
Adipose Tissue as a Site of Toxin Accumulation

Erin Jackson, Robin Shoemaker, Nika Larian, and Lisa Cassis
Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY

Abstract

We examine the role of adipose tissue, typically considered an energy storage site, as a potential 

site of toxicant accumulation. Although the production of most persistent organic pollutants 

(POPs) was banned years ago, these toxicants persist in the environment due to their resistance to 

biodegradation and widespread distribution in various environmental forms (e.g., vapor, sediment, 

water). As a result, human exposure to these toxicants is inevitable. Largely due to their 

lipophilicity, POPs bioaccumulate in adipose tissue, resulting in greater body burdens of these 

environmental toxicants with obesity. POPs of major concern include polychlorinated biphenyls 

(PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDDs/PCDFs), and polybrominated 

biphenyls and diphenyl ethers (PBBs/PBDEs), among other organic compounds. In this review, we 

1) highlight the physical characteristics of toxicants that enable them to partition into and remain 

stored in adipose tissue, 2) discuss the specific mechanisms of action by which these toxicants act 

to influence adipocyte function, and 3) review associations between POP exposures and the 

development of obesity and diabetes. An area of controversy relates to the relative potential 

beneficial versus hazardous health effects of toxicant sequestration in adipose tissue.

Introduction

As the name implies, POPs are organic lipophilic compounds that are resistant to 

environmental degradation, exhibit considerable stability, and persist in the environment. 

Due to their low water solubility, POPs can present as vapors in the atmosphere or strongly 

bind to particulate matter in sediments, where the sediment may serve as a reservoir, 

removing the POPs from circulation (18). If disturbed, however, the POPs may be released 

from the sediment and travel far from their origin before being re-deposited. One hallmark 

characteristic of POPs is their ability to move up the food chain and increase in 

concentration, or biomagnify, subsequently resulting in widespread environmental and 

human exposure (18). This is largely due to the high degrees of halogenation, which allows 

them to resist degradation by metabolizing enzymes. The bioaccumulation potential of these 

compounds can allow them to biomagnify to potentially dangerous levels (193) (245).

To address the global concern of environmental pollutants, 90 countries signed a United 

Nations treaty in 2001, known as the Stockholm Convention (18). The intention of the 

Convention was to severely limit, but preferentially eliminate, the widespread production 

and use of POPs. Recognizing the potentially toxic effects of POPs on human and 

environmental health, a preliminary list of chemicals known as the “dirty dozen” was 

established (18). This original list of 12 key POPs included aldrin, chlordane, 

dichlorodiphenyltrichloroethane (DDT), dieldrin, endrin, heptachlor, hexachlorobenzene, 
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mirex, toxaphene, polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins 

(dioxins), and polychlorinated dibenzofurans (furans) (18). Since then, this list has expanded 

to include additional compounds, such as polycyclic aromatic hydrocarbons (PAHs), 

brominated flame retardants (BFRs), and other compounds that have proven particularly 

harmful and toxic to humans and animals (see Table 1 for a full list of abbreviations that will 

be used throughout the text). The primary route of human exposure to POPs is via food 

contamination, where fatty foods (e.g. meat, fish, and dairy) are important vectors for many 

classes of POPs, including PCBs, polybrominated flame retardants, dioxins and furans 

(PCDDs/PCDFs), and other organochlorines (Table 2).

When considering the toxicity of POPs, it is important to discuss their relationship with 

adipose tissue (AT), a significant site of toxicant bioaccumulation. AT is a connective tissue 

that is primarily comprised of white or brown adipocytes, but also contains several other cell 

types. White adipocytes are the most common type of fat cell, serving as a storage depot for 

lipids that are released upon need as an energy source. By comparison, brown adipocytes, 

which are much less prevalent in adults, are enriched with specialized mitochondria that 

mobilize lipid to produce heat for maintenance of body temperature (347). Of the two 

primary types of adipocytes, white adipocytes, with a large unilocular lipid droplet, are the 

prominent storage site of lipophilic POPs. It has been suggested that AT plays a major role 

in the storage and overall toxicokinetics of hydrophobic xenobiotic POPs (202) (203) (213). 

In addition, the physical properties that enable certain toxins/toxicants to partition into lipid 

are important in determining the extent of AT POP sequestration. The octanol:water partition 

coefficient, for example, offers insight into a toxicant’s ability to partition between water 

and organic matter, and provides a clearer understanding of a toxicant’s potential biological 

uptake, accumulation, and storage in AT (213).

The collection and storage of POPs in fatty tissue can have both positive and negative 

consequences. One beneficial aspect of POP sequestration in AT is that the toxicant 

concentration in blood is decreased, limiting POP availability to other cells and tissues 

where they may have hazardous effects (213). In this manner, POP sequestration in AT lipids 

appears protective against the harsh effects of lipophilic toxicants (24) (27) (137) (399) 

(154) (123). On the contrary, bioaccumulation of POPs in expanded AT of obese subjects 

results in a significantly increased body burden (213). The tonic release of these chemicals 

into the systemic circulation, especially during periods of weight loss (96) (105) (202) (240) 

(213) (283), can pose tremendous threats on overall human health (202) (154) (316) (38) 

(39) (231). We review data on accumulation of specific POPs in AT, their mechanism of 

action, and influence on diseases associated with dysregulation of AT function.

Physico-chemical properties and lipids influence AT POP bioaccumulation

The dynamics of contaminant accumulation in and release from AT depends on their physic-

chemical properties. The partition coefficient has proven to be a major parameter governing 

the uptake of lipophilic toxicants into adipocytes. However, even within a toxicant class, 

structural determinants dictate physico-chemical properties that determine AT accumulation. 

For example, different PCB congeners can display distinct uptake and storage dynamics into 

adipocytes (54) (250) (249). One study compared the accumulation potential in AT of three 
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PCB congeners: PCB −28, −153, and −118 based on each of the congeners physico-

chemical features. Results indicated that the dynamics of accumulation varied between the 

congeners due to molecular size, molecular volume, and lipophilicity (54). Specifically, the 

degree of halogenation, or number and position of chlorine substituents on the PCBs, 

influenced their uptake and accumulation in adipocytes. PCB-28 entered adipocytes more 

rapidly than the other two congeners likely due to its smaller molecular weight, size, and 

lipophilicity, while PCBs −153 and −118 remained trapped in the lipophilic cell membrane 

and diffused more slowly into the intracellular, hydrophobic cytoplasm of the adipocyte 

(54).

The lipophilicity of a compound depends on its chemical structure, where bigger, more 

complex and halogenated compounds are typically more lipophilic and resistant to 

biodegradation (206). As early as the 1900s, researchers tested for lipophilicity by studying 

the uptake of nonpolar compounds using organic solvents, like octanol, as a surrogate for the 

organic matter present in organisms (345). Although not identical, the extent of chemical 

uptake from the water into the organic phase is proportional to what is expected and 

observed in organisms (345). The octanol-water partition coefficient (Kow) is defined by the 

following equation: Kow = Coctanol/Cwater, where Coctanol is the molar concentration of 

the compound in the octanol phase, and Cwater is the molar concentration of the compound 

in the aqueous phase when the system is at equilibrium (345). The adipose-serum partition 

coefficient determines the extent to which a chemical may accumulate in adipose (319); it is 

a ratio of the concentration of a chemical in adipose to serum at equilibrium. Typically, the 

distribution of xenobiotics into AT is dependent on a number of pharmacokinetic factors 

including tissue volume and blood flow (232). The standard approach assumes that the tissue 

is “flow limited,” which means that the venous blood leaving the organ is at equilibrium 

with the “well-stirred” tissue compartment (232). While this approach has proven valid for 

the distribution of various xenobiotics into tissues and organs, there are a number of 

chemicals for which this flow limited model has proven invalid, including highly lipophilic 

POPs (421) (190) (208) (232). These chemicals, along with other organic compounds, act 

according to a “diffusion-limited” model, which states that diffusion limitation is 

proportional to the octanol-water partition coefficient (Kow) of a chemical (232).

