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ABSTRACT

Muscle-specific transcription factor MyoD orches-
trates the myogenic gene expression program by
binding to short DNA motifs called E-boxes within
myogenic cis-regulatory elements (CREs). Genome-
wide analyses of MyoD cistrome by chromatin imm-
nunoprecipitation sequencing shows that MyoD-
bound CREs contain multiple E-boxes of various se-
quences. However, how E-box numbers, sequences
and their spatial arrangement within CREs collec-
tively regulate the binding affinity and transcriptional
activity of MyoD remain largely unknown. Here, by an
integrative analysis of MyoD cistrome combined with
genome-wide analysis of key regulatory histones and
gene expression data we show that the affinity land-
scape of MyoD is driven by multiple E-boxes, and
that the overall binding affinity––and associated nu-
cleosome positioning and epigenetic features of the
CREs––crucially depend on the variant sequences
and positioning of the E-boxes within the CREs. By
comparative genomic analysis of single nucleotide
polymorphism (SNPs) across publicly available data
from 17 strains of laboratory mice, we show that vari-
ant sequences within the MyoD-bound motifs, but not
their genome-wide counterparts, are under selection.
At last, we show that the quantitative regulatory ef-
fect of MyoD binding on the nearby genes can, in part,
be predicted by the motif composition of the CREs
to which it binds. Taken together, our data suggest
that motif numbers, sequences and their spatial ar-
rangement within the myogenic CREs are important

determinants of the cis-regulatory code of myogenic
CREs.

INTRODUCTION

MyoD is a member of the basic helix-loop-helix transcrip-
tional regulators and the principal driver of the myogenic
differentiation program (1–3). Sequence-specific recogni-
tion of MyoD to DNA is dependent on the core hexanu-
cleotide (CANNTG) sequence (3), termed the E-box motif.
However, despite the ubiquitous genomic distribution of E-
boxes, multiple regulatory mechanisms ensure that MyoD is
selectively tethered to specific chromatin regions. These reg-
ulatory mechanisms include chromatin accessibility (4,5),
occurrence of relatively denser clustering of MyoD binding
motifs within the putative myogenic cis-regulatory elements
(CREs) (6,7) and various cooperative interactions between
MyoD and other trans and cis factors to regulate binding
specificity and affinity (6,8–10). Recent genome-wide anal-
ysis of MyoD binding pattern in myogenic cells suggests
that on average it binds to relatively large chromatin regions
(average MyoD chromatin immnunoprecipitation sequenc-
ing (ChIP-seq) peak width of 400 bp) encompassing multi-
ple unique or recurrent E-box motifs (6). Binding of MyoD
over such relatively large chromatin regions raises the ques-
tion of how variables such as motif sequences, numbers and
their spatial arrangement within CREs create a context de-
pendent environment to regulate chromatin state and di-
rect MyoD activity. More specifically, how the interactions
among cis-based variables within the myogenic CREs regu-
late the affinity landscape of MyoD and the dynamic range
of target gene expression remains largely unknown.

Genome-wide binding data of transcription factor oc-
cupancy together with high-resolution mapping of various
regulatory histone marks have provided an extensive cat-
alog of CREs in mice and human (11,12). Moreover, the
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availability of whole genome sequence data of mouse (13)
and human (14) allows comparative genomic analysis of
the CRE sequences, to compare sequence composition and
evolutionary conservation of homologous CREs across the
species. These datasets, together with quantitative analy-
sis of TF binding sites and analysis of regulatory histone
marks, provide important input to interrogate the dynamic
interplay between transcription factors and their CREs in
regulation of chromatin state and control of gene expres-
sion.

To gain further insights into the mechanistic basis of how
MyoD’s interaction with the CREs implements the myo-
genic cis-regulatory code, we decided to perform a multi-
pronged analysis of MyoD binding. We based our study on
our own ChIP-seq reporting MyoD binding in differentiat-
ing primary mouse muscle cells (15), as well as two indepen-
dently obtained MyoD ChIP-seq datasets in differentiating
C2C12 myogenic cells (7,16). In addition, we determined
the relationship between MyoD occupancy and nucleosome
positioning, using genome wide histone H3 ChIP-seq as a
proxy measure, enhancer activity status using the H3K4me1
histone mark and the associated promoter status using the
H3K4me3 and H3K27me3 marks. To study the evolution-
ary conservation of binding sites, we used single nucleotide
polymorphism (SNP) data from a study of 17 mouse strains.
At last, we related MyoD binding, motifs in CREs and chro-
matin state to changes in gene expression during differentia-
tion, as assayed by RNA-seq. From these analyses, we have
determined that number, sequence and spatial arrangement
of E-box motifs within myogenic CREs in combination reg-
ulate MyoD binding to DNA and determine the differential
gene expression output. Importantly, we have derived an in-
dex which we term ‘motif score’ to quantify total MyoD
binding to CREs and to predict differential gene expression
output––solely dependent on the numbers, sequences and
the spatial arrangement of E-boxes within MyoD-bound
CREs. Our comparative genomic analysis on the rates of
SNPs in E-boxes suggests that the motifs contributing most
strongly to our motif score are also those that are under the
strongest conserving selection, whereas other motif variants
and other E-boxes genome wide show less or no evidence for
selection. Together, our data suggests that sequence varia-
tion, numbers and the spatial arrangement of E-box motifs
within myogenic CREs together regulate the binding speci-
ficity and affinity landscape of MyoD cistrome.

MATERIALS AND METHODS

Mice and animal care

Care of animals was in accordance with institutional guide-
lines as regulated by the Canadian Council of Animal Care
(CCAC). All protocols are first approved by Animal Re-
search Ethics Board at the University of Ottawa and these
protocols are reviewed on an annual basis. Animals were eu-
thanized by CO2 inhalation in a chamber specially designed
for such use. This procedure is in accordance with the stan-
dard operating procedures of the University Animal Facil-
ity as recommended by the CCAC.

Cell culture

Primary muscle progenitor cells were isolated from the
hind limbs of 4–6 weeks old wild-type mice by Fluores-
cent Activated Cell Sorting as described previously (15).
The cells were maintained on collagen coated culture
dishes in growth media (Ham’s F10 supplemented with
20% Fetal Bovine Serum (FBS), 2.5 ng/ml bFGF, 1%
penicillin/streptomycin) in a 37◦C incubator with 5% CO2.
Fully confluent cultures of primary myoblasts were differ-
entiated by switching to differentiation media (Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 5%
horse serum) for 48 h.

