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Abstract —Simultaneously modeling hybridization and the multispecies coalescent is becoming increasingly common, and
inference of species networks in this context is now implemented in several software packages. This article addresses some of
the conceptual issues and decisions to be made in this modeling, including whether or not to use branch lengths and issues
with model identifiability. This article is based on a talk given at a Spotlight Session at Evolution 2017 meeting in Portland,
Oregon. This session included several talks about modeling hybridization and gene flow in the presence of incomplete
lineage sorting. Other talks given at this meeting are also included in this special issue of Systematic Biology. [Displayed
trees; gene flow; likelihood; phylogenetic networks; trait evolution.]

A subset of the phylogenetic literature deals with
networks, in which evolution is represented graphically
by networks rather than trees. Network representations
of evolution can in turn be either rooted or unrooted
(Fig. 1). A fundamental distinction here should be made
between implicit networks which are drawn in order
to depict signals in the data that are not tree-like, such
as used by popular programs like NeighborNet (Bryant
and Moulton 2002) and SplitsTree (Huson 1998), but are
not intended to model the cause of data not being tree-
like, versus approaches that explicitly model violations
of tree-like evolution due to biological processes such
as hybridization or horizontal transfer. NeighborNet
and SplitsTree both draw unrooted networks, and are
intended to represent whether distances or frequencies
of splits, respectively, can be fit onto a tree in
a mathematical sense, regardless of the biological
mechanism (Huson et al. 2010; Huson and Scornavacca
2011; Morrison 2011; Bapteste et al. 2013). The nontree-
like signal could be due to misestimation of trees,
model misspecification, and other causes as well as
actual hybridization or horizontal transfer. Unrooted
networks can also be drawn that explicitly model
hybridization, such as in the software SNaQ (Solis-
Lemus et al. 2017) (Fig. 1). This article focuses on explicit
phylogenetic networks, for which reticulation nodes
represent hybridization events rather than conflicts in
the input trees.

Much of the literature on phylogenetic networks uses
combinatorial approaches (Choy et al. 2005; Huson et al.
2010; Huson and Scornavacca 2011; Bapteste et al. 2013).
Many of these involve minimization problems, such
as finding the network with the minimum number
of hybridization events to explain two conflicting
trees (Bordewich and Semple 2007; van Iersel and
Linz 2013). However, a relatively new trend is using
probabilistic approaches for modeling hybridization
that lend themselves to maximum likelihood inference
(Meng and Kubatko 2009; Kubatko 2009; Yu et al. 2012;

Solis-Lemus and Ané 2016; Wen et al. 2016). Many
of these methods are motivated by simultaneously
modeling hybridization and incomplete lineage sorting,
two biological processes that can lead gene trees
to conflict with one another, a phenomenon called
gene tree incongruence. One reason for thinking about
modeling hybridization and incomplete lineage sorting
simultaneously is that if two species or populations are
able to hybridize, then it is reasonable to think that
they are closely enough related that incomplete lineage
sorting is likely to be a prominent cause of gene tree
incongruence.

A recent set of spotlight talks at Evolution 2017
in Portland, Oregon focused on issues of modeling
hybridization and gene flow. Papers in this issue include
Burbrink and Gehara (2018), which finds evidence
for ancient hybridization in New World kingsnakes
using recent software which models hybridization
and coalescence simultaneously. Blischak et al. (2018)
introduce software for hybridization detection using
invariants in the site pattern probabilities, a technique
which has also lead to some success in establishing
model identifiability. Long and Kubatko (2018) examine
postspeciation gene flow between sister taxa, which can
lead to anomalous gene trees (AGTs, gene trees more
probable than the gene tree with the same topology as the
species tree), and examines robustness of SVDquartets
(Chifman and Kubatko 2014) compared to other species
tree methods in this setting. Morales and Carstens (2018)
also examine postspeciation gene flow in an empirical
example for Myotis bats. Bastide et al. (2018) introduce
methods for analyzing trait evolution on networks as
opposed to trees, which promises to greatly expand
methodology for trait evolution modeling.

This article talks about some of the conceptual issues
that arise in making modeling decisions when trying
to understand hybridization and incomplete lineage
sorting simultaneously and discusses some of the issues
raised at that meeting.
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FIGURE]L. Rooted (a) and unrooted (b) explicit networks. The internal

nodes are numbered to help show that (b) is the unrooted version
of (a). In rooted networks, a typical assumption is that hybridization
nodes (i.e., node 2) have two incoming hybridization edges and one
outgoing edge, while non-hybridization tree nodes have one incoming
edge and two outgoing edges. Hybridization events result in cycles in
the undirected graph, such as that made by nodes 2, 3, 5, and 4 in (a)
and nodes 2, 3, and 4 in (b). The network in (b) is obtained from (a) by
suppressing node 5 (the root node in (a)) and treating the path from
nodes 3 to 4 as a single edge. In both graphs hybridization edges are
shown as gray directed edges going into a node. In a), all edges are
interpreted as directed away from the root and toward the tips of the
network, while in b), only the two hybridization edges are directed.
Such a network is called semidirected (Solis-Lemus and Ané 2016).

To outline the article, some of the modeling issues
include the following:

¢ Modeling multiple sources of incongruence (e.g.,
hybridization, incomplete lineage sorting (ILS),
recombination, etc.)

¢ Using horizontal nonhorizontal

hybridization edges

versus

¢ Identifiability and distinguishability
¢ The role of displayed trees

¢ Branch lengths in the network

¢ Branch lengths in the gene trees

* Rooted versus unrooted networks

* Modeling trait evolution on networks

¢ Distances between networks

GENE TREE INCONGRUENCE

Following Rosenberg (2002), I will distinguish
between gene tree incongruence, meaning gene trees at
different loci having different topologies, versus gene
tree discordance, meaning that the gene tree and species
tree have different topologies. There are many sources
of gene tree incongruence. Conceptually, it is helpful to
distinguish between biological sources of incongruence

versus statistical sources of incongruence. Examples are
summarized in Table 1.

It should be stressed that these biological processes
can make true gene trees conflict independently
of how those gene trees are estimated. By “true
gene trees,” I mean the actual pattern of ancestor-
descendant relationships for the genetic locus in
question. Conceptually, it makes sense to talk about the
true gene tree even if there is no mutation. In this case,
there might not be evidence available to recover the true
gene tree, but that is conceptually a separate issue.

