rakic26 to propose the reduced 
neuropil hypothesis of schizophrenia. Their formulation 
posits that a decrease in cortical volume in the face of 
a normal complement of neurons occurs secondary to a 
decrease in neuropil, including dendrites and axons.

Relatively early studies of cortical gene expression 
were consistent with this hypothesis, reporting a loss of 
dendrite- and axon-associated genes.27 Although anatom-
ical and immunoblot studies of axonal markers in schizo-
phrenia led to conflicting results,27–37 studies of dendrites 
consistently revealed dystrophic changes.38–42 In particu-
lar, there is a decrease in the density of dendritic spines 
on PFC pyramidal cells (PCs) in schizophrenia,38,42–45 but 
not in samples from a psychiatric control group44 (prima-
rily mood disorders subjects treated with APDs). Some 
studies of changes in spine density revealed selective 
effects on deep layer 3 (L3) PFC PCs, consistent with a 
decrease in soma size of L3 PCs.30,46,47 Prefrontal corti-
cal PCs appear to be most vulnerable to spine loss; a less 
pronounced decrease in spine density has been reported 
in the primary auditory48,49 with no significant change in 
the visual cortex.44

Because dendritic spines are the primary site of excita-
tory inputs to the PC, the loss of spines on PCs may lead 
to significant disruptions in excitatory signaling to cor-
ticofugal pathways. Unfortunately, there have been very 
few studies probing the correlation of dendritic spine 
density changes and cognitive performance (see Kim 
et al,50 Cahill et al,51 and Hains et al52), with none focus-
ing on different times during development. Moreover, 
although it has been suggested that cognitive deficits are 
already present in first-episode schizophrenia,53 this is an 
oversimplification, with deficits in performance of certain 
cognitive tasks (such as working memory) differing from 
those in processing speed. In addition, most studies of 
cognition in schizophrenia do not determine the degree 
to which such changes may be secondary to negative 
symptoms or other domains.54 At this time, the functional 
impact of dendritic spine changes on specific symptom 
domains is unknown.

However, by comparing the shape of lost (vulner-
able) and remaining dendritic spines, one may glean 
limited insight into function. Morphological param-
eters have long been used to categorize spines into 
different classes, including spines that hyperacute anat-
omists have fancifully described as thin-, stubby-, and 
mushroom-shaped.55,56 These adjectives are of limited 
utility: various parameters of spine shape (such as spine 
head diameter, which should be larger in mushroom than 
thin spines) show considerable overlap across different 

types of spines.57 Nonetheless, thin spines, which are rel-
atively long and lack a wide head, have been advanced 
as being immature and more likely to lack α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid AMPA 
receptors, ie, have functionally silent synapses58,59 (how-
ever, see also Busetto et al60), whereas larger, mushroom-
shaped spines are thought to be mature.61 Only very 
recently has there been an assessment of the types of 
spines present in schizophrenia.62 This study reported 
that thin spines were preferentially lost in the auditory 
cortex, which was interpreted to suggest that there is a 
deficit in newly formed spines in the cortex. We await con-
firmation of these recent data, including in the PFC.

If dendritic spines are decreased in number, there may 
be corresponding decreases in the presynaptic partners of 
lost spines. However, postmortem studies of changes in 
presynaptic elements in schizophrenia, including proteins 
involved in vesicular trafficking and release, have yielded 
conflicting results.27–37 Several factors may contribute to 
the inconsistent results, including different dependent 
variables (mRNA vs protein levels), APD treatment, and 
differences in the areas and layers of the cortex being 
sampled. Still another reason for the conflicting data may 
be that most studies examining presynaptic changes have 
analyzed markers of synaptic release common to all neu-
rons, thereby capturing both inhibitory and excitatory 
presynaptic elements. Because presynaptic axons form-
ing synapses with spines are excitatory, more consistent 
results emerge when excitatory inputs are analyzed sepa-
rately: there is a decrease in cortical levels of the glutama-
tergic marker vesicular glutamate transporter (VGluT) 
1 (but not VGluT2, another glutamate transporter).63–65 
Because VGluT1 and VGluT2 are mainly expressed by 
cortical and subcortical glutamatergic neurons, respec-
tively,66–68 synapses formed by different afferent sources 
defining different circuits with distinct PCs may be com-
promised in schizophrenia.