Antibodies

The following antibodies were used in this study: anti-
H3K4me3 (Abcam 8580), anti-H3K27me3 (Millipore 07–
449), anti-H3K4me1 (Cell Signaling Technologies 5326),
anti-Histone H3 (Millipore 05–499).

ChIP-seq

Chromatin Tandem Affinity Purification for MyoD was car-
ried out as described previously (15,17). In addition, we
performed ChIP-seq for H3K4me3, H3K27me3, H3K4me1
and total histone H3 as follow: briefly, 8 × 107 cells were
cross linked with 1% formaldehyde in 1 × phosphate-
buffered saline buffer at room temperature. Chromatin was
sheered by sonication to an average fragment length of 200
bp. ChIP was performed on 20 mg of cell lysate using 20 �g
of antibody at the ratio of 1:1000 antibody to antigen. ChIP
library construction was performed from 10 ng of ChIP
DNA using standard Illumina ChIP library preparation
protocol and as described previously (15,17). Sequencing
was performed on GAIIX Genome Analyzer. To achieve a
sufficient coverage for histone marks these samples were run
in duplicates on two lanes of the flow cell as technical repli-
cates. Sequenced reads from the two lanes we subsequently
pooled together to achieve higher depth and better genome
coverage.

ChIP-seq peak calling

ChIP-seq reads from the control and the experiments were
filtered for polymerase chain reaction-induced duplications
and mapped to the mm9 (NCBI37) mouse genome assem-
bly by ELAND. These parameters were used to be con-
sistent with previously the published MyoD dataset (6).
The filtering resulted in removal of all but one sequence
read with identical 5′ end position. Reads from the con-
trol and experiments were fed to MACS version 1.37 (18),
after empirically estimating the mean fragment length of
the mapped sequenced reads by mappability sensitive cross-
correlation, MaSC (19), to identify genomic loci enriched
for transcription factor occupancy (peaks).

Motif analysis

Motif analysis was performed on the full length of the DNA
sequence under peaks, unless specified otherwise. The full
DNA sequence of mm9 was obtained using UCSC Genome
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Browser tools (http://genome.ucsc.edu). Sequences were
submitted to MEMECHIP (http://meme.nbcr.net/meme/
cgi-bin/meme-chip.cgi) software using all vertebrate motif
database to identify highly enriched consensus motifs.

Fragment length estimation

We applied MaSC analysis to estimate mean fragment
length in our single-read sequencing data as described pre-
viously (19). The use of MaSC significantly improves the
accuracy of the location of the enriched genomic regions
and improves the peak calling process (19).

RNA-seq analysis

Total RNA was isolated from proliferating primary my-
oblasts or primary myotubes which were obtained by feed-
ing >90% confluence primary myoblasts with differentia-
tion medium (DMEM supplemented with 5% horse serum)
for 48 h, as described previously (6). The quality and quan-
tity of RNA was assessed by the Agilent Bio analyzer. A
total of 2 �g RNA was used as input for mRNA-seq anal-
ysis. Cluster generation was carried out following Illumina
TruSeq SR Cluster Kit v5 and Illumina Cluster Station was
used for cluster generation (15). Sequencing was done us-
ing TruSeq SBS Kit v5 – GA (36-cycle) on Illumina GAIIX
Genome Analyzers. Reads from RNA-seq samples were
mapped to the mm9/NCBI37 mouse genome assembly and
to splice sites predicted from UCSC splicing models (ref-
Flat.txt.gz) (20) using the eland rna analysis option of the
Illumina GERALD pipeline v1.7 (Illumina) using default
parameters. The Illumina CASAVA pipeline (v1.7) was used
to aggregate the mapped reads and to quantify the tran-
scripts present in the original sample, using the readBases
method. The edgeR Bioconductor package (21) was used
to compare expression between pairs of samples using the
negative binomial exact test. Fold change and P-values were
corrected by multiple testing using the Bonferroni method.

Microarray gene expression analysis

Affymetrix MoGene-1 0-st-v1 was also used for expression
analysis of primary myoblasts and myotubes (48 h in differ-
entiation media). Six microarrays were used in this analysis
and are available as GenBank Accession (GEO GSE24811).
Transcript Cluster Identifiers (TCID) were normalized with
robust multi-array averaging (22) using the Bioconductor R
package (23). The results were log2 transformed and were
analyzed using significance analysis of microarrays. TCIDs
mapping to zero or more than one gene (ENSEMBL v67)
were excluded from the analysis.

Circos plot for visualization of genome-wide binding and ex-
pression

To visualize data on a genome wide scale we gener-
ated a concentric circos plot with nine tracks represent-
ing MyoD ChIP-seq, genome wide regulatory histone data
(H3K4me1, H3K4me3 and H3K27me3), and differential
gene expression output superimposed on motif sequences
within the CREs. We first identified all peaks in our MyoD

dataset for which a gene was located within +/- 5kb of the
peak, resulting in retention of 1800 out of 10 756 peaks.
Next, we sorted the 1800 peak set in order of decreasing
MyoD peak tag density (mean number of sequenced reads
within the MyoD peaks divided by the peak length) and
binned data into 100 percentiles. We then computed density
for each track as follow: starting from the outermost circle;
track 1, MyoD peak reads density (number of sequenced
reads within MyoD peaks divided by peak length); track
2, H3K4me1 read density within MyoD peaks; H3K4me3
read density within ±500 bp windows overlapping the TSSs
of the MyoD peak-associated genes; track 4, H3K27me3
read density within ±500 bp windows overlapping the TSSs
of MyoD peak associated genes; track 5, total histone H3
reads within ±500 bp windows overlapping the TSSs of
MyoD peak associated genes; track 6, number of 100% G/C
center dinucleotide E-boxes in peaks; track 7, number of
50% G/C center dinucleotide E-boxes; track 8, number of
0% G/C center dinucleotide E-boxes; track 9 absolute ex-
pression value (RNA-seq) of the associated gene to MyoD
peak. Each track was plotted by calculating mean value for
each bin forming the final set of 100-element vectors. The
tracks are grouped so that each group has a single scale. The
tag numbers are normalized to a total of 10 million reads
per dataset.