Ultimately, diffusion limitation increases as Kow increases. In support of the studies by 

Oberg et al. (294) who simultaneously measured PCB concentrations in rat plasma and 

adipose tissue, Levitt (232) found that hexachlorobenzene (HCB), hexabromobenzene, 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and tetrabrominated dinenzo-p-dioxin 

(TBDD) have a “similar increase in diffusion limitation with increasing Kow.” Specifically, 

results of the study showed that the “apparent” rat adipose perfusion rate was smaller for a 

PCB (0.005kg/min/kg) with a log Kow greater than 7, while significantly larger (0.2 

kg/min/kg) for chemicals with log Kow less than 5 (232). Collectively, these studies support 

the notion that at steady-state conditions, the log Kow, a measure of lipophilicity, can help 

predict the likelihood of a chemical to diffuse and accumulate into AT and contribute to 

steady-state body burdens. Table 3 provides an overview of the structures and partition 

coefficients of numerous POPs.
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Lipids are generally the primary components of any tissue that determine the movement, 

distribution, and sequestration of hydrophobic compounds, and play a vital role in toxicant 

accumulation in tissues (41). The bioaccumulation potential of a toxicant can vary among 

different lipid classes. For example, phospholipids exhibit moderate polarity, while 

triglycerides and free fatty acids display neutral polarity, which can influence their tendency 

to accumulate toxicants (1). Despite the large number of cell types in AT (i.e. preadipocytes, 

fibroblasts, macrophages, etc.), storage of POPs is believed to primarily occur in adipocytes 

(54) whose cytoplasm is composed mainly of triglyceride droplets (341). There are reports 

indicating that TCDD and DDT are transported out of the gut into the triglyceride 

component of chylomicrons, which are responsible for delivering lipids absorbed from the 

intestine to AT (416) (205). Another study demonstrated that the extent of PCB 

accumulation in different adipocyte models directly correlated to the amount of cellular 

triglycerides (54). However, due to the high cost of analyzing toxicants in different lipid 

components, toxicants are generally reported as a measure of total lipids in tissues (54).

It appears that the type of fat storage may also contribute to AT toxicant accumulation. There 

are two major areas where AT deposits: 1) visceral AT (vAT), which surrounds internal 

organs and is generally considered to contribute to obesity-related diseases (275) (196) 

(257), and 2) subcutaneous AT (scAT), located beneath the skin. These AT locations can 

display unique structural features and properties that may influence the kinetics of toxicants. 

Although one study found no significant difference in POP accumulation between visceral 

versus subcutaneous AT (256), several studies found that visceral AT contained higher POP 

concentrations than subcutaneous AT (316). In an obese population in Portugal, endrin and 

endosulfan I and II were detected in more visceral compared to subcutaneous AT samples 

(316). Moreover, the total concentration of POPs was significantly higher (p<0.001) in vAT 

(213.9 + 204.2 ng/g fat) versus scAT (155.1 + 147.4 ng/g fat) (316). Although a greater 

percentage of the population had detectable levels of endosulfans I and II and methoxychlor 

in their visceral compared to subcutaneous AT, higher concentrations of each toxicant were 

detected in subcutaneous AT (316). Similarly, average concentrations of aldrin and median 

concentrations of lindane were higher in subcutaneous than visceral AT (316).

It is worth noting that a possible explanation for the varying concentrations of POPs in 

different types of AT may depend on the individual exposed to the toxicant and toxicant 

exposure duration (434). Orban et al. (303) noted that the effect of age was also a significant 

factor for the detection of nine PCDDs/PCDFs in AT, while no significant differences were 

associated with sex or race.

Numerous toxicants have been detected in different AT samples from various populations 

(Table 4). In humans, two of the most predominant chlordane-related contaminants (trans-

nonachlor and oxychlordane) were detected in breast milk and AT (50). In addition, levels of 

PAHs, including anthracene, pyrene, benzo[e]pyrene, benzo[k]fluoranthene, benzo[a]pyrene, 

and benzo[g,h,i]perylene, were detected in AT samples in the range of 11 to 2,700 ng/g 

tissue (293). PAH refers to a ubiquitous group of over 100 environmental POPs that are 

composed of multiple aromatic rings containing only carbon and hydrogen. Total 

concentrations of PAHs in AT from Korean women ranged from 15 to 361 ng/g lipid (277), 

and levels of dioxin-like PCBs ranged from 4.1 to 125 ng/g lipid in a Chinese population 
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(353). Mean levels of chlorobenzenes, including pentachlorobenzene (PeCB), in human milk 

and adipose tissue samples ranged from undetectable to 146 ng/g (178). Some of the highest 

levels of polybrominated diphenyl ethers (PBDEs) in AT were found in a New York 

population, with concentrations ranging from 17 to an astounding 9,630 ng/g lipid weight 

(183).

Blood levels of POPs (as shown in Table 4) are commonly used to assess point exposures 

(33) (279) (55) (363) (416) (309) (319). Hydrophobic toxicants in blood often bind to 

lipoproteins and proteins. Many PCBs and other organochlorine pesticides found in blood, 

for example, are associated with the protein fraction and all major lipoprotein compartments, 

including very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high 

density lipoprotein (HDL) (416). Aldrin and dieldrin bind to VLDL and LDL to distribute 

preferentially to fat, while chlordecone and mirex preferentially bind albumin and HDL 

(363), and pentachlorophenol (PCP) strongly binds to plasma proteins (55). Furthermore, 

Ljunggren et al. (243) found that POP concentrations in LDL/VLDL were more associated 

with cancer, while POPs in HDL were more associated with cardiovascular disease. 

Although most PCDD/PCDF congeners are found in lipoproteins of blood, liver, and fat 

tissues (319), the more highly chlorinated congeners (penta-through octa-substituted) do not 

partition between the lipoprotein and protein fractions of blood (309). In addition, less than 

20% of dichlorodiphenyldichloroethylene (DDE) or DDT was distributed in erythrocytes, 

but greater than 40% of dieldrin was detected in these blood cells (279).

Measurements taken in whole blood, serum and/or plasma are minimally invasive, but may 

add difficulty in comparing toxicant concentrations between blood samples and other 

tissues. For example, Teixeira et al. (389) reported that plasma levels of aldrin did not reflect 

levels accumulated in tissues, and Archibeque-Engle et al. (30) found no correlation between 

levels of 15 of 17 compounds in breast AT compared to serum. Thus, preferential binding of 

some toxicants to lipoproteins and various other lipid compartments in serum and AT may 

contribute to reported variance of blood levels versus toxicant concentrations in other tissues 

(434).

When discussing toxicants in AT, it is important to define the process of bioaccumulation, 

which refers to the build-up of substances in the body because the substance is not readily 

metabolized and excreted. Many organic compounds not only resist environmental 

degradation, but may also bypass liver biotransformation enzymes and diffuse into AT. 

Highly lipid soluble POPs can disseminate through the food chain by collecting in body fat 

and biomagnifying, or increasing in concentration as they move from one organism to 

another. For example, the northern elephant seal is a “marine mammal predator” at the top of 

the food chain that contains massive concentrations of environmental contaminants that are 

primarily stored in AT (249) (99) (250) (318) (2). Measurements of bioaccumulation in fish 

and other aquatic organisms is often reported as the bioconcentration factor (BCF), which is 

defined as the extent to which a chemical concentration in an aquatic organism exceeds the 

chemical concentration in surrounding water (206). BCFs also correlate with octanol-water 

partition coefficients (345). Table 4 summarizes various bioaccumulation studies in aquatic 

organisms.
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Once sequestered in adipose, toxicants are not released until lipolysis occurs, often through 

weight loss, diet, and exercise. It has been well documented that throughout episodes of 

fasting or weight loss, AT serves as a source of PCBs due to lipid mobilization (202) (250) 

(249). With lipolysis, PCBs and other toxicants are not only released into blood but they also 

concentrate into remaining AT (72) (202) (250) (249). Although no link has been 

established, one hypothesis for the “heterogeneous release of PCBs” from AT is that during 

lipolysis, fatty acids are differentially mobilized from AT and may influence the release of 

some PCBs versus others (98).

The release of PCBs and other toxicants into systemic circulation can potentially expose an 

individual to various known hazardous effects. Therefore, measuring chemical contaminants 

(and/or their metabolites) in adipose and blood samples can provide great insight into overall 

exposures and body burden, which can strengthen the ability to determine associations 

between chemical exposures and the development of adverse health effects.

