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Abstract

Introduction: The first human H7N9 avian influenza virus case was reported in Shanghai in 

2013. Shortly thereafter, this virus spread to other regions in China. Molecular analysis indicated 

that the H7N9 virus is a reassortant virus containing internal genes from the H9N2 virus and 

previously described mammalian adaption markers, which could allow the virus to adapt 

efficiently to a mammalian host. Fortunately, there is no evidence of sustained person-to-person 

spread. Most of the human H7N9 cases have a history of exposure to live poultry markets (LPMs). 

The circulating H7N9 were low pathogenic viruses, however highly pathogenic H7N9 viruses 

were recently identified in human cases.

Areas covered: In the present article, the circulation of H7N9 in LPMs of China, the five waves 

of H7N9 infection in humans, recently identified drug resistant mutants and potential antiviral 

drugs against H7N9 are discussed; this may provide further understanding of the evolution and 

pandemic potential of the H7N9 influenza viruses.

Expert commentary: All the data reveal that the major source of H7N9 viruses is LPMs and the 

H7N9 virus is still circulating widely in China. It is concerning that the recent emergence of 

highly pathogenic H7N9 viruses may result in highly transmissible viruses in mammalian species.
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1 Introduction

1.1 H7N9 avian influenza virus and live poultry markets

A new avian influenza A virus H7N9 was isolated from patients in China in March 2013; 

1223 human cases have been reported to date (March 2017) with 339 fatalities in China [1]. 

Up to now, H7N9 infections of humans have been reported in China, Malaysia, and Canada 

[2–4]. Further genomic analysis showed that the novel H7N9 virus is a reassortant virus 

containing internal genes from the endemic avian H9N2 virus, and the surface genes from 

H7Nx and HxN9 viruses[5]. Most of the H7N9 viruses isolated from human cases carry 

mammalian adaptation signatures (e.g., PB2 with the 627K mutation and HA with the 226L 

mutation), which allows the virus to replicate more efficiently in mammalian cells [4–7]. 

The circulating H7N9 viruses were low pathogenic viruses carrying the KGR/G motif at the 

hemagglutinin cleavage site. Recently, a molecular change occurred and highly pathogenic 

H7N9 viruses are now being identified in human cases; these highly pathogenic viruses had 

insertions of multiple basic amino acids resulting in the KRKRTAR/G or KGKRIAR/G 

motifs [8]. It is a concern that continuous circulation of highly pathogenic H7N9 may 

generate highly transmissible virus in mammalian species.

Most of human H7N9 cases have been associated with previous exposure to birds, poultry, 

and/or to live poultry markets (LPMs)[9,10]. A majority of households in Southern China 

have a habit of purchasing live poultry in order to eat fresh poultry meat. This habit is the 

reason for the high numbers of poultry being sold in LPMs, allowing for a high contact 

frequency between people and poultry, and making LPMs an ideal place for influenza virus 

to jump across different avian and mammalian species[11]. Epidemiological surveillance 

revealed that H7N9 viruses can be isolated from pigeons, chicken, geese, and ducks sold in 

LPMs and therefore these birds are considered the major source of the H7N9 infection of 

humans[7,9,12–14].

From March 2013 to early 2014, the H7N9 virus was detected in LPMs in different 

provinces of China. It has been reported that 1.5% (131/8,900) of bird swabs and 

environmental samples were positive for H7N9 in Guangzhou, and 44.4% to 50 % of the 

surveilled LPMs were positive for H7N9 in the same province [15]. Also, 6,740 

environmental samples collected and tested from LPMs in Zhejiang showed that 10.09% 

(680/6740) of the samples were H7N9-positive [16]. In April of 2013, 15 H7N9 viruses 

were isolated from 422 oral-pharyngeal and cloacal swabs collected from birds and 

environmental surfaces at five LPMs in Jiangsu [17]. In 2014, 6% (16/283; 4 chickens, 7 

ducks, 1 goose, and 4 pigeons) of tracheal, cloacal, and fecal samples, collected from a 

variety of birds in poultry markets and farms in Jiangsu province, were positive for H7N9 

viruses[18]. Additional surveillance data revealed that 1.47 % of samples collected in LPMs 

in Shanghai were positive for H7N9 markers by real-time RT-PCR [19]. Overall it was 

concluded, that LPMs are critical places where bird to human transmission of H7N9 viruses 

occurs. In order to control H7N9 virus spread in China, most of the LPMs in Southern China 

(Shanghai, Guangzhou, Zhejiang, and Jiangsu) were closed thus hopefully providing a 

control mechanisms for this epizootic and reduce the burden for human infections [20–22]. 