The color map (as shown) ranges from dark red (high val-
ues) to dark blue (low values), passing through orange, yel-
low and green in sequence. For group one (tracks 1–5), the
colors map to values ranging from a scale of 2 to 110 (blue
to red), based on the range of values for the MyoD peaks
track. Accordingly, the H3K4me1 track maps from dark
blue to a shade of green (scale of 0 to ∼40), the H3K4me3
track maps from a shade of green to light yellow (scale
of ∼40 to ∼90), the H3K27me3 track maps from lighter
shades of blue down to dark blue (scale of ∼9 down to
∼0. At last, the total histone H3 reads stays relatively uni-
form with minor oscillation between a scale of ∼5 and ∼7.
Due to the normalization of ChIP-seq datasets to 10 million
reads and binning and subsequent averaging, the values for
these ‘tag-number’ tracks end up being real numbers instead
of integers. For group two (tracks 6–8) representing E-box
numbers and sequences, the full set of colors are remapped
to a range of values from ∼0 to ∼6, corresponding to the
overall range for the E-boxes tracks. The 100% G/C E-box
track ranges from scale of 1 to 6, mapping to most of the
color spectrum with a stronger patch of red at the top, the
50% G/C E-box track varies from scale of 0.5 to 4 with a
weaker red patch at the top, and the 0% G/C E-box track
stays below 1 with a much weaker trend mapping mainly
to the blue shades. At last, the gene expression track values
(group three with a lone member) range from about 0.2 to
2, and the colors are remapped to this range, independent
of the other tracks.

Associating peaks to genes

To minimize the chance of false associations, we used a
conservative approach to associate peaks to genes, for each
gene, we first considered if any peak(s) overlapped a 5 kbp
window centered the TSS of the gene, and associated only
the closest peak to the gene. (There were no ties.) Among
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these associations, if any peak were associated with two dif-
ferent genes, we retain only the gene to whose TSS it was
closest. In this way, every peak is associated to at most one
gene and vice versa, and the associations are the closest
among possible choices.

SNP analysis

Mouse genomic sequences from 17 strains were used in
this analysis (13). Using C57BL/6 as the reference genome,
there are estimated to be 6.4 million SNPs in which there
is an alternative allele in at least one of the 17 strains com-
pared to the C57BL/6 reference strain as reported previ-
ously (13). We first measured SNPs rates for A, C, G and
T across the reference genome. Using an expression match
that counts both unique and overlapping CANNTG, we
determined a total of 14 206 895 E-boxes in the reference
genome. Next, we determined the rates of SNPs for each
of the hexanucleotides in E-boxes within MyoD peaks and
those outside of the peaks.

Luciferase assay

Luciferase constructs harboring various configurations
of E-box motifs were synthesized and sub cloned into
pGL4.23 [luc2/minP] vector. DEL represent deleted E-box;
GC represents CAGCTG motif; AT represents CAATTG
motif and CA represents CACATG motif. The E-box con-
taining sequence is a multimerization (3×) of a MyoD tar-
get described previously (15). Dual luciferase assay was
performed by co-transfection of mouse MyoD- and E47-
expressing plasmids in Cos7 cells using Promega Dual lu-
ciferase assay kit. Luciferase values were normalized to re-
nilla (Luciferase/Renilla) and were plotted relative to a con-
struct with mutated E-box sequences (DEL-DEL-DEL).

RESULTS

This study was conducted to gain mechanistic insight into
how the spatial arrangement, numbers and the sequences of
E-boxes within myogenic CREs regulate the affinity land-
scape of MyoD and the expression of associated genes.
We first analyzed genome wide occupancy of MyoD in
the differentiating primary (6) and C2C12 myogenic cell
line-derived myotubes (7,16). To quantify the similarity be-
tween the datasets we first measured the overlap in their
peaks. Specifically, for each dataset we counted the num-
ber of peaks that occurs in the other two datasets (Sup-
plementary Table S1). As an out-group, we added a fourth
ChIP-seq dataset for Pax7 (17), an unrelated transcription
factor. From this analysis we observed that there is sub-
stantial overlap in MyoD binding among datasets (Sup-
plementary Figure S1 and Table S1). To analyze the re-
lationship between MyoD occupancy and the epigenetic
state of the CREs we performed ChIP-seq for H3K4me1,
H3K4me3 and H3K27me3 in differentiating primary my-
otubes. H3K4me1 marks active enhancer elements, while
H3K4me3 and H3K27me3 mark promoters and transcrip-
tion start sites (TSS) in an opposing fashion. Next, as
a proxy measurement for nucleosome occupancy we per-
formed ChIP-seq of pan histone H3 in primary myotubes.

To analyze the relationship between MyoD occupancy, the
status of chromatin at the myogenic CREs and gene ex-
pression output, we performed Affymetrix gene expression
microarray and RNA-seq analyses of differentiating pri-
mary muscle cells. At last, to examine the levels of selective
constraint between MyoD binding motifs within the myo-
genic CREs and their genomic counterparts we performed
genome wide comparative analysis of SNPs in the genomic
sequences of 17 strains of laboratory mice (13).

Distribution of MyoD binding motifs in myogenic CREs

Analysis of MyoD binding data from three independent
datasets (6,7,16) revealed significant overlap in binding pat-
tern despite differences in cell types and the ChIP assay pro-
tocols used (Supplementary Figure S1 and Table S1). As
expected, MyoD peaks were highly enriched for the canon-
ical MyoD binding motif, the E-box sequence CANNTG,
compared to their random genomic distribution in all three
datasets (Figure 1A–C and Supplementary Figure S2). The
presence of the degenerate center dinucleotide NN in the
E-box motif results in 16 possible sequence configurations,
comprising 10 unique motif classes based on sequence re-
verse complementarity: dinucleotide GC, CG, CC or GG,
AC or GT, etc. Analysis of the E-box sequences in MyoD
peaks confirmed the preference of MyoD binding to E-
boxes with GC-rich center dinucleotide (GC, CC, CG, GG)
during muscle cell differentiation (Figure 1C and D). This
includes the CACGTG E-box which, although present with
low absolute frequency, is nevertheless two-fold enriched
in MyoD peaks over its genome-wide frequency. However,
many peaks lack the preferred CA[G/C]TG E-box motif
(Figure 1D), implying that the ‘lower GC content’ E-box se-
quences also have an important role in driving MyoD bind-
ing. Moreover, with an average of 3.89 E-box motifs per
peak, and with some peaks having 10 E-boxes or more (Fig-
ure 1E and Supplementary Figure S2d), it appears likely
that binding in many regions may be driven by multiple E-
boxes with various sequences.