Effects of POPs on AT function

While epidemiological studies indicate an association between systemic POP concentrations 

and metabolic diseases (228) (382) (386), mechanisms mediating impairment of metabolism 

by POPs remain unclear. In addition to the central role that AT plays in maintenance of 

metabolism and energy homeostasis through storage of excess fuels as fat (lipogenesis) and 

mobilization of fatty acids for use as fuel (lipolysis), adipocytes secrete a multitude of 

adipokines that contribute to metabolic regulation and inflammatory responses. In addition, 

a major role of AT is expansion in response to metabolic excess, which is achieved through 

both an increase in adipocyte size (hypertrophy) and increased differentiation of 

preadipocytes to mature adipocytes (adipocyte differentiation). Given the central role of AT 

in regulation of body weight and metabolism, POP-mediated disruption of AT function may 

contribute to the development of obesity and related metabolic diseases. A summary of the 

effects of POPs on AT function, organized by pollutant class, is presented in Table 5, and a 

summary of the major mechanisms by which POPs are purported to influence AT function is 

presented in Table 6.

Adipocyte differentiation

Mechanisms regulating fat accumulation have been a major focus of research given the 

increased prevalence of obesity and associated health risks. Several studies have 

characterized the effects of POPs on the differentiation of progenitor cells and/or 

preadipocytes to mature, lipid-laden adipocytes but findings have been contradictory. 

Findings are further complicated by use of a variety of models. For example, use of 

preadipocyte cell lines with restricted potential to differentiate into other cell types (e.g. 

3T3-L1 cells) versus use of multi- or pluri-potent stem cells (mesenchymal stem cells or 

stromal-vascular cells) can influence the experimental outcome. The effects of TCDD and 

dioxin-like PCBs on adipocyte differentiation have been the most heavily studied. TCDD 

has consistently been shown to decrease adipocyte differentiation in vitro in 3T3-L1 cells 

(354) (161) and from stromal vascular cells (56). Further, TCDD (in an aryl hydrocarbon 

receptor (AhR)-dependent manner) was demonstrated to suppress hormone-induced 
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adipogenesis in mouse embryonic fibroblasts that exhibited proliferative expansion, but did 

not exit the cell cycle when exposed to the toxicant, suggesting that TCDD is an early 

regulator of adipocyte differentiation (26). However, effects appear to be dose-dependent. 

Low doses of both TCDD and dioxin-like PBC-77 induced differentiation of 3T3-L1 

adipocytes, while high doses had an inhibitory effect (34). These results suggest that the 

reported effect of TCDD at high doses to induce wasting syndrome (348) may relate to an 

ability of the toxicant to decrease adipocyte differentiation, while lower exposures may 

contribute to an obesogenic phenotype. By comparison, studies examining effects of various 

organochlorine pesticides such as the non-dioxin-like PCB-153 (69), DDE (69) in human 

preadipocytes, and DDT in 3T3-L1 cells (278) report increased adipocyte differentiation. An 

ability of low dose POPs to induce adipocyte differentiation are consistent with increased 

body burden of these toxicants with obesity (332) (333) (104).

In addition to organochlorine pesticides, phthalates have also been associated with increased 

BMI and waist circumference (WC) in humans (370). Moreover, di(2-ethylhexyl) phthalate 

(DEHP) or its metabolite mono-(2-ethylhexyl) phthalate (MEHP) increased adipocyte 

differentiation in 3T3-L1 cells, (142) (115), murine mesenchymal stem cells (44), and in 
vivo (142) (62). Few human studies have addressed effects of BFRs on obesity and 

metabolic syndrome; however, adipocyte differentiation was increased by the BFRs PDBE 

(397) and BDE-47 (185). These findings are supported by a recent study which reported 

increased body weight of obese mice treated with hexabromocyclododecane (HBCD) (431). 

Other environmental toxicants (bisphenol A, BPA, bisphenol A diglycidyl ether, BADGE) 

have also been reported to increase adipocyte differentiation in 3T3-L1 cells (258), in vivo, 

(433) and in adipose stromal stem cells (297) (67).

Lipid Storage and Mobilization

Uptake of circulating fatty acids for storage as triglycerides is a major function of AT, with 

excess lipid accumulation a hallmark of expanded AT mass with obesity. In 3T3-L1 

adipocytes, the organochlorine pesticides DDE, oxychlordane, and dieldrin have been 

reported to increase basal fatty acid uptake (160) and BPA was demonstrated to increase 

lipid accumulation (32). Administration of PCB-77 to mice resulted in greater body weight 

and adipocyte hypertrophy (34). Similarly, in utero exposure of mice to BPA (433) or the 

phthalates DHEP and MEHP increased adult fat mass, lipid accumulation and body weight 

(142) (373). However, in general, reports of direct effects of POPs to increase lipid 

accumulation are limited. As discussed below, and summarized in Table 6, it is likely that 

increases in lipogenesis or fat deposition can be attributed to impaired metabolism through 

endocrine disrupting effects of POPs.

In contrast, TCDD has been reported to reduce lipid accumulation and/or promote lipid 

mobilization (235) from adipocytes. This effect of TCDD has been attributed to inhibition of 

lipoprotein lipase (LPL), a key enzyme in the pathway for adipocyte uptake of fatty acids for 

storage as triglycerides (302) (195).
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Adipokine secretion

A major function of AT is the secretion of a wide range of signals and factors termed 

adipokines. These include inflammatory cytokines (TNF-α, interleukins) and chemokines 

(MCP-1), as well as hormones that participate in body weight regulation and glucose and 

lipid homeostasis (adiponectin, leptin, resistin) (396). Reduced adiponectin levels (237) and 

increased resistin levels (177) with obesity are associated with insulin resistance and 

inflammation (237). Several studies have linked BPA exposure with regulation of AT 

adipokines. A study in obese children reported an association of urinary BPA concentration 

with insulin resistance, and incubation of AT explants from these patients with BPA 

increased gene expression of resistin and decreased gene expression of adiponectin (264). 

Similarly, incubation of adult AT explants with BPA inhibited adiponectin (166). In contrast, 

one study reported an increase in leptin and adiponectin expression in 3T3-L1 cells 

incubated with BPA (385). As BPA was also reported to increase adipocyte differentiation, it 

is possible that the increase in leptin and adiponectin reflected an increase in the mature 

adipocyte population. In addition to BPA (404) (32) (433), gene expression and secretion of 

inflammatory factors from adipocytes has been reported to increase in response to TCDD 

(195) (235) (34) (292) (203), PCB-77 (34) PCB-126 (203), and DEHP (62). Moreover, 

infiltration of macrophages into AT, a pathway associated with obesity-induced insulin 

resistance, has been reported as a result of exposure to DEHP (a phthalate) (62) HBCD (a 

BFR) (431), and TCDD (415).

Glucose uptake

Glucose uptake by adipocytes contributes to whole body glucose homeostasis and impaired 

glucose uptake is associated with insulin resistance. A vast majority of data indicate that 

POPs impair glucose uptake in adipocytes. Specifically, treatment of adipocytes with TCDD, 

PCBs, DDT, BFRs, BPA, and PAHs impaired glucose uptake. Exposure of animals to PCBs 

(38), phthalates (142) (374), BFRs (431), or mixtures of POPs (336) impaired insulin 

sensitivity. Mechanisms for these effects are not fully understood, but may include reduced 

AT levels of Glut-4 mRNA or increased expression of inflammatory markers (both AT and 

circulating levels) associated with impaired glucose uptake or insulin resistance.

Mechanisms of POPs to impair AT function

1. AhR—AhR is a basic-helix-loop-helix Per-ARNT-SIM (bHLH-PAS) ligand-activated 

transcription factor (136). Evolutionarily well-conserved, and expressed across a diverse 

number of mammalian species, AhR is a prominent mediator of the biological response to 

synthetic and naturally occurring chemicals (102). Ligand binding results in translocation of 

AhR from the cytoplasm to the nucleus and subsequent dimerization with its binding 

partner, aryl hydrocarbon receptor nuclear translocator (ARNT). The activated AhR/ARNT 

heterodimer complex binds to DNA at specific response elements (typically dioxin or 

xenobiotic response elements; DRE or XRE) to activate the expression of AhR target genes, 

such as cytochrome P450s (CYP1A1) (140). This classical activation of AhR has been 

described in response to halogenated aromatic hydrocarbons (HAHs), such as PCDDs, 

TCDD (being the best characterized and most potent), PCDFs, several PCBs, and PAHs 

(339).
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AhR is expressed in adipocytes (354), and the adipocyte AhR has recently garnered 

increased attention for its role not only in the xenobiotic response of AT, but also as a 

regulator of body weight, fat mass, and lipid homeostasis (194) (39) (430). Several studies 

provide evidence of AhR-mediated regulation of AT function, but results have not been 

consistent. AhR activation was reported to suppress de novo lipogenesis, as mouse 

embryonic fibroblasts isolated from AhR deficient mice displayed enhanced triglyceride 

synthesis (26). These data are consistent with results from mice with adipocyte-specific 

deficiency in AhR, where mice displayed increased body weight, fat mass, AT inflammation, 

and decreased glucose tolerance compared to wild type mice when fed a high fat diet (39). 