However, although 464 LPMs in Shanghai were closed on April 6, 2013, 4 additional human 
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cases were found that year in Shanghai; nonetheless, in early 2014, Shanghai’s LPMs were 

reopened and subsequently, another 8 human cases were reported shortly thereafter [21]. 

This illustrates how culturally important LPMs in Southern China are and that besides 

closure of these markets, transmission of H7N9 to humans cannot be totally stopped.

To date (March 2017), partial or full genomic information on 1,356 strains of H7N9 virus 

are deposited in the GenBank database. Seven hundred twenty one H7N9 virus strains were 

isolated from humans so far, and molecular analysis showed that most of the H7N9 virus 

strains contain the mammalian adaptation markers PB2–627K (581/799) and HA-226L 

(721/799), while only a small number of these viruses contain neuraminidase inhibitor 

(NAI) resistant mutations (e.g., 18 strains NA292K, 1 strain NA222K, 4 strains NA119V). 

However, none of the 557 H7N9 strains isolated from poultry (535 from chicken, 13 from 

duck, 2 from goose and 7 from pigeon) contain known NAI resistant mutations, and only a 

few isolates (three out of 557 strains) contain the mammalian adaptation marker PB2–627K.

1.2 Five major waves of outbreaks of Human H7N9 infections since 2013

Outbreaks of the H7N9 virus generally follow a seasonal trend. Since the first H7N9 

detection in humans in 2013, there were five major waves of outbreaks occurring which 

caused a continued public health threat in South-Eastern China. The first wave of human 

H7N9 infection took place from March 30th, 2013 to September 30th, 2013. At least 130 

cases were confirmed in China with fatality rate of approximately 30%. The second wave 

happened in mainland China, Hong Kong, and Malaysia from October 1st, 2013 to 

September 30th, 2014. Over 260 additional cases were detected. The third wave was 

recorded from October 2014 to July 2015. A total of over 220 cases were reported in China, 

Hong Kong, and Canada. Human-to-human transmission has not been detected. All three 

waves embody similarity in disease symptoms, severity, and mortality rate, and no clear 

antigenic drift or shift was detected during wave 1 to 3 from 2013 to 2015 [23]. During the 

fourth wave of H7N9 infection (September 2015–August 2016[24]), 126 laboratory-

confirmed human cases of influenza A (H7N9) virus infection have been reported, 35 of 

which were fatal. The rate of human infections dropped significantly when compared with 

the third wave (220 cases); however, the fifth wave of H7N9 virus infection of humans is 

occurring in China since October 2016; 315 cases have been reported in China during 

October, 2016 to February 14, 2017[25,26]. Notably, the number of reported cases in 

January to February of 2017 (305 cases) is higher than the number during the same time in 

the wave 1 to 4, suggesting that the H7N9 virus is still circulating widely in China; 

Moreover, the human cases reported during the fifth wave happened in multiple provinces in 

China, suggested that the H7N9 virus is circulating in an even larger geographic area in 

China (Figure 1).

These data warrants continuous surveillance of LPMs and humans for the presence of H7N9 

viruses and increased public health concerns regarding the extended geographical 

distribution of H7N9 viruses in China.
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1.3 Novel drug-resistant substitutions in the NA protein of H7N9

Neuraminidase inhibitors (NAIs) have been used for the treatment of H7N9 virus infections, 

however, the NAI resistant substitution NA-R292K emerged soon after initial use of the 

drug[27]. Further laboratory studies showed that NA-R292K conferred resistance to NAIs 

such as oseltamivir, zanamivir and peramivir [27–30]. NA-R292K H7N9 virus shows 

compromised fitness in the ferret model as shown by Marjuki et al. [31,32]. Based on the 

available gene sequences of H7N9 isolates from humans, a limited number of viruses 

(13/651) contain the NA292K substitution, however no NA292K substitution was observed 

in any of the H7N9 viruses isolated from birds.