Glial Pathology

One index of a shift in the targets of scientific inquiry in 
brain disorders over the past decade has been the intro-
duction of neologisms such as gliotransmission. The 
scientific blinders that limited attention to neurons have 
been removed, leading to a broad interest in non-neuro-
nal as well as neuronal elements of the nervous system. In 
particular, there is today a much greater appreciation of 
the diverse roles played by glia.

In 1982, Stevens69 reported that reactive astrocytosis 
(an increase in astrocytes that occurs in response to cel-
lular damage) was present in the thalamus, limbic areas, 
and periventricular sites in about ~70% of patients with 
schizophrenia; these observations were consistent with 
some earlier reports of gliosis in diencephalic and mes-
encephalic regions.70,71 However, these early studies of 
reactive astrocytosis did not use unbiased methods, 
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now de rigueur,72,73 to determine cell number or density, 
and lacked many methodological details and some con-
trol procedures, clouding interpretation of the results. 
Coupled with a lack of assessment of potential confound-
ing variables,74 substantial differences in the conclusions 
of early and more contemporary studies of glial changes 
in schizophrenia are not surprising.

Astrocytes.  Roberts et  al75 examined 20 different brain 
areas for evidence of astrogliosis in the brains of schizo-
phrenic subjects. They found no difference in the numbers 
of cells expressing the astrocytic marker glial fibrillary 
acidic protein (GFAP).76,77 Roberts et  al78 subsequently 
replicated their initial finding in a larger cohort, and most 
subsequent studies of schizophrenia also failed to detect 
an increase in the number or density of astrocytes.75,78–96 
Studies of GFAP mRNA and protein levels largely cor-
roborated the anatomical data.36,95,97–102

Thus, available postmortem data suggest that there are 
probably no substantial changes in the number or den-
sity of astrocytes in the cortex in schizophrenia.103 Future 
studies utilizing a different marker of astrocytes, aldehyde 
dehydrogenase 1 family, member L1 (Aldh1L1), which in 
contrast to GFAP appears to be an invariant marker of 
astrocytes104 may reveal subtle, region-specific changes in 
astrocytes.

Microglia.  There has long been considerable interest in 
the role of inflammation in promoting neuropathologi-
cal changes in schizophrenia.103,105,106 Interest has piqued 
over the past decade with genetic studies revealing asso-
ciations of schizophrenia with the major histocompati-
bility locus,107 and more recently with specific variations 
in complement component 4 being strongly linked to the 
risk for developing schizophrenia.108

Because microglia (MG) are the immune cells of the 
brain, potential changes in the number, density, and func-
tion of MG have been scrutinized. It should not be sur-
prising to learn that this area of research is also littered 
with inconsistent results. Studies using various markers to 
label MG have resulted in reports of increased density of 
MG,85,109–111 increased MG activation,109,112 and degenerat-
ing MG cells.109,113 In contrast, other studies have found 
no change in these parameters.82,84,93,114–116 A recent meta-
analysis of studies examining MG density in postmortem 
tissue concluded that the preponderance of evidence is 
consistent with a significant increase in MG density and 
a corresponding upregulation of MG-related proinflam-
matory genes in schizophrenia.117

Studies of MG in schizophrenia have in part been 
confounded by issues common to all postmortem stud-
ies, ranging from the use of APDs or other drugs to ago-
nal state. However, there is another concern specific to 
MG: although MG occupy a restricted central nervous 
system (CNS) niche, virtually all MG markers are also 
present in (peripheral) monocytes and macrophages. 

The recent identification of transmembrane protein 
119 (Tmem119)118,119 and potentially sialic acid–binding 
immunoglobulin-like lectin H (Siglec-H)120 as selective 
markers of central MG but not peripherally derived cells 
should open the door for more accurate studies of MG 
number and density in schizophrenia.