In direct contrast, it was recently reported that high-fat fed mice with whole body deficiency 

of AhR were protected from obesity, insulin resistance, and adipose inflammation (430). In 

another study, aged, but not young mice with whole body AhR deficiency were reported to 

have impaired glucose tolerance compared to wild type controls, without concomitant 

differences in body weight between genotype (46). Differences in findings from mice with 

whole body AhR deficiency versus those with cell-specific deletions may result from 

diverging effects of AhR across multiple cell types. Taken together, data implicate AhR in 

the regulation of AT function, body weight and lipid homeostasis.

As a wide spectrum of ligands are capable of binding and activating AhR, its activation by 

various POPs may contribute to their observed effects on obesity and fat mass in human 

populations. The best characterized AhR agonists capable of eliciting effects in AT or 

adipocyte cell lines are TCDD and TCDD-like PCBs, which can be abolished by AhR 

antagonists (34) (121). Moreover, TCDD-induced impairment of adipogenesis in mouse 

embryonic fibroblasts was abolished when cells were isolated from AhR deficient mice (26). 

Further, effects of TCDD and TCDD-like PCBs to regulate the inflammatory response (204) 

(37) and glucose uptake in adipocytes (37) were AhR-mediated. In mice with whole body 

AhR deficiency, administration of PCB-77 resulted in adipocyte hypertrophy and increased 

body weight compared to wild-type mice (34). Moreover, effects of PCB-77 to impair 

glucose homeostasis and AT inflammation were abolished in mice with adipocyte-specific 

AhR deficiency (39).

PAHs are also high-affinity ligands for AhR (102). However, limited studies have defined 

effects of PAHs to regulate AT function and development of obesity. Exposure of mice to air 

pollution (a major source of PAHs) (377) or to benzo-[a]-pyrene (173) increased visceral AT, 

circulating inflammatory factors, AT macrophage infiltration, fat mass, body weight, and 

impaired whole body glucose tolerance (377). In humans, prenatal exposure to air pollution 

has been associated with increased body size in children (335) (260). Additionally, a 

consistent association exists between exposure to cigarette smoke (another PAH source) in 
utero and increased risk of overweight and or obesity in adulthood (300) (171). Whether 

PAH molecules impair AT function through AhR-mediated activation is unknown.

2. PPARγ—PPARγ, a ligand-activated nuclear transcription factor, is a central regulator of 

AT function. Specifically, the PPARγ2 isoform is predominantly expressed in adipose tissue, 

especially very early in adipose cell differentiation (365), and activation of PPARγ2 

stimulates adipogenesis (393). Upon activation and formation of a heterodimer with the co-

activator retinoid × receptor (RXR), PPARγ binds to PPARγ response elements to stimulate 
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transcription of genes involved in adipogenesis, lipid metabolism, and glucose homeostasis 

(22). It is thought that inappropriate activation of PPARγ by some POPs may contribute to 

obesity. In particular, phthalates have been identified as modulators of PPARγ. In 3T3-L1 

adipocytes, activation of endogenous PPARγ target genes has been demonstrated by MEHP, 

monobenzyl phthalate (MBzP), and mono-sec-butyl phthalate (MBuP) (167). Moreover, 

direct activation of PPARγ by MEHP in 3T3-L1 adipocytes promoted adipocyte 

differentiation, albeit to a lesser extent than the known PPARγ agonist, rosiglitazone (115). 

Interestingly, compared to rosiglitazone, MEHP resulted in promotion of only a subset of 

PPARγ coregulators, indicating differential effects of MEHP versus rosiglitazone on PPARγ 
transcriptional activation of adipocyte gene expression (115).

Evidence suggests a link between AhR binding by POPs and PPARγ activation. Reduced 

differentiation of 3T3-L1 cells to adipocytes by TCDD (71) (161) (320), PCBs (121), or 

DDT (278) was associated with decreased PPARγ gene expression. Further, TCDD 

suppressed PPARγ and adipogenesis via a MEK/ERK mechanism (79). In contrast, in 

mouse embryonic fibroblasts, AhR-mediated inhibition of adipogenesis preceded 

suppression of PPARγ activity (26). Thus, changes in PPARγ expression in response to 

TCDD may reflect reduced adipocyte differentiation rather than a direct effect of AhR 

activation to decrease PPARγ.

One additional class of POPs that may influence PPARγ activity is organotins. Compounds 

such as tributyltin chloride (TBT) and bis(triphenyltin) oxide (TPTO) have been 

demonstrated to promote adipogenesis in 3T3-L1 cells through activation of PPARγ (186) 

(236). The effects of these compounds to influence PPARγ-mediated regulation of adipocyte 

function are thought to be through binding of the PPARγ binding partner, RXR (186) (221).

Although some BFRs have been associated with increased adipocyte differentiation, the 

mechanism has not been reported. The brominated analogs of BPA, TBBPA and TCBPA 

were demonstrated to bind to and activate PPARγ in reporter cell lines. It was observed that 

the bulkier the brominated BPA analogs, the greater their capacity to activate PPARγ (328). 

3. Endocrine hormone receptors. Endocrine hormone receptors may be the target of many 

POPs. Endocrine disruption resulting from inappropriate interactions with these receptors 

can negatively influence obesity and AT function. Several POPs that accumulate in AT are 

reported to be xenoestrogens (environmental ligands capable of binding and influencing ER 

signaling) (334) (380) (220) (350), including BPA, DDT/DDE, methoxychlor, the PAH 2-

amino-1-methyl-6-phenylimidazo[4–5-b]pyridine (PhIP), TCDD, PCBs, polybrominated 

biphenyls (PBBs), and phthalate esters. Estrogen receptor (ER) α and β are primary 

mediators of the effects of estrogens. Estrogen binding to these nuclear receptors results in 

the formation of homodimer complexes that bind to the promoter regions (termed estrogen 

response elements, or EREs) of estrogen-responsive genes, many of which contribute to 

regulation of metabolism. In post-menopausal women or ovariectomized rodents, where 

estrogen is low, white adipose tissue mass, body weight, and insulin resistance are increased 

(387). ERα signaling is purported to modulate the beneficial metabolic effects of estrogens, 

such as anti-lipogenesis, insulin sensitivity and glucose tolerance, and reduction of body 

weight and adipose mass, whereas ERβ is thought to play a larger role in the maintenance of 

normal glucose and lipid homeostasis (117). ERα deficient mice are prone to obesity, 
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exhibit increased visceral fat mass, decreased insulin sensitivity, and impaired glucose 

tolerance (149). ERs are expressed in AT (311) and adipocyte-specific deletion of ERα 
resulted in increased adiposity, AT inflammation and fibrosis (93).

In particular, BPA has garnered significant interest as an estrogenic compound. Despite 

having a relatively low affinity for the ER compared to that of estrogen (209), BPA is widely 

accepted to mimic the effects and potency of estrogen (410). However, BPA has been 

associated with increased adipocyte differentiation, body weight and fat mass, effects which 

are inconsistent with known ER-mediated reductions in adiposity as described above. A 

potential explanation for this discrepancy relates to a developmental window for the effects 

of BPA, as rodent studies have demonstrated a significant effect of prenatal BPA exposure to 

increase body weight, adipocyte hypertrophy, and adiposity in adults (410) (364) (272). In a 

recent study, BPA-mediated differentiation of human preadipocytes could be inhibited by an 

ERα antagonist (53). Estrogens contribute to an increase in adipocyte number (84). Thus, 

exposure to estrogen during a critical period of development may predispose for AT 

expansion, especially when children or adults are faced with a metabolic challenge, or in 

combination with exposure to other obesogenic environmental chemicals. The brominated 

BPA analogs TBBPA and TCBPA have also been described as ligands for ERs (329), but 

further mechanisms examining the role of these BFRs to modulate AT function through ERs 

have not been defined.