Short alignments, especially when the mutation rate
is low, can cause a lack of informative sites, effectively
making the sample size (i.e., the sequence length) too
small. On the other hand, a mutation rate that is too
high leads to saturated sequences, in which there is
too much noise to recover a clear signal. An incorrect
substitution model can also lead to incorrect estimation
of the number of multiple mutations at a site, which
can lead to incorrectly estimated branch lengths or
topologies. The case of incorrect assignment of species
to sequences would at least cause discordance of gene
trees with the species tree even if it did not cause gene
trees to be incongruent with each other. All of these
statistical and data quality considerations can lead to
poorly estimated gene trees, which might disagree with
each other even if the true underlying gene trees are
identical.

There are several papers that discuss distinguishing
hybridization from ILS (e.g., Holland et al. 2008; Joly
et al. 2009; Choleva et al. 2014). This is unfortunate
terminology because both processes often co-occur and
are not necessarily competing explanations for gene tree
incongruence. High levels of ILS can even be beneficial
for inferring hybridization (Zhu and Degnan 2017). A
reason for this is that when lineages fail to coalesce,
they can simultaneously trace multiple paths through
a network topology, thus giving information about how
often lineages tend to come from one ancestor rather than
another.

As mentioned earlier, if species are closely enough
related to hybridize, they might also have high levels of
ILS precisely because they are closely related. Generally,
we expect coalescence effects to always be occurring to
some extent because the time to coalescence between
two gene lineages predates the time of speciation. If
consecutive speciation events are far enough apart, then
the extra time to coalescence will almost never persist
far enough in the past for gene trees to be discordant
with the species tree. In this case, the multispecies
coalescent model (MSC) predicts a very low level of
incongruence, but this is still compatible with the MSC.
It makes sense to think of the MSC as a null hypothesis,
and other biological processes, such as recombination,
population structure, gene flow, etc. to occur in
addition.

Consequently, instead of thinking of distinguishing
ILS from other models, I think of the following
as possible models (or hypotheses) we might be
interested in:
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TaBLE 1.  Causes of incongruence

Source of incongruence Category Notes

Incomplete lineage sorting Biological Affects entire genome

Hybridization Biological Affects entire genome
Postspeciation gene flow Biological Overlaps with hybridization but is often modeled

for gradual speciation as opposed to instantaneous

mergers of previously isolated populations
Horizontal gene transfer Biological Affects segments of a genome
Recombination Biological Can cause incongruence within genes
Ancient population structure Biological Can mimic hybridization in terms of gene tree probabilities
Low mutation rate Biological Affects data quality (low information in data)
High mutation rate Biological Affects data quality (noisy sequences)
Short alignments Statistical Affects data quantity (and quality, similar to low mutation rates)
Incorrect substitution model Statistical Can cause branch length errors and long branch attraction
Incorrect biological modeling Statistical For example assuming gene trees at linked loci are independent
Sequence misalignment/errors Statistical Data quality problem
Incorrect species assignment Statistical Model misspecification

Hy: MSC (null model)

Hj :MSC + population structure

Hj :MSC + hybridization

H3:MSC + recombination

H4 :MSC + population structure + hybridization

etc.

In other words, we can think of the MSC as a null model,
and more complicated models might invoke additional
biological processes. In some cases, it mightbe difficult to
distinguish some of these models. For example, if there
are three species, A, B, and C, and the species tree is
((A,B),C), then the MSC model by itself predicts that the
two discordant gene trees ((A,C),B) and ((B,C),A) have
equal probability (Nei 1987). If the proportions of these
two discordant trees differ significantly from each other,
then this is evidence against the null hypothesis of the
MSC, and this is sometimes used as evidence against
the MSC as adequately describing the data (Degnan and
Rosenberg 2009; Ané 2010; Chung and Ané 2011; Song
et al. 2012). However, the MSC + population structure
and MSC + hybridization models can both predict
asymmetries in the two discordant topologies (Slatkin
and Pollack 2008; Meng and Kubatko 2009; DeGiorgio
and Rosenberg 2016). Consequently, distinguishing these
two models can be quite difficult.

Although population structure can lead to some
similar patterns in the data as hybridization, we will
restrict most of our attention to hybridization. The
study of the coalescent in the presence of population
structure has been studied for a long time from a
population genetic perspective and is often called the
structured coalescent (Takahata 1988; Hein et al. 2005).
A recent approach applying the structured coalescent
in a phylogeographic context is Miiller et al. (2017).
Theunert and Slatkin (2017) discuss distinguishing
recent admixture from ancient population structure as
applied to human evolution in modeling admixture of
Denisovans and ancestors of Melanesians. This can be

done using site patterns, such as the ABBA-BABA test
(Durand et al. 2011) or using linkage disequilibrium,
in which lack of independence of nearby genetic loci
is evidence of recent admixture, and independence
increases over time due to recombination.

A lot of progress has been made in understanding
the MSC by itself as a null model. Research for the
MSC combined with hybridization is more recent, and
it is quite challenging to study models that allow two
biological processes simultaneously. It might be more
realistic to allow all sources of gene tree incongruence
to occur simultaneously, but this seams infeasible from
a modeling point of view. Adding multiple processes
greatly increases the number of parameters in the
models and reduces their mathematical tractability.
For example, we should expect recombination to be
occurring—but properly modeling recombination leads
to ancestral recombination graphs, which are themselves
reticulating (Hein et al. 2005; Gusfield 2014). To model
recombination with coalescence and hybridization
would lead to networks within networks—a much more
complicated problem than modeling gene trees within
species networks. Simulation studies of recombination
in the context of the MSC have also not shown very
large effects (Lanier and Knowles 2012). Understanding
two processes at a time seems to be a worthwhile
goal.

UsING HORIZONTAL VERSUS NONHORIZONTAL
HYBRIDIZATION EDGES

A fundamental decision at the modeling stage is
whether hybridization edges are allowed to have a time
component or are represented as horizontal edges (with
a length of 0 to link populations that are contemporary
with each other). If edges are not horizontal, then
the lengths of the hybridization edges introduce new
parameters into the problem. The two parents of a
hybridization node might occur at different times,
meaning that there might be two new branch lengths
introduced for every hybridization node.
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FIGURE 2.