Variant sequences in the MyoD-bound motifs are under se-
lection

The hexanucleotide E-box sequence, CANNTG contains
a central variable dinucleotide that is termed ‘degenerate’
and two flanking peripheral dinucleotides that are invari-
able and are required for recognition and binding of MyoD
to DNA (3). To analyze the functional relevance of the
variable dinucleotide within the E-box motif, we performed
comparative genomic analysis of the rates of SNPs across
17 mouse strains for which genome sequence data is pub-
licly available (13). We hypothesized that SNP substitution
rates within the variant sequences in MyoD-bound CREs
would be significantly lower than SNPs rates genome wide,
and that functionally important E-box variants would be
the most conserved. To test this hypothesis, we first calcu-
lated SNP rates for A, T, G and C nucleotides across the 17
mouse genomes using the C57 strain as reference (Figure
1F). Next, we calculated SNPs rates for the nucleotides in E-
boxes within the MyoD peaks (Figure 1F and Supplemen-
tary Figure S2e). Notably, the rates of SNPs at all the invari-
ant E-box positions, namely the initial CA and the closing
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Figure 1. E-box preferences of MyoD peaks (A) E-boxes are significantly enriched in MyoD peaks at ∼1.5-fold over genomic levels. (B) Consensus logo of
all E-boxes in MyoD peaks shows the hexa-nucleotide sequence with a variable dinucleotide and two flanking invariable dinucleotide. (C) Frequencies of
E-boxes with different center dinucleotide in MyoD peaks versus the genome as a whole show very strong enrichment for the GC dinucleotide, moderate
enrichment for the other 100% GC dinucleotide and depletion of 0% GC dinucleotide. (D) A heat map showing the presence of at least one E-box (blue)
of each type in peaks reveals that the majority of peaks contain at least one GC-rich E-box, but a substantial minority rely on non-GC-rich E-boxes (or
have no E-box at all). (E) Overall E-box numbers also vary widely across peaks, raising the question of how E-box types and numbers are jointly utilized
to regulate binding affinity. (F) In an analysis of 17 laboratory mouse genomes, the overall rate of SNPs to A, C, G and T nucleotides, and the observed
rates of SNPs to E-boxes in MyoD peaks. (G) Rates of SNPs to the center dinucleotide of E-boxes in MyoD peaks or genome wide show preservation of
GC-rich E-boxes but not AT-rich E-boxes.
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TG, are substantially lower than those for the correspond-
ing nucleotides genome wide. In the center dinucleotide,
SNPs to C and G nucleotides occurred at lower than ge-
nomic rates, but SNPs to A and T nucleotides occurred at
rates comparable to those genome wide in all three datasets
(Figure 1F and Supplementary Figure S2e). We also ana-
lyzed SNPs occurring in the center dinucleotide of E-boxes
in MyoD peaks versus all 14.2 million E-boxes genome wide
(Figure 1G and Supplementary Figure S2f). For the GC,
CG and GG/CC center dinucleotide, we found that rates
of SNPs were substantially lower than the genomic coun-
terparts, although the SNP rate for the CG dinucleotide is
largest overall, both in MyoD peaks and genome wide. In
contrast, the AT and TA center dinucleotide had SNPs at
greater than genomic rates. Collectively, these results sug-
gest that certain E-boxes in MyoD peaks are under conserv-
ing selection; particularly the GC-rich center dinucleotide is
subjected to the highest rate of selection (Figure 1F and G;
Supplementary Figure S2e and f).

Quantitative analysis of MyoD binding to the myogenic
CREs

The frequencies of different E-box motif classes within the
MyoD peaks are dramatically different than their genomic
distribution (Figure 1A and C; Supplementary Figure S2a
and b) and the E-boxes are differentially conserved (Fig-
ure 1F and G), suggesting that the degenerate sequences
in the E-box motif are functionally relevant. To investi-
gate this question further, we first sought to determine the
quantitative notion of MyoD binding affinity with greatest
functional relevance. Some previous studies have used peak
height (maximum height or read pileup within the peak)
(24) or read density (number of reads in the peak divided by
its width, or equivalently the average height of the pileup)
(25). Peak height makes most sense for transcription factors
that bind single sites within CREs, but with varying affini-
ties due to sequence specificity or other factors. Read den-
sity similarly emphasizes binding intensity. MyoD binds dif-
ferent E-boxes with different affinities, but is also expected
to bind multiple E-boxes within the same peak. Therefore,
we adopted the total MyoD reads in a peak as a proxy
for total in vivo binding affinity to that locus (26). Indeed,
we found that total MyoD reads in peaks are highly corre-
lated both to the widths of peaks, which reflect multiplic-
ity of binding sites (Figure 2A and Supplementary Figure
S3a) and to the read densities within the peaks, which re-
flect binding intensity (Figure 2B and Supplementary Fig-
ure S3b).

To further validate this choice, we performed correla-
tion analysis to test whether variables such as total MyoD
reads, read density or peak height were related to important
functional correlates of regulatory binding, including his-
tone H3 reads in peaks, H3K4me1 reads and the expression
changes between growing and differentiating muscle cells of
peak-associated genes (Figure 2C and Supplementary Fig-
ure S3c). Of the three variables, total MyoD reads corre-
lates most strongly to the histone H3 and H3K4me1 reads
(Figure 2C), and this further justifies our choice of using to-
tal MyoD reads in a peak as the most relevant measure of

MyoD binding. Correlations to gene expression are modest,
albeit positive; we return to this issue later.

To examine the relationship between sequenced reads in
MyoD peaks and motif sequence, we performed correlation
analysis between the numbers of E-boxes and the numbers
of reads in peaks by grouping E-box motifs based on the GC
content of the center dinucleotide of the E-box into three
possible classes GC 0% (CAAATG, CAATTG, CATATG,
CATTTG), GC 50% (CAACTG, CAAGTG, CACATG,
CACTTG, CAGATG, CAGTTG, CATCTG, CATGTG)
and GC 100% (CACCTG, CACGTG, CAGCTG, CAGG
TG). Figure 2D shows that when we divide the peaks into
percentiles by their total number of MyoD reads, the to-
tal number of E-boxes of each type increases roughly lin-
early with the number of reads. The increase is most dra-
matic for the GC 100% E-boxes (i.e. GC, GG/CC, CG), of
which there are less than one, on average, in the lowest affin-
ity peaks and over five, on average, in the highest affinity
peaks.