In addition to NA-R292K, additional NAI resistant substitutions, namely NA-E119V and 

NA-I222K/R, were found in patients after receiving oseltamivir treatment [31]. In vitro NAI 

assay indicated that the NA-E119V and NA-I222K/R substitutions conferred resistant to 

oseltamivir, zanamivir and peramivir to a different extent. NAI treatment of wild-type H7N9 

infected ferrets resulted in a modest dose-dependent reduction of viral titers in nasal washes, 

while only a small reduction of viral titers was detected in nasal washes of ferrets infected 

with the NA-I222K virus [31]. However, NAI treatment failed to inhibit the replication of 

H7N9 viruses with the NA-R292K or NA-E119V substitutions [33,34]. Recent studies using 

NAIs and H7N9 virus infections were performed in ducks [28,35]. After treatment of H7N9 

infected mallard ducks for 2 days with a low concentration (2.5ug/L) of oseltamivir 

carboxylate treatment in water, a NA-I222T variant could be isolated [35]. In the 

cynomolgus macaque model, a NA-I222T H7N9 variant was found in experimentally H7N9-

infected macaques after treatment with NAI; further analysis indicated that the NA-I222T 

substitution conferred resistance to several NAIs, including oseltamivir and 

zanamivir[28,35].

Fortunately, so far no NAI resistant H7N9 viruses were isolated from birds, suggesting that 

the H7N9 viruses circulating in birds are still sensitive to NAIs; however, the repeated 

emergence of NAI-resistant viruses in humans increases the threat potential of the H7N9 

viruses to public and global health.

1.4 Novel drug candidates against H7N9

Currently, two classes of drugs, M2 channel blockers (adamantanes) and neuraminidase 

inhibitors (zanamivir, oseltamivir, peramivi, and laninamivir) are approved for the treatment 

of influenza virus infections[36]. Adamantanes are commercial available; among the 4 

NAIs, oseltamivir and zanamivir are approved in many countries; peramivir has been 

approved in USA, Japan, South Korea, and China; and laninamivir is approved only in 

Japan. However, most influenza A viruses including subtype H7N9 have adamantane-

resistant mutations in their respective M2 proteins. NAIs are effective drugs for H7N9 

treatment, however, the rapid occurrence of NAI-resistant H7N9 viruses highlights the need 

for new anti-influenza drugs. Several novel drug candidates were reported to have anti-viral 

activity against the H7N9 virus.

A novel antiviral drug, Favipiravir (T-705) has recently been approved in Japan for influenza 

treatment[37,38]. Favipiravir inhibits the RNA-dependent RNA polymerase of influenza 

Danqi et al. Page 4

Expert Rev Anti Infect Ther. Author manuscript; available in PMC 2018 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



viruses by preventing incorporation of natural ATP and GTP for viral RNA synthesis[39,40]. 

Both in vitro and in vivo data indicated that Favipiravir has antiviral effect against a broad 

range of influenza viruses, including highly pathogenic H5N1 and H7N9 viruses[39,41–44]. 

Watanabe et.al reported that Favipiravir has better therapeutic efficacy against NAI-resistant 

H7N9 viruses in mice compared to NA inhibitors, suggesting that Favipiravir could be a 

good treatment option for H7N9 viruses resistant to NAI[44]. Tharakaraman and coworkers 

found that a broad neutralizing human monoclonal antibody (VIS410), targeting a conserved 

epitope on the HA protein of influenza A, protected DBA mice from A/Anhui/2013 H7N9 

virus infection[45]. Additionally, administration of a combination of VIS410 and oseltamivir 

significantly decreased virus loads and cytokine levels in the lungs [45]. Another human 

monoclonal antibody 81.39a was reported to effectively neutralize influenza A viruses with 

group 1 and 2 hemagglutinins, including the H7N9 virus[46]. A single injection (15 or 45 

mg/kg) of 81.39a monoclonal antibody protected mice from a lethal challenge with the 

H7N9 virus and drastically reduced virus replication in mice lungs[46]. In addition, a murine 

monoclonal antibody (3c10–3) targeting the NA protein of H7N9 showed antiviral effects 

against the H7N9 virus in cultured cells and in a mouse model[47]. Other monoclonal 

antibodies with antiviral effects against the H7N9 were reported by different groups, e.g. 