Networks with “ghost lineages” and horizontal
hybridization edges and corresponding networks with nonhorizontal
edges. All networks have one hybridization event. In a) and c) dotted
lines indicate evolving species that are not sampled either due to
extinction or incomplete sampling. In a) and c), all hybridization edges
(edges that lead into hybridization nodes) are drawn horizontally.
However, the existence of unsampled species X in a), and unsampled
species X and Y in c) means that there was a time more ancient
than the hybridization event when lineages from B and C might have
coalesced but could not have coalesced with lineages from A or D. The
probabilities of coalescence events, gene trees, and sequence evolution
in network b) are equivalent to those in network a), and similarly d) is
equivalent in this sense to c).

One reason for including nonhorizontal edges is that
even if lineages could not coalesce on hybridization
edges (i.e., branches leading into a hybridization node),
the existence of unsampled or extinct lineages could lead
to the desirability of having nonhorizontal edges (Fig. 2).
Such lineages are sometimes called “ghost” lineages
because although they exist and effect probabilities of
gene trees, they are not seen due to being unsampled.

Conceptually, I argue that is not a problem to
have populations evolve for some time before
they subsequently merge, leading to nonhorizontal
hybridization edges even without extinction or
incomplete sampling. From a modeling point of
view, however, it increases the number of parameters
in the problem and the likelihood calculations become
more complicated, but current software, such as
phylonet (Than et al. 2008), ms (Hudson 2002), hybrid-
Lambda (Zhu et al. 2015), PhyloNetworks (Solis-Lemus
et al. 2017), hybrid-coal (Zhu and Degnan 2017), and
*BEAST (Zhang et al. 2018) can handle networks
with this structure. The prior for networks used by
Zhang et al. (2018) is called a birth-hybridization prior
in which a network is evolved forward in time, and
the waiting time until the next event (either speciation
or hybridization) is an exponential random variable,
leading to nonhorizontal edges even in the absence of
extinction or lack of sampling. From a forward-in-time
perspective, whether an evolving population will turn
out to correspond to a speciation edge or a hybridization
edge depends on what happens in the future—whether
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FIGURE 3. An example illustrating a possible biological
interpretation for nonhorizontal edges without assuming extinction or
incomplete sampling. a) Gray regions represent an irregularly shaped
lake (or habitat) that becomes more or less fragmented over time due
to changing water levels (for example). The network b) represents the
history of geneticisolation that might be expected from such a sequence
of geographic isolation. ¢) The network as a sequence of populations
(boxes) with discrete generations, and gene tree ((B,C),A) obtained by
both lineages from A and B going to the right within the network as
we trace their ancestry from the present to the past.

the next event for that population is a merger or a
divergence. This consideration makes it biologically
awkward to treat hybridization edges as different from
tree edges.

To envision how nonhorizontal edges could occur,
imagine an irregularly shaped lake with a population of
fish (Fig. 3). Over time, water levels in the lake change,
so that the shallower, narrow areas can become dry,
leading to separating the lake into separate, smaller
lakes. This would lead to genetic isolation and the
inability of genes in isolated regions to coalesce. In
Fig. 3, if we imagine the sequence of water levels, we
would expect lineages sampled from regions 1 and 2
in the present (the bottom of the figure) to sometimes
coalesce fairly recently in the most recent case where
regions 1 and are connected. However, going back
in time, the three regions are separated again. Going
back in time, imagine that regions 2 and 3 become
connected while region 1 remains isolated. In this
case, genes from regions 2 and 3 can coalesce. Such a
sequence of habitat fragmentation and mergers could
lead to patterns of genetic isolation that could create
opportunities to coalesce reflected in a hybridization
network with nonhorizontal hybridization edges, even
if all species (or subspecies) were sampled in the present
and there was no extinction.

IDENTIFIABILITY AND DISTINGUISHABILITY

A goal in probabilistic modeling is to have a class of
models that is identifiable. This means that each model
in the class leads to a distinct set of probabilities (or
probability densities) for possible data. Thus, given
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FIGURE 4.

Example of two networks (top row) that are distinct but each display the same three trees (bottom row). For example, removing the

edges with lengths )5 and A¢ from N} and kg —x and Ag+h9+y in N} both result in displayed tree T}. The networks are distinguishable under
the NMSC using gene tree topologies if there is one (or more) lineages sampled per species. The example is reprinted from Zhu and Degnan
(2017) and is a modification of a figure from Pardi and Scornavacca (2015). The example from Pardi and Scornavacca (2015) can be obtained by

removing taxon E.

enough data to determine the relevant probabilities, it
is possible to determine which model in the class lead to
the observed data. If two models lead to the exact same
probability distribution for the data, then no amount
of data can distinguish those two models, and the class
of models as a whole is not identifiable. Here, there
are several possibilities for what to count as data. For
example, one could use rooted gene trees, unrooted gene
trees, or DNA sequences or alignments. For the most
part, I will restrict the discussion to identifiability given
gene trees without considering error in gene trees that
are estimated from DNA sequences. Ideally, for methods
that use gene tree topologies (either rooted or unrooted),
we would like to show that networks are still identifiable
from imperfectly estimated gene trees. In the context of
estimating species trees (as opposed to networks), it also
true that it is easier to show that methods have desirable
theoretical properties from known gene trees than from
gene trees estimated with error (Roch and Warnow 2015).

Showing that a class of models is identifiable is
often difficult, and in phylogenetics, identifiability
results are often established long after a class of
models is used (e.g., Allman and Rhodes 2003).
A more modest goal is to understand when two
models are or are not distinguishable, rather than
understanding identifiability for the whole class of
models of interest. Tools from algebraic geometry,
particularly phylogenetic invariants, have often been
used to establish identifiability of gene trees for different
classes of substitution models (Allman and Rhodes
2003). Algebraic properties of site pattern probabilities
also underlies the software SVDquartets and the

software HyDe introduced in this issue for hybridization
detection (Blischak et al. 2018).