AhR has been reported to interact with endocrine hormone receptors, thus one mechanism 

by which AhR may mediate body weight and fat mass is through modulation of ER-

signaling pathways. Ligand-bound AhR/ARNT has been demonstrated to directly associate 

with ERs (299); however, consequences of AhR/ER interaction are complex and not well 

understood. In general, crosstalk between ER and AhR is thought to be inhibitory with 

respect to ER signaling. An inhibitory effect of AhR on ER signaling is consistent with 

reports demonstrating AhR agonists increase body weight and adiposity, since deficiency of 

estrogen (387) or ERα (149) are associated with increased obesity and adipose mass.

Several mechanisms may contribute to inhibition of ER signaling as a result of ER/AhR 

crosstalk. First, TCDD-mediated expression of CYP1A1 and CYP1B1 has been reported to 

enhance metabolism of estrogen in some cell types (368) (366) (367). Although circulating 

estrogen levels were not altered in TCDD-treated rodents (355), no study has examined the 

relationship between AhR activation and adipose ER expression/activity. Moreover, ligand-

bound AhR/ARNT prevents ER promoter binding and downregulation of ER target genes 

(reviewed in (340)). Also, ligand-bound AhR has been demonstrated to participate in an E3 

ubiquitin ligase complex targeting the ER to proteasomal degradation (298). Finally, AhR 

and ERα interact with several common nuclear coregulatory factors (340), including ARNT 

(57), suggesting competition for these factors could influence activation of either pathway.

Inhibition versus potentiation of ER signaling may depend on the presence or absence of 

estrogen. For example, AhR coactivation of ERα resulted in transcriptional activity from 

ERE-regulated genes in the absence of estradiol (299). Alternatively, in the presence of 

estradiol, ARNT was recruited to estrogen-responsive promoters leading to increased ER 

transcription (379).
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In addition to disruption of ER signaling, some lipophilic organochlorines may interfere 

with androgen receptor (AR) signaling. For example, DDT/DDE (191) and some PCBs 

(344) have been reported to act as AR antagonists. Testosterone has been shown to stimulate 

glucose uptake in adipocytes (271). Additionally, a positive correlation between insulin 

sensitivity and testosterone levels has been reported in males (321). Thus, antagonism of the 

AR by certain POPs may impair AT function through inhibition of glucose uptake.

AT is also a target of thyroid hormones, and thyroid hormone signaling through thyroid 

receptors (TRs) regulates lipid mobilization and storage. Disruption of TR signaling by 

certain POPs may contribute to dysregulation of AT function. For example, BPA has been 

reported to inhibit TR signaling through enhanced recruitment of corepressors (280); 

however, this effect of BPA has not been localized to AT. Exposure of rats to PDBEs resulted 

in increased circulating levels of thyroxine and altered glucose metabolism of isolated 

primary adipocytes, however there was no effect on body weight (155). Additionally, TCDD 

and certain PCBs have been suggested to be repressors of thyroid function, as exposed 

rodents (291) and humans (310) demonstrate compensatory increases in circulating levels of 

thyroid stimulating hormone. Future studies should address whether these TR-mediated 

effects are manifest in AT.

Associations between POP exposures and the development of obesity and 

diabetes

Obesity

The prevalence of obesity and its related comorbidities has been rising rapidly over the last 

three decades and is reaching epidemic proportions in the Western world, most notably in 

the US (244) (296). The rising prevalence of obesity becomes more alarming when 

considering that the comorbidities of overweight and obesity include an increased risk of 

type II diabetes and cardiovascular diseases (82) (273) (274), two leading causes of rising 

medical costs and poor prognosis in the US (266) (207). Interestingly, in parallel with the 

increased prevalence of obesity, the use and environmental levels of synthetic organic and 

inorganic chemicals has risen dramatically (35). Therefore, in addition to the importance of 

diet and exercise in the etiology of obesity (152), the hypothesis that exposure to 

environmental contaminants such as POPs contributes to the development of obesity is 

gaining popularity (35). The “obesogen hypothesis” proposes that exposure to environmental 

xenobiotic chemicals either in utero or throughout life contributes to the development of 

obesity (148) (109) (289). “Obesogens” have been defined as “molecules that 

inappropriately regulate lipid metabolism and adipogenesis to promote obesity” (135).

Previous reviews have investigated potential links between POPs and obesity (212) (228) 

(382); however, findings are often inconsistent between different POP classes and even 

within chemical congeners. Associations between POPs and obesity may be complicated by 

the lipophilicity of these compounds; obese individuals possess greater adiposity in which 

these lipophilic chemicals may be stored. Furthermore, obese individuals may consume 

more fatty foods rich in lipophilic chemicals and may, therefore, experience higher dietary 

exposure to POPs. Findings are further complicated by the dose and timing of exposure as 

Jackson et al. Page 12

Compr Physiol. Author manuscript; available in PMC 2018 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



well as the gender of the individual exposed. Although in vitro and animal studies have 

typically investigated very high doses of POPs in their research, there is evidence that 

physiological changes can occur at much lower doses of POPs, and that these effects do not 

exhibit monotonic dose-response relationships (426). Therefore, conflicting findings 

between a particular POP and obesity may be explained by the level of exposure within the 

population. For example, toxic, high-dose exposures may result in weight loss while lower 

levels of exposure, which are characteristic of the typical population and may be considered 

“safe,” might promote obesity (134) (148) (35). Additionally, the effects of POPs on 

parameters of obesity often vary by gender (Tables 7 and 8), which may be due to the POP’s 

ability to disrupt endocrine function and mimic estrogenic effects (51). Lastly, the time of 

exposure poses an important consideration for investigating associations between POPs and 

obesity. Many POPs, including PCBs, DDE and HCB have shown contrasting effects on 

body mass index (BMI) in prenatal versus adult exposures (212). As such, associations 

between POPs and obesity will be investigated separately based on the timing of exposure: 

prenatal and early life, or adult exposure. Regardless of these interactions and individual 

effects of the chemicals, the net result of POP mixtures appears to be weight gain.

Prenatal and Early Exposure to POPs

Amidst the growing prevalence of obesity, rampantly rising rates of childhood obesity has 

emerged as a critical public health concern. Prevalence of childhood obesity worldwide has 

risen sharply since the 1980s, reaching 42 million in 2013 with estimates that this number 

will increase to 70 million infants and children in 2025 (305). The heightened concern over 

the childhood obesity crisis stems from both short-term and long-term effects on health and 

longevity. In the short term, obese children possess a higher risk for cardiovascular disease 

(120) and prediabetes (234). However, and perhaps even more frightening, is the association 

between childhood obesity and future risk of obesity (255) (36) (139), cardiovascular 

disease, type II diabetes, and greater morbidity and mortality (255) (36) (139) (285) (369). 

Together, these findings support the hypothesis of the fetal origins of adult disease, which 

proposes that the environment of the fetus can determine health and disease outcomes later 

in life (360).

Therefore, in accordance with the obesogen hypothesis, prenatal and early life exposure 

represents a critical window during which children are particularly vulnerable to both the 

short-term and long-term effects of POPs on obesity (134) (325) (290) (192). Furthermore, 

prenatal and early life contexts represent particularly vulnerable periods for environmental 

exposures. The fetus is sensitive to chemical exposures, which can cross the fetal-maternal 

blood barrier (175). This increased susceptibility continues into early life, as children have 

different levels and sources of exposure. Children can experience the effects of maternal 

exposure to POPs even after birth, as chemicals appear in breastmilk and represent a source 

of exposure during breastfeeding (31). Furthermore, children are not simply “tiny adults”; 

they differ not only in size but also in metabolism and physiological function, such as higher 

caloric consumption consumed per kg body weight and higher minute ventilation (361) (74), 

which can put them at increased risk of exposure to environmental chemicals. We describe 

below evidence regarding exposures to specific POPs and the development of obesity and/or 

diabetes.
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1. PCBs and Dioxins—The effect of prenatal PCBs on obesity is inconclusive. Twelve of 

the 25 studies investigating prenatal PCBs found no association between prenatal and early 

exposure to PCBs and obesity (Table 7). However, of the 12 studies that did find an 

association between prenatal PCBs and obesity, 9 found that PCBs had an inverse 

association on measures of obesity, including birth weight (131, 151, 284, 308), growth rate 

(308), weight (174) (47) (176) (214), and BMI (104). Conversely, 5 studies found positive 

associations between prenatal and early PCB exposure and measures of obesity (104) (414) 

(383) (21) (408).