An indirect approach to identifying changes in MG 
and inflammatory processes in schizophrenia has been 
through the development of radioligands for positron 
emission tomography studies of MG. Radioligands for the 
18 kDa translocator protein (TSPO), a protein thought 
to be involved in steroidogenesis,121,122 have been pro-
posed to be useful in monitoring inflammatory processes 
and MG activation in various disorders,123,124 including 
schizophrenia. Expression of TSPO is upregulated in 
inflammatory states and diseases125–128 and during MG 
activation.124,129 Early imaging studies with TSPO tracers 
generated conflicting results because the contribution of 
allelic variants in TSPO binding was not appreciated.130 
However, subsequent studies, conducted at various stages 
of the illness, were also inconsistent.131–140 It has become 
clear that TSPO is not a specific marker of MG: the pro-
tein is also expressed in peripheral (and CNS-infiltrating) 
macrophages and monocytes, and has been reported to 
bind to astrocytes, endothelial cells, and perhaps even 
neurons.141–144 Moreover, TSPO expression is increased 
substantially in response to a proinflammatory challenge 
in rodent, but not in human, MG.145 These considerations 
and others have cast doubt on the utility of TSPO as a 
marker of MG activation and inflammation.130,143,146–150

Where Do the Lost Dendritic Spines Go in 
Schizophrenia?

During brain development, the number of synapses is 
not constant. In early postnatal development, synapses 
on neurons are formed in excess.151 Some of these super-
numerary synapses are subsequently removed (pruned), 
while others are strengthened,152 optimizing the signal-to-
noise ratio. The age at which mature neuron structure is 
achieved varies across brain regions. The PFC is the last 
area to mature, finally stabilizing in the third decade of 
life.153

Peak density of PFC synapses153,154 occurs during ado-
lescence, the period during which certain symptoms of 
schizophrenia typically emerge, leading Feinberg155 to 
propose that schizophrenia may result from a defect in 
synaptic elimination programmed to occur during adoles-
cence. This neurodevelopmental hypothesis was followed 
by several others,156 which posit that the consequences of 
an insult during the second or third trimester of preg-
nancy lie dormant until manifest in adolescence.

Efforts to understand the process of synapse removal 
during development have revealed a critical role for MG, 
the innate immune cells of the CNS. Microglia are CNS 
macrophages derived from yolk-sac progenitors that 
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migrate to the neural tube early in embryonic develop-
ment,157 and which locally renew by self-proliferation.158 
They are highly dynamic cells, extending and retracting 
their processes to surveil brain parenchyma for signs of 
insult or injury.159,160 Microglia also play key roles in the 
healthy brain (see Tremblay et  al,161 Hong et  al,162 and 
Kierdorf and Prinz163), including in the modification of 
synaptic architecture in an experience-dependent man-
ner, elimination of apoptotic neurons, and the formation 
of dendritic spines.164–166 Under physiological condi-
tions, MG engulf  excess synapses early in development 
in subcortical areas167,168 through complement-mediated 
pathways.168,169

In the rat, MG transiently engulf  dendritic spines 
on PFC PCs at postnatal day 39,170 an age correspond-
ing to late adolescence in humans (see Mallya et  al170). 
Presynaptic glutamatergic terminals synapsing with 
spines are also pruned by MG, but slightly later than 
spines, consistent with spine outgrowth preceding syn-
apse formation.171–173 These data agree with Feinberg’s155 
hypothesis, suggesting a deranged enhancement of physi-
ological synapse pruning by MG during adolescence cul-
minates in a reduced number of PFC PC dendritic spines.

The role of developmental synaptic pruning is not lim-
ited to MG. Astrocytes have been shown to participate 
in synapse elimination,174 both directly (via recognition 
of an unidentified “eat-me” signal on a synapse destined 
for elimination through phagocytic pathways175) and 
indirectly (in which release of transforming growth fac-
tor β regulates the expression of complement component 
C1q at synapses, recruiting MG to the site176). Although 
the overall number of reactive astrocytes may not be 
increased in schizophrenia, there may be changes in one 
type of reactive astrocyte177,178 (the “A1” astrocyte, which 
are induced by activated MG and thought to be neuro-
toxic [see Liddelow et al177 and Liddelow and Barres178]).