For phylogenetic networks, as well as for phylogenetic
trees, there are two aspects of identifiability: 1) the
network topology and 2) given the topology, the
parameters in the network such as branch lengths and
inheritance probabilities. For some small examples with
small numbers of taxa, the number of possible gene tree
topologies can be fewer than the number of parameters to
be estimated. This is a problem in terms of estimability
from frequencies of gene tree topologies. In particular,
we can think of each distinct gene tree probability
as a function of the branch lengths and inheritance
probabilities in the network, leading to a system of
equations. If there are more parameters than equations
in the system, then there will not be a unique solution to
the system. This is typically only a problem for very small
networks, such as with three or four taxa and one lineage
sampled per species, and arises for the “bad diamonds”
in Solis-Lemus and Ané (2016). Generally, identifying the
network topology seems to be the greater interest, and I
will focus on that first.

In the literature of combinatorial approaches,
phylogenetic  networks are often considered
indistinguishable if they display the same trees (Fig. 4).
A network is said to display a particular tree if removing
some subset of hybridization edges leads to that
particular tree remaining. The network in Fig. 2b
displays the trees (((B,C),D),A) and (((B,C),A),D).
The network in Fig. 2d only displays the tree topology
(((B,C),D),A) but has a different biological meaning
from a tree. If branch lengths are taken into account,
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Fig. 2d displays two trees with different sets of
branch lengths but the same topology. In some of
the network literature, networks are often thought
of as attempts to represent a collection of input
trees by a network that displays those trees with a
minimum number of hybridization events, often called
the hybridization number. Attempts to determine the
hybridization number have received considerable
attention, particularly in the case of two input trees
(Bordewich and Semple 2007; van lersel and Linz 2013;
van lersel et al. 2014, 2016a, 2017).

If incongruence in the gene trees can only be due to
hybridization events, then the idea that networks must
display different trees to be distinguishable makes sense.
As will be explained below, however, when there is
incomplete lineage sorting, gene lineages in the network
do not always follow paths of displayed trees. An
extreme case is given by Zhu et al. (2016), in which
it is shown that the most probable gene tree topology
can disagree with the topologies of all displayed trees.
This result is a network analog of the result that the
most probable gene tree is not necessarily concordant
with the species tree, a phenomenon referred to as
AGTs (Degnan and Rosenberg 2006). Another example
is shown in Solis-Lemus et al. (2016), in which gene flow
between nonsister taxa results in anomalous unrooted
gene trees (AUGTs) (Degnan 2013). The Solis-Lemus et al.
(2016) example occurs even in the case of four taxon
unrooted gene trees, for which AUGTSs are not possible in
the traditional multispecies coalescent (which assumes
no hybridization and no gene flow between distinct
species) (Degnan and Rosenberg 2006; Larget et al. 2010;
Allman et al. 2011. In this issue, Long and Kubatko (2018)
show that continuous gene flow between sister taxa can
also result in rooted AGTs, even in the case of three
taxa.

In empirical studies, there is often a very large set of
conflicting gene trees, in some cases, with every gene tree
having a unique topology—for example, Salichos and
Rokas (2013) give an example with 23 taxa and all 1070
gene trees being unique. Just as a single species tree can
give rise to a large number of incongruent gene trees,
we should expect that large numbers of incongruent
gene trees can be compatible with a small number of
hybridization events, because incongruence can be due
to ILS as well as hybridization.

There are two senses of identifiability that are
important in discussions of inferring trees and networks.
One is that, we want to be able to identify the tree
or network topology that fits the data. In particular,
invariant methods often identify patterns in the data
that hold for a particular topology regardless of the
branch lengths or other parameters (Allman and Rhodes
2003). A second sense of identifiability is that given a
particular topology, we wish to be able to infer the branch
lengths and other real-valued parameters associated
with the model, such as inheritance probabilities. This
can often be done by solving a system of equations
relating probabilities of gene trees to the parameters
in the network. Often, however, methods of inferring

species trees or networks only determine the topology
and not the branch lengths.

So far, results regarding identifiability for species
network topologies under the network multispecies
coalescent (NMSC) have focused on using quartets in
the unrooted gene trees to infer features of unrooted
versions of the species network (Solis-Lemus and Ané
2016; Banos 2017). The results show that for level-1
networks, for which cycles do not overlap, cycles of
length four can be detected, with a fifth taxon being
necessary to detect whichnodeis the hybridizationnode,
and the hybrid nodes of cycles of length five can also be
detected. In this setting, detecting hybridization nodes
can allow for detecting the direction of some edges in
the network, and consequently the inferred networks are
called semidirected. For examples, see Solis-Lemus and
Ané (2016).

Having two or more taxa descended from a hybrid
node is particularly helpful for identifying hybridization
events, even for networks that are more complicated than
level-1. For example, there is a cycle of four nodes with
branch lengths A3, X5, A9, and Ajg for network Nj in
Fig. 4. The hybridization node is where the branches
with lengths A5 and hg meet, from which lineages from
species B and E can both potentially be present. Networks
in which only one lineage is sampled that is descended
from a hybrid node can have identifiability problems.
For the examples in Fig. 4, if there is only one lineage
sampled from species A, B, C, and D, and no lineage is
sampled from E, then the networks N7 and N} cannot be
distinguished using gene trees, even with known branch
lengths (Pardi and Scornavacca 2015; Zhu and Degnan
2017). However, if both D and E are sampled, then the
two networks are distinguishable, meaning that they
give different probability distributions on the gene trees
and even the gene tree topologies, even though these
networks are not level-1 due to the overlapping cycles
(Zhu and Degnan 2017).

However, a few insights regarding identifiability have
emerged. One is that the methods for determining
probabilities of gene tree topologies in Yu et al. (2012)
and Zhu and Degnan (2017) do not make an explicit
use of displayed trees. The algorithms work exactly
the same way whether or not a gene tree happens to
be displayed by the network, and the algorithm does
not always decompose the species network into only
its displayed trees. This has results for simulation as
well. An early paper linking hybridization networks and
ILS (and allowing for both simultaneously) (Holland
et al. 2008) simulated gene trees under species networks
by first finding a tree displayed by the network, and
then simulating the gene trees under the MSC on
that displayed species tree. However, if two or more
lineages are sampled from descendants of a hybrid node
(either two or more lineages from the same species
or from distinct species), then the two lineages might
trace different paths through the network. The gene
tree should be thought of as coalescing directly in the
network in this case, not in a tree displayed by the
network, and this will lead to a different distribution of
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gene trees. Consequently, limiting gene trees to those that
can evolve on a species tree displayed by the network can
lead to an incorrect distribution of gene trees. Simulating
directly from the network is the approach taken in the
program hybrid-Lambda (Zhu et al. 2015).