A factor that may complicate interpretation of these studies is differing effects of TCDD-like 

PCBs and non-TCDD-like PCBs, as well as different effects in males versus females. Two 

studies found differing effects between toxicants based on their similarity to TCDD within 

the same study population. In a study of early exposure in Flemish adolescents aged 14–15 

years, serum TCDD-like PCBs were positively associated with increased BMI while non-

TCDD-like PCBs were negatively associated with BMI in males and females (104). In a 

second study, which investigated prenatal PCBs and obesity in African American children of 

the National Collaborative Perinatal Project (NCPP), maternal levels of TCDD-like PCBs 

were negatively associated with girl’s weight and marginally positively associated with 

boy’s weight (214). Conversely, maternal levels of non-TCDD-like PCBs were not 

associated with weight (214). This study highlights a complexity in the relationship between 

prenatal PCBs and obesity: gender. Of the 14 studies that found some association between 

prenatal or early exposure to PCBs and obesity in study populations containing both males 

and females, 5 studies found different effects between males and females. For example, 

negative associations between PCB exposure and weight were reported in males with no 

effect in females (151) (174). Conversely, a positive association was reported between PCB 

exposures and obesity in females but not males (383) (408). Therefore, diverging effects of 

prenatal and early PCB exposure and obesity in males versus females may contribute to 

differences in findings between studies. In summary, study findings should consider gender 

of the population under study, as well as the type (e.g., TCDD-like) and/or individual 

congeners which are screened.

2. DDE and DDT—Fifteen of 24 studies that investigated DDE exposures found positive 

associations between prenatal and early exposure to DDE and measures of obesity including 

BMI (189) (402) (414) (265) (189) (95) (423), weight (174) (189) (127), overweight (21, 

408), rapid growth (265) (407), and waist circumference (383, 402) (101, 423). Only one 4-

year study on Russian boys aged 6–8 years found a negative association between DDE and 

BMI (58). Similar to PCBs and TCDD, there appear to be different effects between genders, 

as some studies found associations with obesity in females but not in males(95) (101) (408). 

Conversely, two studies found effects on BMI, waist circumference, and overweight and 

obesity at 9 years (423) and weight at 14 years (127) in males but not in females. 

Additionally, an association between prenatal DDE and BMI z-score and rapid growth that 

was seen in both sexes was stronger in boys (265). Therefore, the evidence supporting a link 

between prenatal DDE exposure and obesity is compelling despite potentially different 

effects between genders. By comparison, the effect of prenatal DDE on birth weight is less 

conclusive. One study showed an association between prenatal DDE and birth weight (248) 
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while another showed no association with birth weight (131). Therefore, while there is a 

strong argument for exposure to prenatal DDE and obesity in later life, the effects of DDE 

on birth weight are inconclusive and might be weakly associated with decreased birth 

weight.

Five studies investigating prenatal exposure to DDT and obesity outcomes were analyzed. 

Two studies in childhood and adolescent males found no association between prenatal DDT 

exposure and BMI in boys (126) (423). However, another study in 6.5-year-old children 

found a positive association between prenatal DDT and overweight in males but not in 

females (408). In a study of 7.5-year-old children of both genders, a nonsignificant 

association was found between maternal DDT and BMI and increased odds of overweight 

and obesity (422). Lastly, prenatal DDT was associated with decreased birth weight (248). 

Therefore, prenatal exposure to DDT may decrease birth weight while being weakly 

associated with overweight in childhood, particularly among boys.

3. Hexachlorobenzene (HCB), β-Hexachlorocyclohexane (HCH), and OC 
pesticides—Of the 11 studies which investigated the role of prenatal or early exposure to 

HCB and obesity, 5 found positive associations with HCB exposure and obesity. Four of the 

5 studies found association between prenatal and maternal exposure to HCB and parameters 

of obesity including BMI (402) (362) (21), rapid growth (405) (407), and increased 

overweight and obesity (362) (21) (407). One study investigating early exposure to HCB and 

obesity found that in 7 year olds, HCB exposure was associated with increased BMI and 

overweight. However, a study investigating early exposure to HCB in 8–22 year olds found 

no association between HCB exposure and obesity (384). Furthermore, there were 4 studies 

that found no association between prenatal HCB and BMI (265) (90), obesity (90), birth 

weight (248), or waist circumference (101). One study found that exposure to HCB in 14–15 

year olds decreased BMI. Studies appear to support an association between prenatal HCB 

exposure and rapid growth and increased BMI and overweight, particularly in childhood. 

However, the relationship between HCB exposure and obesity in adolescents is inconclusive.

Three studies investigating the effect of prenatal exposure to HCH failed to support an 

association between HCH and BMI (265) (90), obesity (90), or birth weight (248). However, 

conflicting associations were found when studying early exposure to HCH and obesity. 

There was an inverse association between β-HCH exposure and BMI in Russian boys aged 

8–9 over a 4-year study (58). Conversely, Spanish children of both genders exhibited 

positive associations between β-HCH and BMI and increased overweight at 7 years (21). 

These conflicting findings might be due to gender, as boys exhibit a negative association 

between β-HCH and obesity while a positive association was seen when children of both 

sexes were studied, of which 51.3% were female. Furthermore, the two populations might 

differ in dose, type, or duration of exposure, as the two studies differed in which chemicals 

were included in their screening in addition to β-HCH.

A study investigating OC pesticides found no association between prenatal trans-nonachlor 

and oxychlordane and obesity or BMI at 7 years (90). However, the same study did find a 

positive association between prenatal dieldrin exposure and obesity but no association with 

BMI.
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4. Polybrominated flame retardants (BFRs)—As compared to the organochlorines, 

fewer studies have investigated the prenatal or early exposure effects of BFRs on obesity, 

and the results are inconsistent. Of the 5 studies analyzed for the effects of BFRs, two found 

positive associations while two studies found negative associations between BFRs and 

obesity. A study in pregnant Long-Evans hooded rats found that prenatal dosing with 

PBDE-99 increased rat offspring birth weight (238). Furthermore, studies in humans have 

found the prenatal PBB exposure (above 5 ppb) was associated with increased weight for 

height in females (47). Conversely, studies in Mexican-Americans from the Center for the 

Health Assessment of Mothers and Children of Salinas (CHAMACOS) found negative 

associations between maternal PBDE levels and BMI, waist circumference, and birth weight 

(113) (144). However, the association seen between PBDE and lower birth weight became 

nonsignificant when maternal weight gain was included in the analysis (144).

5. Polycyclic Aromatic Hydrocarbons (PAHs)—Maternal and early exposure to PAHs 

appears to have contrasting effects on birth weight and childhood obesity. Several studies 

have shown that maternal dietary (215) (180) and airborne PAH (215) exposure as well as 

PAH-DNA adduct levels in newborns (314) (315) are associated with reduced birth weight. 

Conversely, prenatal and early exposure to PAHs is positively associated with increased 

BMI, obesity, and waist circumference in childhood (197) (335) (346). Therefore, it appears 

that prenatal exposure to PAHs may reduce birth weight but increase the risk of childhood 

obesity.

6. Phthalate Esters—The findings of the relationship between prenatal and early 

exposure to phthalates and obesity is inconsistent and complicated by different effects 

between the two sexes and also between low molecular weight (LMW) and high molecular 

weight (HMW) phthalate metabolites. LMW metabolites, including MnBP, MEP, and MiBP, 

have been associated with childhood obesity (77) (145) (388) (59) (48). Conversely, HMW 

metabolites have been associated with lower weight gain and lower BMI z-scores in boys 

but higher BMI in girls (406).

7. Bisphenol A (BPA)—The effects of BPA seem to vary depending if the exposure was 

prenatal or early in life. Prenatal exposure to BPA has been shown to be negatively 

associated with BMI, adiposity, and percent body fat in young girls (403) (143) as well as 

associated with decreased birth weight (269). On the other hand, early exposure to BPA in 

ages 4–15 has been associated with increased BMI, obesity, and waist circumference (403) 

(143) (405) (417) (394); however, one study did show a negative association between BPA 

levels and BMI in 6–9 year old girls (428). Therefore, prenatal exposure to BPA seems to 

decrease the risk of obesity later in life while postnatal early exposure in childhood seems to 

increase the risk of childhood obesity.