Since wider peaks tend to have more reads (Figure 2A),
one cannot a priori conclude that increasing E-box counts
causes greater MyoD binding. For this reason, we also
looked at the relationship between E-box counts within ±1
kb of peak summits to peaks reads. This region is large
enough to include nearly all MyoD peaks (Supplementary
Figure S3), but is still within the range of plausibility for
CREs. Figure 2D shows that in these windows, GC 50%
E-box numbers are largely independent of peak reads, and
GC 0% E-box counts decline with increasing enrichment of
MyoD (Figure 2E and Supplementary Figure S3e). On the
other hand, it is the GC 100% E-box count that increases,
and therefore those motifs are the strongest candidates for
driving MyoD binding in differentiating muscle cells. This
does not imply that the GC 50% or GC 0% E-boxes are
unimportant. As pointed out above and in Figure 1D, some
peaks have no GC 100% E-boxes. Further, E-boxes with
lower GC content may have subtle, positive contributions
to binding (as discussed below). The dominant quantitative
relationship, however, is between the number of GC 100%
E-boxes in a regulatory region and the amount of MyoD
binding.

To determine the relationship between E-box sequences,
peak GC content and the dinucleotide composition of
CREs on the enrichment of MyoD we performed linear re-
gression analysis to de-complex the effect of the above vari-
able on the overall enrichment of MyoD. We found that al-
though peak GC content has a non-trivial affect on over-
all MyoD enrichment, the E-box GC content is the main
driver of MyoD enrichment to CREs (Supplementary Fig-
ure S4). Notably, the effects of the E-box GC content on the
enrichment of MyoD to CREs are independent of the peak
GC content (Supplementary Figure S4) or the dinucleotide
composition of the peaks in general (Supplementary Figure
S5).

To further investigate the relationship between E-box se-
quences and enrichment of MyoD on CREs, we counted the
number of GC 100% and GC 50% E-boxes within 200 bp
windows of the peak summits. In these regions, where bind-
ing is most intense, over 99.95% of peaks have five E-boxes
or fewer. Therefore, we can enumerate different combina-
tions of E-box counts. Figure 2F presents a heat map show-
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Figure 2. Relationship between motif sequence and enrichment of MyoD on target sites. (A) The numbers of MyoD reads in peaks, a proxy for total
binding affinity to a region, are strongly correlated to the widths of peaks. (B) MyoD reads are also correlated to read density. (C) Peak reads, height and
read density, as well as total reads in a 1 kb-radius window around the peak summit, correlate moderately to nearby gene expression change. The reads
also correlate strongly to the epigenetic status of the peak. (D) Peaks with greater numbers of reads include, on average, greater numbers of E-boxes of
all kinds, with the increase strongest for E-boxes with GC-rich center dinucleotide. (E) However, when we look at fixed-width regions centered on peak
summits, only GC-rich E-boxes show an increasing trend and GC-poor E-boxes decline with increasing total read count. (F) Analysis of GC 100% and
GC50% E-boxes in a 200-bp window around the summit again shows the dominant effect of 100% GC E-boxes, but provides some evidence for increased
binding resulting from GC50% E-boxes as well.

ing the relationship between the average peak reads and the
number of GC 100% and GC 50% E-boxes, with blue repre-
senting the combinations with the smallest average number
of reads and yellow the largest (see also Supplementary Fig-
ure S6). The plot reiterates the dominant effect of the num-
ber of GC 100% E-boxes on peak reads. Black ‘greater than’
signs pointing upward, which are the predominant case, in-
dicate combinations where one greater GC 100% E-box re-
sults in higher average read count, whereas gray downward
signs represent the occasional exception. Similarly, black
rightward greater than signs indicate combinations where
addition of one more GC 50% E-box results in higher aver-
age read count. Across all three datasets, comparing the av-
erage MyoD reads in a set of peaks with the reads in peaks
with one additional GC 100% E-box near the summit, in
101 out of 120 comparisons, the extra GC 100% E-box is
associated with higher average reads (P < 0.0001 by propor-
tion test against the null hypothesis of equal chance). Com-
paring peak sets with one additional GC 50% E-box, we
found greater average MyoD reads in 71 out of 120 compar-
isons, a more modest but still statistically significant effect
(P = 0.0446). Collectively, this analysis reveals that the to-
tal MyoD peak reads are the most relevant quantification of
peak intensity with respect to regulation, and that GC 100%
E-boxes are most strongly associated with MyoD binding,
with evidence for weaker influence by GC 50% E-boxes.

Functional consequence of spatial organization of motifs
within MyoD-bound CREs

CREs contain recurrent and unique motifs for various tran-
scription factors. However, how the multiplicity of motifs
and their spatial arrangements within CREs contribute to
binding affinity and gene expression output remains largely
unknown. To analyze the functional consequences of spa-
tial placement of E-box motifs within the MyoD-bound
myogenic CREs on the enrichment of MyoD on targets,
we performed a spatial analysis of E-boxes within peaks
and the flanking regions not bound by MyoD (Figure 3A
and Supplementary Figure S7). This shows a significant
enrichment of GC-rich motifs at the peak summit in all
three MyoD ChIP-seq datasets (Figure 3A and Supplemen-
tary Figure S7). While GC-poor motifs showed no signifi-
cant preference to the peak summit location (Figure 3A and
Supplementary Figure S7). To eliminate the possibility that
variation in peak length or the size of the CREs may con-
tribute to the above observation we performed similar anal-
ysis on the 25% widest and the 25% narrowest MyoD peaks
(Figure 3B and Supplementary Figure S7). By counting E-
boxes within ±1 kb of peak summits and by dividing the re-
gion into 21 equal-sized bins, we observed that irrespective
of the width of the peak or the size of the putative CREs,
GC-rich motifs are significantly more enriched at the MyoD
peak summit, while GC-poor motifs showed no spatial pref-
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Figure 3. Spatial distribution of E-boxes in the vicinities of peaks, and their contribution to total peak reads. (A) The relative frequency of E-boxes (divided
into three groups based on the GC content of their center dinucleotide) in peaks and flanking regions, each of which is divided into seven equal-sized bins
for MyoD ChIP-seq replicates. (B) E-box frequencies in 21 equal-sized bins spanning 2 kb centered on the peak summits, for the 10% narrowest peaks
and 10% widest peaks. (C) E-box frequencies per bin, in the same 21 bins across all peaks, along with average MyoD reads divided by 10 (so that scale is
comparable). (D) For each of the three E-box categories, the maximum likelihood regression coefficients and 95% confidence intervals for a linear model
predicting MyoD reads in each of the 21 bins as a function of the E-box counts in the same bins.

erence within the CREs or the flanking regions (Figure 3B
and Supplementary Figure S8).