The idea that the gene tree evolves on a species tree
displayed by the network is reasonable provided there
is only one lineage sampled from a descendant of a
hybrid node, and this is the approach taken in Meng and
Kubatko (2009) and Kubatko (2009). In these papers, the
trees displayed by the network are called parental trees.
The more general situation in which there can be several
species descended from hybrid nodes does not make
explicit use of displayed trees.

Future work on identifiability should keep in mind
cases where gene trees do not evolve on trees displayed
by the networks. Model identifiability will also have
to describe the space of phylogenetic networks. For
example, are multiple edges between two nodes
allowed? Possibilities for making claims of identifiability
are to limit the complexity of the network in some way,
for example, to limit the number of hybridization events,
or to limit results to level-k networks to some small values
of k, where the level of a network describes the number
of reticulations in each biconnected component (Choy
et al. 2005).

To give a hint of the algebraic argument that has
been used to show identifiability of rooted species trees
from unrooted gene trees (Allman et al. 2011), consider
the three possible models in Fig. 5. Here, our interest
is only in distinguishing whether the data come from
network (a) (which is a tree), (b) (also and tree), or (c).
Probabilities of rooted gene tree topologies are shown in
Table 2 (for space reasons, network (d) is not included,
and network (c) is only shown for y=1/3). Network
(a) has five algebraically distinct probabilities, network
(b) has seven algebraically distinct probabilities, and
networks (c) and (d) each have nine algebraically distinct
probabilities (Table 2, Yu et al. 2011). By algebraically
distinct, we mean that the polynomials representing the
probabilities are distinct. For certain special choices of
branch lengths, it might be possible to make some of the
probabilities numerically not distinct, but such choices of
branch lengths would technically have probability 0 for
trees or networks generated by birth—death processes.
Representing probabilities as polynomials allows the
use of methods from algebraic geometry and algebraic
statistics to investigate identifiability issues and to
perform statistical inference (Drton et al. 2009; Allman
et al. 2011; Chifman and Kubatko 2015). Looking at the
number of distinct gene tree probabilities is informative
about the network topologies. Networks (c) and (d) have
the same number of distinct gene tree probabilities,
so a worry might be whether we can distinguish
them. However, if the topology is known to be of
the form of network (d), then there are nine distinct
gene tree probabilities and six parameters, leading to
an overdetermined system of equations. Network (c)
is a special case of Network (d) where some of the
branch lengths are equal to 0. Network (d) can also be

a)

A D B C
c)
t2 14
7 W\ (\
N\
A B C D B C D
FIGURE 5. Four networks with branch lengths. Networks a)-b) are

trees with two branch length parameters in coalescent units. Network
¢) has two branch length parameters and an inheritance probability
parameter y which determines the probability of going left u for each
lineage at the hybrid node. Here the hybridization edges are horizontal,
so it assumed that the lineages for B and C either coalesce more
recently than the hybridization event, or they don't, in which case
each independently enters the population ancestral to A or D before
(going backwards in time) coalescence is possible. In d), branch b; has
length t;, and the hybridization edges (with lengths b, and b3) are
independent populations. In d), if both lineages from B and C take
the same path through the network (say, to the left), then there is
the possibility that they could coalesce on an edge more ancient than
the hybridization event, but more recent than the species divergence
between the population which is ancestral to A, B, and C (i.e., the
population corresponding to branch bs). This network therefore has
more parameters than the network in (c). The number of parameters
can be reduced by one if there is the constraint that t34t5 =t, 414, but
this isn't required by the model.

distinguished from the others using unrooted trees as
data (Solis-Lemus et al. 2016).

A further problem with identifiability that seems
more difficult to address is that there might be other
causes of gene tree incongruence above and beyond
the MSC and hybridization. The previous paragraph
gave an idea of how to distinguish the models Hy:
MSC versus Hp : MSC+hybridization, for example, but
did not indicate distinguishing between Hj:MSC+
hybridization versus Hj:MSC+population structure,
for example. Both hybridization and population
structure can lead to increased complexity in gene
tree distributions and can lead to inconsistency in
usual species tree reconstruction methods. In particular,
Slatkin and Pollack (2008) demonstrate that the
most probable topology does not necessarily match
the species tree topology, even with three taxa.
Consequently, many popular two-stage methods of
inferring species trees can be inconsistent when there
is ancestral population structure, meaning that they
can fail to recover the species tree even with arbitrarily
large numbers of loci (DeGiorgio and Rosenberg 2016).
Another example where two classes of models might
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TABLE2.  Probabilities of gene tree topologies for different species trees and networks shown in Figure 5 with X=¢7%2, Y =¢~'1, and where

y=1/3 is the probability that lineages go to the left

Gene tree

Network/tree from Fig. 5

(b)

©

1. (((a,b),c).d)

2.(((a,b),d),c)
3.(((a,c),b).d)
4. (((@,c),d),c)

5. (((a,d),b),c)
6. (((a,d),c),b)

7.(((b,c),a),d)

8. (((b,c),d),a)

9. (((b,d).a).c)

10. (((b,d),c),a)
11. (((c,d),a),b)
12. (((c,d), b),a)

13. ((a,b), (c,d))
14. ((a,c), (b,d))

15. ((a,d),(b,c))
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give rise to similar patterns is that population structure
might give the appearance of distinct species when the
MSC is used for species delimitation without accounting
for population structure (Sukumaran and Knowles 2017).
Generally, identifiability results require an assumption
that the correct class of models is first given (such
as only coalescence and hybridization as sources of
incongruence), and identifiability is hopefully shown
within that assumed class of models.