Adult Exposure to POPs

In addition to the growing burden of obesity in children, more than 1.9 billion adults (39%) 

age 18 years and older were overweight in 2014, of which over 600 million (13%) were 

obese (306). Because adults experience a longer duration and type of exposure to POPs, they 

are presented separately from prenatal exposure. Furthermore, because maternal levels of 
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POPs can determine offspring health, adult women of the childbearing age are of particular 

interest in terms of obesity outcomes.

1. PCBs and Dioxins—The studies of PCBs and dioxins and obesity are, by far, the most 

complex of the POPs. Complications when studying PCBs and potential effects on obesity 

arise from different effects between congeners and genders and non-linear and inverted U-

shaped associations. While dioxins have consistently shown positive associations with BMI 

(224), waist circumference (223), fat mass (332), and metabolic syndrome (399), PCBs have 

shown positive, negative, or null associations between studies. These consistencies appear to 

be due to different effects between congeners and between genders.

TCDD-like PCBs have been positively associated with BMI (312) (128) (104). However, the 

non-TCDD-like PCBs have produced more inconsistent associations. For example, non-

TCDD-like PCBs have been both negatively (224) (106) (104) (128) and positively (312) 

(223) associated with BMI and waist circumference. Furthermore, less-chlorinated PCBs 

have been positively associated with weight gain (241) and fat mass, while highly-

chlorinated PCBs have been negatively associated with weight gain (241) and fat mass . 

Furthermore, several studies have reported conflicting associations with PCBs and obesity 

within the same study that varied by congener (226) (332). When PCBs were grouped 

together, positive associations were found with an increased risk of becoming obese (108), 

BMI (218), and waist circumference (223). Furthermore, in a study of obese adults without 

diabetes, adipose levels of PCBs were positively associated with weight, BMI, waist 

circumference, and visceral adipose tissue (107).

Additionally, studies have found different effects of PCBs between genders. In the PIVUS 

study by Lee et al. on older adults, women had positive associations between waist 

circumference and the PCB congeners 74, 99, 118, 138, 153, and 156, but negative 

associations with congeners 105 and 126 (226). Similar inconsistencies in waist 

circumference were present in men, with PCBs 156, 157, 169, 180, 189, and 209 positively 

associated and PCBs 74, 99, 106, 118, 126, 138, 153, 170, 194, and 206 negatively 

associated with waist circumference. As discussed previously, study results must be 

considered with attention to the specific congeners studied and the gender of the study 

population. Lastly, the effects of PCBs also vary by dose, with several studies reporting 

nonmonotonic and inverted U-shaped associations (226) (230) (96) (333) (223), indicating 

that lower doses of PCBs might produce greater effects on obesity development than higher 

doses.

2. DDE and DDT—Of the fourteen studies that measured DDE in regards to obesity 

outcomes, thirteen found positive associations and only one study found no association. 

Therefore, DDE has consistently been positively associated with BMI (230) (224) (107) 

(104) (218) (128) (164) (312) (343), waist circumference (223) (107) (226), and visceral and 

subcutaneous adipose tissue (107). Only two studies found sex differences in the relationship 

between DDE exposure and obesity. In a study of the NHANES 1999-2002 data set, DDE 

was positively associated with waist circumference in women but negatively associated in 

men (110). On the other hand, in the PIVUS study of older adults, Lee et al. found that DDE 

was associated with waist circumference in males but not in females (226). Therefore, the 
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literature supports a positive association between DDE and obesity, although gender 

differences may exist.

Fewer studies have investigated a relationship between DDT and obesity. In the Coronary 

Artery Risk Development in Young Adults (CARDIA), a prospective study in young adults 

without diabetes, DDT positively predicted BMI (230). On the other hand, in a cross-

sectional study on Canadian males, DDT was not associated with BMI (312). However, 

these inconsistent results may be a result of gender differences, as a cross-sectional study on 

the 1999–2002 NHANES dataset found that DDT was positively associated with waist 

circumference in females, but negatively associated in males (110).

3. HCB, β-HCH, and OC pesticides—The effects of HCB, β-HCH, and the remaining 

organochlorine pesticides, such as oxychlordane, trans-nonachlor, mirex, and aldrin, are less 

clear than the strongly positive associations of DDE with obesity. However, the Prospective 

Investigation of the Vasculature in Uppsala Seniors (PIVUS) study in older adults found that 

the sum of OC pesticides was positively associated with weight gain (241). Of these 

pesticides, studies on HCB and β-HCH tend to support positive associations with obesity. 

HCB has been positively associated with BMI (104) (218) (128) (312), waist circumference 

(226) and fat mass (332) (230). Similarly, β-HCH has been positively associated with BMI 

(312) (106, 164), metabolic syndrome (391), waist circumference (106), and fat mass (106). 

The Chlordane constituents oxychlordane and trans-nonachlor have been positively 

associated with BMI (164), waist circumference (226), and visceral and subcutaneous 

adipose tissue (96). However, several studies have also shown no association between 

chlordane and measures of obesity (230) (224) (164). The other OC pesticides have not been 

studied as extensively; however, three studies have reported no association between mirex 

and BMI (230) (164) (312). On the other hand, aldrin has been positively associated with 

metabolic syndrome (MetS) (391).

4. BFRs—Two studies have investigated PBBs and PBDEs levels in adults, and both 

supported positive associations between BFR exposure and obesity. In a study of the 

2003-2004 NHANES data set, PBB-153 was nonlinearly associated with MetS and WC; 

furthermore, PBDE-153 exhibited an inverted U-shaped association with MetS (239). These 

results indicate that potential associations between BFRs and obesity in adults may be 

complicated by nonmonotonic dose response curves. Additionally, a second study in 

pregnant women found that milk levels of PBDEs were associated with the mom’s BMI 

(91). Therefore, not only were PBDE levels associated with maternal BMI, but these levels 

in milk also represent a source of early life exposure to BFRs in offspring, which represents 

a potential factor in health outcomes later in life.

5. PAHs—One study investigated urinary PAH metabolites and obesity; however, the 

results were inconsistent and varied between metabolites (324). While urinary 2-

phenanthrene was positively associated with obesity, 1-naphthalene was negatively 

associated with obesity in NHANES adults (324). Additionally, 2-naphthalene, 1-

phenanthrene and 2-phenanthrene were positively associated with MetS. Furthermore, 

studies on smoking cigarettes, which can be a source of exposure to PAHs, have found 

positive associations with central obesity (75).
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6. Phthalate Esters—As in prenatal exposure, the relationship between phthalates and 

adult obesity is complicated by gender, age, and differences between the groups of phthalate 

metabolites; however, studies generally support a positive association between phthalate 

exposure and adult obesity. In a study of the 1999–2002 NHANES data set, although 

females had higher urinary levels of phthalate metabolites, the strongest positive associations 

with BMI and WC were found in 20–59-year old males with MBzP, MEHHP, and MEOHP 

(145). For LMW metabolites, MEP was positively associated with BMI in adult males (20–

59 and 60–80 years old) and for adolescent and adult (20–59 years old) females; however, 

no association was found in adolescent males and an inverse relationship was found in older 

females (145). Furthermore, while MBP showed inverse trends with BMI and WC in 60–80 

year olds and female adults (20–59 years old), positive trends existed in 20–59-year old 

males (145). Furthermore, while the high molecular weight metabolite MBzP had a positive 

association with BMI and WC of 20–59-year old males, no associations were seen in 

females (145). Of urinary DEHP metabolites, MEHP was inversely associated with BMI and 

WC in adolescent and adult females, but no associations were found in males. On the other 

hand, MEHHP was positively associated with BMI in males, but no associations were found 

in females (145). Again, apparent inconsistencies between studies on phthalates and obesity 

might be explained by the particular metabolites studied and the age and gender of study 

participants.

7. BPA—Few studies have investigated relationships between BPA and obesity. Three 

studies support positive associations between BPA exposure and abdominal obesity (65) 

(420) as well as WC (122).

Diabetes

The global prevalence of diabetes is staggering; the number of people with diabetes has risen 

from 108 million in 1980 to 422 million in 2014, corresponding to an increase from 4.7% to 

8.5% of adults over 18 years of age (304). Type 1 diabetes (T1D) is an autoimmune disease 

characterized by insulin deficiency as a result of beta-cell failure. On the other hand, Type 2 

diabetes (T2D) is characterized by insulin resistance and includes an alarming number of 

children and adolescents (424).