HNIgGA6 and HNIgGB5 [48], 1B2 and 1H5 [49], and CR8020 [50]. Notably, Wu et al. 

reported the first successful treatment of an avian-origin H7N9 infection using convalescent 

plasma (with a neutralizing antibody titer of 1:80) from a recovered patient[51], which 

suggested that convalescent plasma or a combination of different monoclonal antibodies 

could present a potential treatment of H7N9 infections.

Another anti-viral drug candidate, DAS181 recombinant fusion protein with sialidase 

activity, was shown to inhibit the replication of H7N9 viruses by removing the cellular 

receptors for influenza viruses, thereby blocking the attachment of the influenza virus to its 

target cells[52]. In a mouse model, DAS181 protected mice from a lethal wild-type and 

oseltamivir-resistant H7N9 virus challenge [52]. Notably, DAS181 is now in clinical trials as 

an inhalation drug to treat seasonal influenza virus infections [52]. Similarly, another anti-

viral drug candidate, Sp2CBMTD with sialic acid-binding property, has the ability to mask 

cellular receptors of influenza viruses and prevents viral attachment [53]. A single dose of 

10 or 100 µg drug administration protected 80% or 100% of mice from a lethal H7N9 

challenge, respectively. Repetitive Sp2CBMTD administration resulted in 100% survival of 

the mice even at a very low drug dose (0.1 µg). It could be shown that administration of 

Sp2CBMTD before challenge induced the expression of IL-6, IL-1, MCP-1, MIP-1 and 

recruitment of neutrophils to the respiratory tract, which resulted in rapid virus clearance 

from the mouse lungs [53].

In the face of emerging NAI resistant H7N9 viruses combinations of oseltamivir with other 

antiviral drugs are the choice for H7N9 treatment. For example, combinations of oseltamivir 

and fenofibrate inhibited virus replication and prolonged survival time of mice infected with 

a lethal dose of H7N9, by decreasing pulmonary inflammation and increasing the 

recruitment of CD4+ and CD8+ T lymphocytes. Thus, the combination of oseltamivir plus 

fenofibrate improved the outcomes of mice infected with H7N9 virus by simultaneously 

reducing viral replication and normalizing an aberrant immune response [54]. Similarly, Li 

et al. [55] reported that co-administration of the non-steroidal anti-inflammatory drug 
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(celecoxib) in combination with zanamivir improved survival and decreased lung pathology 

of mice infected with H7N9, since celecoxib ameliorates pulmonary inflammation and 

thereby increases the chance of survival [55].

2. Expert commentary

Widespread human H7N9 infections in China indicate that this virus is circulating in poultry 

and LPMs in a wide geographic area of China. Continuous co-circulation with other subtype 

influenza A viruses may generate novel reassortant viruses with enhanced pathogenicity and 

mammalian transmissibility; Use of NAIs is critical to treat human H7N9 infections, 

however, the rapid occurrence of various NAI resistant substitutions in the NA protein makes 

the control and treatment of human H7N9 infections challenging.

3. Five-year view

Novel anti-viral drug development against influenza A virus in general is urgently needed. 

Vaccination is the best approach to control a variety of virus infections, however, so far, no 

commercial H7N9 vaccine is available, neither for birds nor humans. Given the ecology of 

the H7N9 viruses, it will be difficult to control this virus in poultry and humans without a 

well-designed and executed vaccination approach.
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3.

Key issues

• The LPMs are critical locations where bird to human transmission of H7N9 

viruses occurs.

• The H7N9 virus is still circulating widely in China; recent isolation of highly 

pathogenic H7N9 viruses warrants continuous surveillance of LPMs and 

humans for the emergence of H7N9 viruses transmissible in mammalian 

species.

• Repeated isolation of novel NAI-resistant viruses in humans increases the 

threat potential of H7N9 viruses to public and global health.

• Several novel drug candidates (e.g., Favipiravir, broad neutralizing 

monoclonal antibodies, Sp2CBMTD, etc.) were reported to have anti-viral 

activity against H7N9 viruses.

• Favipiravir (T-705) has been approved for influenza treatment in Japan.
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Figure 1. 
Numbers of H7N9 Influenza A virus infection in human from September 2015 to April 2017 

in China. (No case was reported in September and October of 2016)
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