A final difficulty to be addressed is that most
identifiability results so far have focused on known gene
trees, and have not dealt with problems in estimating
gene trees. Usually methods that are shown to be
statistically consistent on known gene trees are then
tested in simulation to observe their robustness to
misestimation in the gene trees (e.g., Liu et al. 2009;
Huang et al. 2010; Leaché and Rannala 2011; Wu 2012;
Chou et al. 2015). It would of course be desirable
to have theoretical results on identifiability of models
(and consistency of inference methods) from gene trees
estimated with errors as large as are typically observed
in empirical studies. An attempt in this direction is given
by Roch and Warnow (2015), which uses bounds in errors
of estimated triplets to bound the error for the whole tree
and thereby prove consistency for a triplet-based method

from estimated gene trees. One approach for potentially
reducing error introduced by using estimated gene
trees is to estimate gene tree frequencies in a Bayesian
framework and later use these Bayesian estimates of
frequencies, where uncertainty in the individual gene
trees has been accounted for and integrated out. This
approach is used in BUCKy (Ané et al. 2007; Larget et al.
2010) which estimates both gene tree frequencies and
species trees. The estimated gene tree frequencies from
BUCKYy can be used as input to other methods that use
gene tree topology frequencies. There is some discussion
in the literature of the impact of gene tree accuracy
on species tree methods (Huang et al. 2010; DeGiorgio
and Degnan 2014; Roch and Warnow 2015). However,
what is important is that the estimated distribution of
gene trees or their summary statistics (quartets, triples,
clusters, etc.), matches the true distribution rather than
that the individual estimated gene trees match the true
gene trees.

In addition to distinguishing networks from gene
trees, tests of hybridization are often done based directly
on sequence data. A popular method is called the
ABBA-BABA test (Durand et al. 2011), which is used
for subsets of four taxa or populations. If the correct
tree is (((X1.X2),X3),0) (where O is the outgroup),
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then a common allele pattern should be BBAA, where
taxa X3 and O share the same ancestral allele, and
X7 and X, share the same new allele. If X; and Xj
share an allele not shared by Xj, then this is evidence
of admixture between X; and X3 and can result in
pattern BABA. Similarly, admixture between X, and X3
could lead to pattern ABBA. If there is no admixture,
then frequencies of patterns ABBA and BABA should
be similar. Comparing frequencies of the discordant
patterns (called the D-statistic) can give evidence for
whether there was a violation of tree-like evolution of
the taxa due to ancient hybridization or population
structure. Although the ABBA-BABA test was originally
given for four populations, Pease and Hahn (2015)
extend the idea to a five-taxon setting (a balanced four-
taxon rooted tree plus a fifth taxon as an outgroup)
to help identify the direction of gene flow using a
statistic called Dgopr.. The results are consistent with
those of Solis-Lemus and Ané (2016) in that adding
a fifth taxon improves identifiability by allowing both
the detection of the hybrid node and the direction of
gene flow when the cycle has enough nodes. With four
taxa, they can detect cycles with four nodes, but not the
direction of gene flow. Their work suggests that it will
be useful to examine identifiability of networks from
sequence data in addition to gene tree topologies. Pease
and Hahn (2015) also point out that the ABBA-BABA
test and Drpop, can be misled by unsampled “ghost”
lineages. Recent admixture can also be detected by
using linkage disequilibrium, where nonindependence
of nearby genetic loci is evidence of recent admixture,
with the degree of nonindependence declining over time
due to recombination (Corander and Marttinen 2006).

BRANCH LENGTHS IN THE NETWORKS AND GENE TREES

Species networks can be considered either
topologically or with branch lengths. Branch lengths
are particularly useful for probabilistic models.
Together with inheritance probabilities, parameters that
determine the probabilities that a lineage is inherited
from each of its parental populations, these real-valued
parameters allow probabilistic modeling of gene trees
within species networks.

A difficult question is whether branch lengths in
the gene trees should be used. Several of the current
algorithms for inferring species networks from gene
trees only use the topological information, ignoring
potential information in the branch lengths. Intuitively,
it would seem to be preferable to use the information
in the branch lengths as well. In some cases, two
networks might be indistinguishable using only gene
tree topologies yet distinguishable using gene trees
with branch lengths. As an extreme case, if there is a
species network with only two species, A and B, then
there is only one gene tree topology, (A,B). Yet the
species divergence history for these two species might
have undergone periods of genetic isolation followed by
population mergers before the final cessation of gene

flow. This would lead to networks where a species
diverged into two populations, the two populations
subsequently merged, and this process might have been
repeated several times. This could occur for example
in cases of episodic glaciation or sea level changes,
where there are alternating periods of gene flow and
genetic isolation. In these cases, coalescence times could
potentially be multimodal, or at least have higher
variance than would be predicted under a model where
gene flow stopped only once (DeGiorgio et al. 2011). The
distribution of branch lengths in the gene trees would
then give information regarding times when the species
had split and then merged before the final divergence.
Information in coalescence times is especially used for
inferring complex demographic histories and changes
in ancestral population sizes such as in hidden Markov
models (HMMs) (Dutheil et al. 2009; Schiffels and
Durbin 2014).

The use of branch lengths from gene trees has a
parallel in species tree inference, where methods that
use gene trees with branch lengths, such as STEAC (Liu
et al. 2009) and STEM (Kubatko et al. 2009), have so
far been outperformed in simulation by methods that
use only estimated topologies, such as NJs (Liu and
Yu 2011) and ASTRAL (Mirarab et al. 2014). Reasons
for the underperformance of STEM have been explored
in the case that species are closely related and recently
separated, leading to underestimation of divergence
times (DeGiorgio and Degnan 2014). The performance of
STEAC relative to the related method STAR (which can
be interpreted as STEAC with all internal branch lengths
replaced with the value 1.0) is less well understood. In
simulations, STEAC had very similar performance as
STAR under idealized conditions, such as there being a
molecular clock, but did not perform as well when there
were molecular clock violations (Liu et al. 2009).

Methods for inferring species networks from gene
trees under the NMSC can also be divided into
those that use topologies only (Meng and Kubatko
2009; Yu et al. 2011, 2012; Solis-Lemus and Ané 2016)
and those that use gene trees with branch lengths
(Kubatko 2009; Yu et al. 2014; Wen et al. 2016). Using
branch lengths in gene trees to infer networks might
suffer from the same problems encountered when
inferring species trees, namely that when gene trees are
estimated using maximum likelihood, divergences can
be underestimated (due to identical or nearly identical
DNA sequences at just one locus), making the maximum
likelihood estimate of the distances between distinct taxa
tobe very low or zero (DeGiorgio and Degnan 2014). This
problem can be ameliorated by some extent by using
Bayesian estimates of gene trees. The prior for branch
lengths means that even identical sequences will result
in a nonzero branch length separating distinct taxa in
the Bayesian estimates of the gene trees (DeGiorgio and
Degnan 2014; Wen et al. 2016).