The most significant difference between narrow and wide
peaks is that wide peaks show enrichment for GC100% E-
boxes over a wider domain surrounding the peak summit.
This observation suggests that MyoD may actively binds
multiple GC100% E-boxes within those CREs, and that the
observed peak width, which we have already determined
to be correlated to the total peak reads, is controlled in
part by the spatial distribution of the E-boxes within the
CREs. In other words, the strategy for having a CRE with
a lot of MyoD binding is to have multiple GC-rich E-
boxes spread over that region, increasing the likelihood of
strong MyoD binding to that regulatory domain. However,
whether MyoD binds these E-boxes strictly simultaneously
or not, cannot be determined from the ChIP-seq data.

On the other hand, the enrichment of the GC-rich E-
boxes near the peak summits mimics the enrichment of
the MyoD reads themselves (Figure 3C; Supplementary
Figures S7 and 8). This observation suggests the hypoth-
esis that although GC-rich E-boxes are enriched toward
the summits of peaks, each E-box may contribute roughly

equally to the binding affinity, and hence the same number
of MyoD reads. However, when we regress the number of
MyoD reads in each of the 21 bins on the numbers of E-
boxes, we find that the GC100% E-boxes near the summit
contribute more reads than do the peripheral counterparts
(Figure 3D and Supplementary Figure S7). A similar pat-
tern holds true for the GC50% E-boxes, although the ef-
fect is much weaker. This observation suggests that MyoD
binding is stronger at central (i.e. summit) of the peaks, sug-
gesting that motif locations within the CREs have a strong
effect on binding independent of the motif sequence. Below,
we delve into one possible explanation based on chromatin
state.

The relationship between tag density and summit ‘motif
switching’

The observation that GC-rich E-boxes contribute more to
the summit of the peaks and to the overall enrichment of
MyoD on target CREs prompted us to focus our attention
on the E-boxes closest to the summit of the peaks, herein
called the summit E-box, and to analyze the relationship
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between the summit motifs, other motifs (peripheral) within
CREs and overall peaks reads. We found that on average, a
peak whose summit E-boxes have higher GC content tends
to have more total reads (Figure 4A and Supplementary
Figure S6). However, the numbers of the GC100% E-boxes
within ±200 bp window of the summit seem to relate lin-
early to the MyoD read counts, independent of the sum-
mit E-box type (Figure 4B and Supplementary Figure S6).
In other words, in the regions of most concentrated bind-
ing, we see no compelling evidence for synergistic binding,
which would appear as either a super linear increase of bind-
ing with the number of E-boxes or clear evidence for the in-
teraction of the summit E-boxes with the peripheral coun-
terparts.

Joint analysis of the numbers of GC100% and GC50%
E-boxes, conditioned on the summit E-box type (Figure 4C
and D) shows effects like that seen in Figure 2E, suggesting
that MyoD binding is predominantly controlled by num-
bers of GC100% E-boxes; however, each additional GC50%
E-box tends to also increase binding modestly. Neverthe-
less, because peaks with more GC100% E-boxes tend to
have stronger binding, the stronger peaks are more likely to
have a GC100% E-box near the summit (Figure 4E–G and
Supplementary Figure S6e–g). For example, the peaks with
largest MyoD signal are twice as likely to have a GC100%
summit E-box compared with peaks with weakest MyoD
signal. Thus, a peak characteristic strongly related to over-
all MyoD binding is that as we look at peaks with increasing
MyoD signal, the summit E-box tends to switch from being
AT-rich (GC-poor) to being GC-rich (Figure 4 and Supple-
mentary Figure S6).

Variation within MyoD binding motifs regulates nucleosome
occupancy and the chromatin state at myogenic CREs

The binding dynamics of transcription factors are affected
by competition with nucleosomes (27,28). To analyze the
effect of motif-dependent variation in MyoD binding on
the state of chromatin at the myogenic CREs, we performed
ChIP-seq of histone H3 mono-methyl lysine 4 (H3K4me1),
histone H3 lysine 4 tri-methyl (H3K4me3), histone H3 ly-
sine 27 tri-methyl (H3K27me3) and total histone H3 in
primary myotubes. The combination of these three regula-
tory histones demarcates global gene promoters (H3K4me3
and H3K27me3) and distal enhancers (H3K4me1). ChIP-
seq analysis of H3K4me1 shows that in myoblasts and my-
otubes a combined number of 123 477 genomic regions
are enriched for this regulatory histone mark (Supplemen-
tary Figure S10). While 54 560 peaks are common between
myoblasts and myotubes, 48 995 peaks are specific to my-
otubes. Gene ontology analysis of genes associated with
H3K4me1 peaks shows significant enrichment of biologi-
cal processes associated with muscle differentiation (Sup-
plementary Figure S11). To examine the regulatory effect
of motif variation on histone H3 occupancy at the motif
locations, we analyzed histone H3 occupancy centered on
three classes (GC 0%, GC 50% and GC 100% center din-
ucleotide) of E-boxes within MyoD-bound CREs. Impor-
tantly, we found that GC-rich E-box motifs had the high-
est depletion of histone H3, while GC-poor motif had the
lowest depletion (Figure 5A and Supplementary Figure S9)

(for GC 100% E-boxes, pileup height at E-box is signifi-
cant at P < 10−49 and for GC 50% E-boxes P = 0.0081).
Conversely, GC-rich E-boxes were most enriched for the
H3K4me1 mark, whereas GC-poor E-boxes demonstrated
the least enrichment (Figure 5B and Supplementary Figure
S9) (pileup height at ± 200 bp for GC 100% E-boxes versus
GC 50% E-boxes are statistically significant at P < 10−36 by
Mann–Whitney U-test; GC 100% versus GC 0% P < 10−24;
GC 50% versus GC 0% P = 0.0028). Collectively, this anal-
ysis suggests that variant sequences within the E-box mo-
tifs play an important role in regulation of chromatin at the
CREs.

The combined effects of E-box numbers, sequences and
positioning on nearby gene expression. To analyze the ef-
fect of variation in E-box sequences within CREs on gene
expression, we first performed steady state gene expression
analysis using microarrays and RNA-seq on primary mus-
cle cells at the progenitor stage and after 48 h of differenti-
ation (see ‘Materials and Methods’ section). Using peak to
gene association by proximity, we associated MyoD peaks
to genes whose TSS are within 5 kb, and for which no other
peak or gene is closer. Importantly, the MyoD peak read
counts are themselves statistically associated to changes in
gene expression (Figure 5C; Pearson correlations 0.298 and
0.231 for Affymetrix and RNA-seq estimates of gene ex-
pression respectively, with P < 10−30 for both).