Future Studies of Microglial Involvement in 
Schizophrenia

Microglia have historically been thought to adopt dif-
ferent morphologies based on their functional state. 
Surveilling MG are extensively branched and have a 
smaller somata than activated MG, which assume a large 
ball-like shape with few or no processes (see Hanisch and 
Kettenmann179 and Ransohoff and Perry180). In contrast 
to this traditional view, recent data indicate that during 
pruning of synapses MG do not assume a classic “acti-
vated” morphology, instead displaying many branched 
processes.168,170,181 These findings suggest that there are 
at least two different types of activated MG: those trig-
gered in response to a pathological challenge, and those 
activated to engage in physiological neuronal sculpting. 
Furthermore, MG phenotype is governed by unidentified 
local cues, adding to the complex heterogeneity of MG.182 
Disentangling the processes and signals that dictate the 

functional state of MG during developmental phagocy-
tosis as opposed to those mediating inflammation- and 
pathology-based phagocytosis will be critical for future 
understanding of MG function in health and disease.

An issue not often addressed but critical to our under-
standing of MG is how to assess the relative contribu-
tion of MG that are intrinsic to the CNS from infiltrating 
macrophages generated in the periphery. Studies of 
developmental pruning have used markers common to 
both peripheral or central cells, such as ionized calcium-
binding adapter molecule 1 (Iba1) and the fractalkine 
receptor CX3CR1. However, in the healthy CNS, MG are 
the resident macrophages, while peripheral macrophages 
are mainly restricted to perivascular spaces, meninges, 
and the choroid plexus.183,184 The extent to which the 
blood–brain or cerebrospinal fluid–brain barriers may be 
porous under conditions such as inflammation or in ill-
nesses such as schizophrenia is not known. Similarly, it is 
not clear to what degree peripherally derived monocytes 
enter the CNS at circumventricular sites,185 and from 
there migrate to other areas.

Translating Microglial Dysfunction to Therapeutic 
Strategies

The elucidation of the mechanisms whereby developmen-
tally specific synaptic pruning occurs may lead to new ther-
apeutic targets for mitigating structural and functional 
changes in schizophrenia. Neuronal elements destined 
for elimination have undefined (but in part possibly com-
plement-related) “find-me” signals that target MG to the 
neuron and “eat-me” signals that then cue the MG to phag-
ocytose a particular spine or axonal element. There are 
also “don’t-find-me” and “don’t-eat-me” signals that help a 
spine evade detection and pruning, similar to those seen in 
apoptotic cells.186 Pharmacological or molecular suppres-
sion of the former or amplification of the latter, particularly 
during adolescence, when spine pruning is active, might 
diminish excess pruning of spines on PFC PCs, thereby 
averting some of the behavioral pathology of schizophre-
nia. However, it is likely that too much suppression will 
result in too many spines, as seen in autism spectrum dis-
order (ASD) and Fragile X syndrome.187 Notably, in both 
ASD and schizophrenia, social cognition is impaired, sug-
gesting that there may be an optimal spine number above or 
below which negative consequences occur.

Concluding Remarks

Psychiatry has moved from questioning whether schizo-
phrenia is a brain disease to determining how structural 
changes in certain brain areas and circuits lead to symp-
toms. Attempts to understand the pathophysiology of 
schizophrenia have become more challenging with the 
realization that schizophrenia is not a disease of neurons, 
but also critically involves non-neuronal cells. However, 
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this added complexity may reveal important new drug 
targets for the treatment—or even prevention—of schiz-
ophrenia. Our appreciation of the many physiological 
roles played by MG is rapidly growing and points to the 
need for new methods to allow one to demonstrate con-
clusively if  MG are effectors of the “excess synaptic elim-
ination programmed to occur during adolescence” first 
posited by Feinberg155 35 years ago.
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