Another complication with methods that employ
branch lengths is that accurate estimation of branch
lengths requires more assumptions than using
topologies. For example, branch lengths on different



2018

DEGNAN—MODELING HYBRIDIZATION UNDER THE NETWORK MULTISPECIES COALESCENT

795

gene trees have to calibrated to adjust for possibly
different mutation rates or mutation models at the
different loci (Kubatko et al. 2009; Rhodes 2017),
whereas no such calibration is needed when using
topologies. In Bayesian frameworks especially, allowing
locus-specific and species-specific mutation rates can be
accommodated, for example by assuming that mutation
rates come from a distribution (i.e., a random effects
model) without requiring estimation of a separate
mutation rate parameter for each locus or by using a
relaxed clock (Ogilvie et al. 2017). It is possible that
for shallower species trees and networks, getting the
substitution model exactly correct is less essential,
especially since multiple mutations at a single site are
less common and the molecular clock is more likely
to be approximately correct (Burgess and Yang 2008).
However, shallower trees can have very low variation in
sequences, which leads to the underestimation problem
described above, in which topology-based methods can
outperform branch-length based summary methods
even under the molecular clock and simple substitution
models (DeGiorgio and Degnan 2014).

Bayesian (and likelihood) approaches that use branch
lengths or sequence data have the advantage that
they can potentially infer all of the parameters of the
NMSC, including times of speciation in generations and
ancestral population sizes (Rannala and Yang 2003; Wen
and Nakhleh 2017; Zhang et al. 2018). Methods that
infer species network branch lengths from gene tree
topologies only are limited to inferring branch lengths
in coalescent units, in which the generation time and
population size parameters are confounded.

ROOTED VERSUS UNROOTED NETWORKS

In addition to deciding whether or not to use branch
lengths to infer networks, one must also decide whether
to infer a rooted or an unrooted network. In the brief
history of methods to infer species trees from gene
trees under the MSC, there has been a shift from
methods that use rooted gene trees (roughly 2006-2010)
to methods that use unrooted gene trees (roughly 2010 to
the present). Earlier rooted methods include minimizing
deep coalesce (Maddison and Knowles 2006), STAR (Liu
et al. 2009), STEM (Kubatko et al. 2009), MP-EST (Liu
et al. 2010), whereas later unrooted methods include
NJg (Liu and Yu 2011) and ASTRAL (Mirarab et al.
2014). Although these last two methods are among the
best-performing overall, it is not clear to what extent
this is due to the gene trees being unrooted since these
methods also use different criteria to estimate the species
trees. The division between earlier, rooted methods and
later, unrooted methods is also only approximate, with
BUCKy (Ané et al. 2007) being used early with unrooted
trees and STELLS (Wu 2012) a later addition to the rooted
gene tree methods.

Methods for estimating networks in the NMSC started
developing just a few years later, but again started with
rooted methods (Meng and Kubatko 2009; Kubatko 2009;

Yu et al. 2011, 2012; Yu and Nakhleh 2015b), but the
more recent method SNaQ uses unrooted trees (Solis-
Lemus and Ané 2016). An interesting question is whether
the same shift from rooted to unrooted methods will
continue for inferring networks with newer methods
focusing on unrooted gene trees.

Apart from the trend, a question is whether it is
actually better to use unrooted gene trees as input than
rooted gene trees. One reason that the use of unrooted
gene trees is natural is that fast likelihood programs such
as RAXML (e.g., Stamatakis 2006) output unrooted trees.
Keeping this in mind, two possible pipelines for inferring
species trees (or networks) are:

1. Infer unrooted gene trees
2. Root gene trees using an outgroup

3. Input rooted gene trees to a rooted species tree (or
network) method

versus

1. Infer unrooted gene trees

2. Input unrooted gene trees to an unrooted species
tree (or network) method

3. Root the species tree (or network) using an
outgroup

An important advantage for the second approach is
that an outgroup only has to be used once, which,
in addition to slightly reducing the computation time,
reduces the possibility that gene trees are incorrectly
rooted. In particular, an outgroup at the species level
is not necessarily an outgroup at the level of an
individual locus. Coalescence can fail to occur between
some lineages in the interval between the root of the
ingroup taxa and the root of the tree with the outgroup
taxa. Consequently, if the outgroup is too close to the
ingroup taxa, several gene trees might be incorrectly
rooted, which could reduce the accuracy of methods for
inferring rooted species trees or networks (Gatesy et al.
2007; Simmons and Gatesy 2015), even if the outgroup is
genuinely an outgroup at the species level. This could be
avoided by choosing an outgroup that was sufficiently
far away, but this could introduce other errors due to
saturated sequences (too much mutation on the branch
leading to the outgroup) and can lead to the inclusion
of an outgroup making the tree of the ingroup taxa less
accurate than analyzing the ingroup taxa by themselves
(Holland et al. 2003).

A second advantage is that for some groups of
organisms, an appropriate outgroup might be hard to
find (Boykin et al. 2010), or it might not be known in
advance whether a candidate outgroup is too close or
too far to the ingroup taxa to avoid causing problems. In
addition to the two pipelines above, Allman et al. (2011)
showed that it is theoretically possible to infer a rooted
species tree directly from unrooted gene tree topologies
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without using an outgroup. Although this method has
been tested using approximate Bayesian computation
(Alanzi and Degnan 2017), it is expected that using an
outgroup (if available) to ultimately root the tree (or
network) will typically be easier than inferring the root
directly from the unrooted trees. SNaQ (Solis-Lemus
and Ané 2016) is able to infer some rooted information
(direction of some hybridization edges) in networks from
unrooted trees. An open question is whether complete,
rooted networks can be inferred from unrooted trees
under some conditions.