Because we previously found a relationship between num-
bers and variant sequences of E-boxes in MyoD peaks with
reads in those peaks, and because the MyoD reads are re-
lated to gene expression, we hypothesized that it would be
possible to predict gene expression based on the E-box com-
position under the peaks. Specifically, we used the regres-
sion coefficients depicted in Figure 3D to weigh the E-boxes
within 1 kb of the summits of MyoD peaks, generating what
we term E-box motif scores for each peak, a prediction of
the total MyoD binding activity due to the E-box content
of the peak. We then associated those with the expression
fold changes of nearby genes (TSS within 5 kb). Figure 5D
shows a clear, increasing relationship between E-box mo-
tif scores of peaks and the log fold change of nearby genes,
as assayed either by Affymetrix chip or RNA-seq (one-way
ANOVA P-values < 10−6 for each).

Next, we analyzed genome-wide correlation between the
E-box motif sequences and the enrichment of MyoD, the
enrichment of H3K4me1 on the myogenic CREs, the en-
richment of H3K4me3 and H3K27me3 on the associated
TSSs and differential gene expression (RNA-seq). Our data
visualized in a circos plot (Figure 6) show a positive corre-
lation between the enrichment of MyoD signal with that of
H3K4me1 and the GC content of the associated E-boxes
for differentially upregulated genes. Importantly, we saw a
positive relationship between MyoD and H3K4me1 enrich-
ment with the enrichment of the H3K4me3 on their asso-
ciated TSS (see ‘Materials and Methods’ section). At last,
we found a genome-wide pattern of positive correlation be-
tween differential expression of genes upregulated during
differentiation with the enrichment of MyoD, H3K4me1
and the high affinity E-box motifs (Figure 6). Analysis of
conservation scores between E-boxes within MyoD peaks
versus their genomic counterparts shows a high degree
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Figure 4. The role of the summit E-box in binding affinity. (A) MyoD reads per peak grouped depending on the GC-content of the E-box nearest the
peak summit. (B) Mean MyoD reads within peaks as a function of number of E-boxes, separating by the type of the summit E-box. (C and D) Heatmaps
showing MyoD reads as a function of numbers of 100% GC and 50% GC E-boxes within 200 bp of the peak summit, and separating by the type of the
summit E-box. (E–G) The relationship between tag density (mean sequenced reads) and single summit E-box motif and enrichment of MyoD reads. Peak
summit was determined by MACS and summit E-box is the closest motif to the summit.
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Figure 5. Dynamic interplay between MyoD and nucleosomes regulates MyoD binding and differential gene expression output. (A) Pileup analysis of the
distribution of total Histone H3 (pan histone H3 ChIP-seq reads) centered on motifs with 0, 50 and 100% GC content center dinucleotide. (B) A similar
pileup analysis of H3K4me1 reads. (C) Average differential gene expression for MyoD target genes associated with peaks depending on the total MyoD
reads in the peaks, grouped by deciles. (D) Similar differential expression, but where peaks are ranked by the E-box motif score, which combines E-box
types, numbers and positions into an overall weighted prediction of MyoD affinity.

of conservation for MyoD-bound E-boxes (Supplementary
Figure S13).

At last, to determine the effect of motif numbers and se-
quences on gene expression output in vivo we synthesized
CREs with various configurations of motif numbers and se-
quences and performed luciferase assay by co-transfecting
mouse MyoD- and E47-expressing plasmids (Figure 7). No-
tably, the luciferase activity increases as a function of the
number E-boxes for both high and low GC content motifs.
Consistent with our genome wide analysis, we observed that
addition of E-box motifs with GC100% in their variable
center dinucleotide contribute more to MyoD activity com-
pared with those with lower GC content. Taken together,
these data suggest that variation in E-box numbers and mo-
tif sequences and their spatial arrangement within the myo-
genic CREs regulates nucleosome position, histone marks
and nearby gene expression.

DISCUSSION

The binding of MyoD to CREs encompassing multiple E-
box motifs prompted us to investigate the regulatory affects
of three cis factors, namely motif sequences, numbers and

their spatial orientation within MyoD-bound CREs on the
affinity landscape of MyoD and the dynamic range of gene
expression output. Functional consequences of transcrip-
tion factor binding site variation on binding affinity and
gene expression have previously been linked to phenotypic
variation among individuals (29), demonstrating the impor-
tant role of transcription factor binding motif sequence in
fine-tuning gene expression. In our study, analysis of MyoD
binding to myogenic CREs revealed the important contri-
bution of E-box sequence to the affinity landscape of MyoD
and differential gene expression output in differentiating
myotubes (Figures 2, 3, 5). This observation is consistent
with previous in vitro (30,31) and in vivo (6) experiments
that demonstrated differential affinity of MyoD to vari-
ous E-box motifs. We also demonstrate the functional con-
sequences of variation in E-box sequences on nucleosome
position (Figure 5A) and on the modification of enhancer
chromatin at regions enriched by for the H3K4me1 mark
(Figure 5B). Collectively, these analyses revealed that varia-
tion in E-box motifs acts as a major determinant of MyoD
binding affinity and the status of enhancer chromatin (Fig-
ure 5), an effect that is independent of the GC content (Sup-
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Figure 6. Genome-wide relationship between MyoD binding affinity, nucleosome occupancy and gene expression. Circos plot showing the relationship
between sequence variation in MyoD binding motif and the affinity landscape of MyoD binding to DNA and differential expression of target genes. Each
track on the concentric circles represents one dataset. The MyoD track (outermost circle) shows ranked peak tag density (PTD) (number of sequenced
reads within peak divided by the peak length) for genome-wide MyoD binding sites. The H3K4me1 track shows PTD of histone H3 mono methyl lysine
4 that overlap with MyoD peaks in myotubes. H3K4me3 track shows PTD of histone H3 tri-methyl lysine 4 on the TSS of genes that are associated with
MyoD peaks (Supplementary Data). H3K27me3 track shows tag density of histone H3 tri-methyl lysine 27 on the TSS of genes associated with MyoD
peaks. H3 track shows PTD of total histone H3 overlapping with MyoD peaks. The three motif tracks show average number of E-box motifs divided into
three categories of 0, 50 and 100% GC content of their center dinucleotide. The RNA track (RNA-seq) shows differential expression of MyoD target genes
(Supplementary Data). Data is binned into 100 bins and average value within each bin is plotted.

plementary Figure S4) or the dinucleotide composition of
the MyoD peak regions (Supplementary Figure S5).