MODELING TRAIT EVOLUTION ON NETWORKS

Models of trait evolution allow general traits, rather
than just DNA or protein sequences, to evolve along a
tree. Traits can be discrete or continuous. Continuous
traits are often modeled using Brownian motion or
an Ornstein—Uhlenbeck (OU) model (Felsenstein 2004).
The idea is that there is a mean trait value for a
population which changes over time, either drifting,
such as from a Brownian motion, which assumes that
traits vary according to a normal distribution with
variance proportional to time. Alternatively, in the OU
model the distance of a trait value to some optimal
value influences the variance and direction of the trait
evolution.

A new idea, presented at the Evolution meeting, is
to model trait evolution on a network instead of a tree.
This more general approach might be more realistic
in cases where there has been hybridization between
populations. One approach is to treat mean values of
traits in a hybrid population as weighted averages of
the parental populations plus an additional amount
allowing for a shift just after a hybridization event, thus
allowing for transgressive evolution, in which the hybrid
population can have more extreme values than either
parental population (Bastide et al. 2018).

A conceptual issue here is whether trait evolution
should be modeled on a tree or network at the species
versus gene levels. For the network models considered
in this article, gene trees are embedded in species
networks, but the gene trees themselves are still tree-
like. This is in contrast to other network structures
such as networks depicting horizontal gene transfer
events or ancestral recombination graphs, in which the
correct graph structure is not tree-like at the level of the
gene. These new network approaches to trait evolution
open the door to thinking about traits evolving on
combinations of trees that are due to a network structure.

DISTANCES BETWEEN NETWORKS

Another area that needs more work is distances
between networks. A number of distances have been
based on the Robinson-Foulds (RF) (Robinson and
Foulds 1981) and rooted triple distances (Critchlow et al.
1996), which were designed for trees, and generalized to
networks (Cardona et al. 2009a,b; Nahkleh 2010). For the
RF distance on trees, the set of clusters in each tree is

listed. For example, for the trees in Fig. 5a,b, the clusters
for tree (a) are {A,D} and {B,C}, while for tree (b), the
clusters are {B,C} and {A, B, C}. Each tree has one cluster
that is not in the other tree, leading to a total of two
clusters not shared between the two trees. This leads to
a RF distance of 2. The approach can be generalized to
networks in different ways. For example, one could list
all the clusters associated with each of the displayed trees
associated with a network. For example, in networks
(c) and (d) from Fig. 5, the clusters associated with
the network are {B,C},{A,B,C}, and {B,C,D}. Clusters
associated with the displayed trees are called softwired
clusters and distances based on these are called softwired
distances (Huson et al. 2010). Alternatively, the hardwired
cluster distance is based on listing clusters associated with
the tree edges in the network. This leads to one cluster
for each tree edge. For example, in networks (c) and (d)
from Fig. 5, the hardwired clusters are {B,E}, {A,B,E},
{B,D,E},and {B,C,D, E}. The hardwired cluster distance
has been used to measure error in reconstructed versus
true networks in simulations (Yu and Nakhleh 2015a).

A similar approach is to use rooted triples instead of
clusters. Here each rooted triple associated with a tree
or network is listed, and the number of rooted triples
not shared can be treated as the distance. For example,
tree (a) in Fig. 1 has triples AD|B, AD|C, BC|A, and BC|D,
while tree (b) has triples AB|D, AC|D, BC|A, and BC|D,
leading to a total of four triples that are not shared.
Triples from the displayed trees in a network can be used
to describe distances between networks as well.

Although there are many proposed distances between
networks, current approaches seem to implicitly assume
that networks with identical displayed trees should have
a distance of 0 between them (e.g., Cardona et al. 2009a).
Under the NMSC, this is sometimes but not always
appropriate because networks displaying the same trees
can be distinguished in many cases. Typically, distances
proposed for networks are proven to satisfy properties of
metrics (in particular, the distance between two networks
is 0 if and only if the networks are isomorophic) only for
restricted classes of networks such as level-1 networks
(with no overlapping cycles) or tree-child networks (for
which every internal node is the parent of extant taxon or
a tree node) (Cardona et al. 2009c¢). Typical dissimilarity
measures return 0 for the networks in Fig. 4 even
though these networks induce different distributions
on the gene trees and can be distinguished. Ideally, a
metric on networks for the NMSC is desired where the
distance between networks is not 0 when the networks
are distinguishable.

DiscussiON

This is an exciting time for the application of
phylogenetic networks and the modeling of multiple
biological mechanisms that simultaneously contribute
to gene tree heterogeneity. The spotlight session at
Evolution in 2017 focused on a few directions in which
this topic is growing, and there is still much room for
work in this area. Traditional phylogenetic tree inference
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has had several decades to mature with the development
of parsimony and distance methods in the 1960s and
1970s (see Felsenstein (2004) for an historical sketch),
application of maximum likelihood starting in the 1980s
(Felsenstein 1981), and Bayesian methods in the 1990s
(Rannala and Yang 1996). In that time, a lot of work was
done on refining algorithms, thinking of properties of
tree space and how to search that space effectively with
moves such as nearest neighbor interchange, subtree
prune and regraft, and tree bisection and rearrangement.
Birth-death models were also developed as priors for the
space of species trees (Rannala and Yang 1996).

Work on phylogenetic networks is much less mature,
with the space of phylogenetic networks that we wish
to work with still not very clearly defined, and there is
a need for understanding moves in network space and
networks priors in order to do Bayesian inference on
networks. Recent progress in these directions include
generalizing the nearest neighbor interchange and
subtree prune and regraft algorithms for networks
(Huber et al. 2016a, 2016b; Gambette et al. 2017).
Moves for networks include flipping the direction
of a reticulation edge, adding a reticulation between
randomly selected edges, and deleting a randomly
selected edge (Gambette et al. 2017). Network priors
are needed for Bayesian inference of species networks.
This is not as simple as the birth—death prior typically
used for trees partly because the number of possible
networks is much larger, and also because the number of
parameters depends on the number of reticulations. One
approach is to condition on the number of hybridization
events (Jones et al. 2013), while a more ambitious
approach is to search a space with an uncertain number
of hybridization events (Wen et al. 2016). A third
approach is to expand birth-death models to birth-
death-hybridization models, where there is a rate at
which pairs of lineages can hybridize in addition to rates
for lineages to speciate or go extinct (Zhang et al. 2018).
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