Furthermore, our analysis of SNP rates within the E-box
motifs shows evidence for selection in a position-dependent
manner within the motif. For example, the first two (CA)
and last two (TG) nucleotides of the E-box receive SNPs at
∼ 1

2 to 3
4 the rate for those nucleotides genome wide (Figure

1). Similarly a C in position three or, equivalently, a G in po-
sition four receives SNPs at approximately half the genomic
rate. Reduction in SNP substitutions (Figure 1) together
with a high degree of conservation of E-box motifs within
MyoD-bound CREs (Supplementary Figure S13) confirms
a functional role for variable sequences within the motifs.

Because MyoD-bound peaks cover an average of 400 bp
containing on average four E-boxes per peak (Figure 1 and
Supplementary Figure S2), we sought to analyze the pos-

sibility of cooperative or synergistic interaction among E-
boxes within these CRE domains. Correlation analysis be-
tween the number of GC-rich E-boxes in a CRE and the
MyoD enrichment showed a nearly linear relationship be-
tween the two (Figure 2D and Supplementary Figure S3).
We found no evidence for a synergistic or super linear effect,
as might be expected if binding of one MyoD molecule to
one site increases binding at other sites. However, we did
find a positional effect, in which E-boxes closer to the cen-
ter of a peak contributed more to the overall enrichment
of MyoD binding in that region (Figure 3), compared to
their peripheral counterparts. The causality can also flow in
the opposite direction. In other words, the E-boxes having
strongest MyoD binding may determine the peak summit
location. Regardless, we observed that peaks with greater
overall binding were more likely to have GC rich E-boxes
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Figure 7. The effect of motif numbers and sequences on gene expression output. Synthetic CREs were generated and sub cloned into pGL4.23 luciferase
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AT represents CAATTG, CA represents CACATG. (B) Relative luciferase activity after normalization to renilla. Dual luciferase assay was performed in
Cos7 cells by co transfecting mouse MyoD and E47 expression vectors.

and for the E-box nearest to the peak center to be GC rich
(Figure 4). These analyses suggest a model in which motifs
with high GC content may tether MyoD to specific loca-
tions within the CREs, thereby determine the peak summit
location. This mechanism is likely for the majority of MyoD
peaks in which the summit motif is GC-rich E-box. How-
ever, in a substantial minority of peaks where the summit
motif is not GC-rich, tethering of MyoD to a defined re-
gion of CREs maybe affected by local structure of enhancer
chromatin or other unknown factors.

To study the effect of E-box motifs and their relationship
with the epigenetic status of CREs, we examined several re-
lated regulatory outcomes. First, we observed a direct cor-
relation between the displacements of histone H3 and se-
quence variation within MyoD binding motifs on the myo-
genic CREs. Notably, GC-rich motifs had the highest influ-
ence on the displacement of histone H3 on the CREs, which
is statistically significant by a simple one-sided sign test (P
= 5.9705e-50) or Mann–Whitney U-test (P = 4.4258e-72)
(Figure 5A). Similarly, we found strong associations be-
tween E-box content of a CRE and the strength of the epige-
netic enhancer mark H3K4me1 (Figure 5B). Together, these
analyses suggest that numbers and the sequences of E-box
motifs within MyoD-bound CREs have a significant func-
tional effect on the enhancer chromatin.

Importantly, we also found that the E-box content
of CREs is not limited to predicting local binding and
chromatin-related properties. When we associated myo-
genic CREs to nearby genes, we discovered a quantitative,
increasing relationship between MyoD read enrichment
on the CRE and expression fold-change between growth
and differentiation conditions (differential expression) (Fig-
ure 5C). Furthermore, E-box numbers and sequences have
quantitative effect on gene expression output in vivo as de-
termined by MyoD/E47 driven luciferase activity (Figure
7). There have been many attempts to explain gene expres-

sion as a function of transcription factor binding, includ-
ing reports of correlations between absolute gene expres-
sion and ChIP-seq reads for various factors near the TSS
of those genes (32,33). In such studies, one must be mind-
ful of false associations between transcription factors and
genes arising because of chromatin accessibility bias in the
ChIP-seq signal, which is often large in the vicinity of highly
expressed genes (34). Crucially, we have shown that our E-
box motif score, which depends purely on the sequence of
the CRE, is quantitatively associated with increasing differ-
ential gene expression. Given that gene expression is influ-
enced by a plethora of other factors, including the binding
of other transcription factors, the epigenetic state of their
associated CREs, and post-transcriptional targeting by mi-
croRNAs, our identifiable and quantitative association be-
tween E-box motifs and nearby differential gene expression
is remarkable. Since many transcription factors binding to
DNA do not lead to functional consequence on chromatin
or on gene expression output (35), it will be interesting to
study if CRE sequence-based motif scores can be inferred
for other transcription factors.

Collectively, our analysis of MyoD binding suggests that
three variables, namely motif sequences, their numbers and
their spatial location within the CREs act as major deter-
minants of the myogenic cis-regulatory code. While some
transcription factors, such as Pax3/7, Oct4/Pou5f1 and
REST/NRSF, bind to relatively more complex DNA mo-
tifs, many other transcription factors bind short motifs sim-
ilar to that of MyOD. Indeed, many transcription factors
bind E-boxes specifically. For any such transcription fac-
tors, the question arises as to how motif sequence, their
number and location within CREs result in binding speci-
ficity and affinity. The approach we have described here uti-
lizes MyoD binding to DNA as a specific example, and pro-
vides a template for analyzing the binding of other factors
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to DNA and for understanding how they too balance motif
variation, frequency and positioning to achieve regulation.

DATA AVAILABILITY

ChIP-seq data for H3K4me1, H3K4me3, H3K27me3 and
Histone H3 in primary myotubes and RNA-seq data for
primary myoblasts and myotubes is available through se-
ries accession GSE80588. Sample accessions ChIP-seq:
GSM2131164 H3K4me1-2DM, GSM2131165 H3K4me3-
2DM, GSM2131166 H3K27me3-2DM, GSM2131167 His-
tone H3 2DM, GSM2131168. Sample accessions RNA-seq:
EV-GM, GSM2131169 RNA-seq EV-2DM.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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