There has been a growing interest in the environmental contribution to the etiology of 

diabetes and obesity. In 2011, the US National Toxicology Program (NTP) and the National 

Institute of Environmental Health Sciences (NIEHS) conducted a workshop titled “Role of 

Environmental Chemicals in the Development of Diabetes and Obesity” to investigate the 

science studying POPs and their association to these two diseases. The workshop concluded 

that there is a strong argument for a role of POPs in the etiology of diabetes and obesity 

(390) (386). The importance of studying the influence of environmental pollutants on the 

development of these diseases has been acknowledged by the National Institutes of Health 

(NIH) (146), the National Institute of Diabetes and Digestive Kidney Diseases (NIDDK) 

(83) (24), and the White House Task Force on Childhood Obesity (40).

The ubiquitous exposure to low and chronic levels of POPs presents a complicating factor in 

linking these toxicants to diabetes, as there is no true reference population with zero 
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exposure to POPs. Moreover, the majority of studies that have attempted to link POP 

exposures to diabetes have focused on background levels within the general population, as 

opposed to occupational exposures. Background level POP exposures within the general 

population are present as mixtures of chemicals. Therefore, findings from studies 

investigating individual POPS must be analyzed in reference to not only the other POPs 

studied, but also the total mixture of chemicals to which the population is exposed. Two 

prospective studies have investigated the effect of POPs as mixtures on diabetes incidence, 

and both studies found that exposure to POP mixtures is associated with a 3–5 time higher 

risk of developing T2D (227) (229). In the Coronary Artery Risk Development in Young 

Adults (CARDIA) study, an inverted U-shaped association between exposure to POP 

mixtures and diabetes was found in young adults (229). The inverted U-shaped association 

indicates a nonmonotonic dose-response relationship between POPs and diabetes. Similarly, 

in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study, an 

association between POP exposure and T2D in the elderly was found (227). However, while 

this association suggested nonlinearity (227), it was not a clear inverted U-shaped 

association as in the CARDIA study.

1. PCBs and Dioxins—High-dose, toxic levels of chemical exposure have been the focus 

of both animal and human studies to investigate associations between exposures and effects 

on human health. For example, early findings on the human effects of TCDD were studied in 

populations with occupational and accidental exposure, such as U.S. Air Force veterans 

exposed to Agent Orange in Vietnam (150) (200) (187) and workers and residents exposed 

to TCDD following accidents or spills at chemical plants (43) (437) (371). Unfortunately, 

these early findings were inconsistent, as positive (150) (200) (187), inverse (371) (437), and 

null associations (381) (413) were observed between TCDD and T2D.

The findings from the Air Force Study on Vietnam War veterans of Operation Ranch Hand 

exposed to Agent Orange highlight the perplexing relationship between POPs and T2D. 

Compared to those not exposed to TCDD-contaminated Agent Orange, US Air Force 

veterans exposed to Agent Orange had glucose abnormalities and a higher risk of T2D 

(150). However, a follow-up study excluded veterans exposed to Agent Orange and only 

considered veterans who did not come into contact with TCDD-contaminated herbicides 

and, therefore, had exposure levels consistent with background levels in the United States 

(247). In this second study, the dose-response relationships between TCDD and T2D were 

surprisingly stronger in veterans with background levels of exposure as compared to high 

occupational exposure to TCDD, indicating that not only do POPs have low level effects on 

T2D, but also that these associations might be unexpectedly stronger at lower, background 

exposure levels (247).

This puzzling association between lower doses of TCDD and T2D was reinforced by a study 

of occupational exposure following a chemical plant accident in Italy (43). Of residents 

living in high-, medium, and low-exposure areas surrounding the accident, there was higher 

T2D mortality in the medium-exposure area as compared to residents from the high-

exposure area (43). Furthermore, in occupational exposure studies on individuals with very 

high levels of TCDD exposure, no associations were found between TCDD exposure and 

T2D (61) (381) (437). In contrast, recent studies in heavily contaminated areas, such as 
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Superfund sites, demonstrate associations between serum TCDD and PCB levels and T2D 

(357) (411) (401), as well as elevated glucose (218) (86). While it remains debatable 

whether direct associations exist between exposure levels and T2D, reports demonstrating 

that lower level POP exposures are associated with diabetes are alarming, as these levels can 

be found in most individuals, and certainly in the obese population. A summary of POPs and 

their links to T2D are presented in Table 9.

2. DDE and DDT—In adults with both background and occupational exposure, DDE and 

DDT have been linked with diabetes and related phenotypes. For adults with higher than 

background exposure levels to environmental contaminants, two studies investigating a 

heavily polluted area of Eastern Slovakia found associations between DDE and DDT and 

diabetes (218) (401). In one study, DDE and DDT were associated with both prediabetes and 

diabetes in these heavily exposed Slovakian adults (401). In a second study in this Slovakian 

population, DDE correlated with fasting glucose and serum insulin (218). Furthermore, 

DDE was also found to have a positive association with diabetes prevalence in women in the 

Anniston Superfund site (357). In studies in adults with background levels of exposure to 

POPs, DDE has been associated with T2D prevalence (224) (80) (398) (24) (337) (85), 

glucose abnormalities (107), and HOMA-IR (230). Additionally, studies have found 

associations between DDT and diabetes (114) (85).

Of particular interest are two studies performed in obese adults with background exposure 

who underwent bariatric surgery, which allowed for the researchers to obtain fat depots and 

evaluate associations between adipose levels of DDE and diabetes (107) (316). Both serum 

and adipose levels of DDE were associated with glucose levels and an abnormal glucose 

tolerance test (GTT) (107). In a second study by Pestana et al., (316), not only were total 

POPs in adipose tissue associated with HOMA-IR and dysglycemia, but adipose levels of 

DDE were associated with glucose metabolism and HbA1c. Similar findings across studies, 

as well as associations between both serum and AT levels to diabetes, support potential 

contributions of DDE exposures to the development of diabetes.

3. HCB, HCH, and OC pesticides—HCB, HCH, and the OC pesticides, such as 

oxychlordane, heptachlor, trans-nonachlor, and aldrin, have consistently shown positive 

associations with diabetes. When grouped together as OC pesticides, studies have found 

associations with high fasting glucose (223), diabetes prevalence (225), and incident T2D 

(227). When investigated individually, studies of these pesticides have largely indicated 

positive associations between exposure levels and diabetes. HCH has been associated with 

prediabetes (401), diabetes (85), and elevated serum glucose (85), while HCB was 

associated with diabetes prevalence (80) (337) and incidence (429). Chlordane and its 

constituents and metabolites heptachlor, trans-nonachlor, and oxychlordane have found 

positive associations with diabetes. Of the chlordane constituents, trans-nonachlor and 

oxychlordane have been the most heavily studied. These constituents have been positively 

associated with T2D prevalence (224) (85) (24), diabetes incidence (227) (229), and 

HOMA-IR (222). In contrast, while low doses of mirex were found to be associated with 

diabetes incidence in young adults of the Coronary Artery Risk Development in Young 

Adults (CARDIA) study (229), mirex was negatively associated with diabetes in adults of 
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the Mohawk Nation at Akwesasne (80). Despite these inconsistent findings for mirex, which 

might be due to differences in study population and outcomes (diabetes prevalence versus 

diabetes incidence), OC pesticides appear to be consistently associated with diabetes.

4. BFRs—Literature on polybrominated flame retardants and diabetes are inconsistent, 

with studies showing either positive or no associations. Two main categories of BFRs have 

been investigated-PBDEs and PBBs. Studies on PBDEs have produced inconsistent findings 

in relationship to obesity, which may represent differing effects between PBDE congeners. 

In NHANES 2003-2004, PBDE-153 showed positive associations with diabetes prevalence 

and glycemia (239). In the same study, PBDE-99, PBDE-100, PBDE-28, and PBDE-47 were 

not significantly associated with diabetes. However, in a study of a cohort of sport fish 

consumers, the sum of PBDEs and the PBDE congeners PBDE-47 and PBDE-153 were not 

associated with diabetes (398). As described previously for other POP classes, individual 

congeners of PBDE may have some association with obesity and/or diabetes, but 

generalizations from mixed exposures cannot be assumed.

The findings for PBBs are similarly inconsistent. While PBB-153 was found to be positively 

associated with prevalent diabetes and glycemia in adults within NHANES 2003–2004 

(239), prospective studies on PBB exposures and diabetes incidence have been inconsistent 

in their findings. In the CARDIA prospective study, low doses of PBB-153 were found to be 

associated with an increased risk of diabetes incidence (229); however, a prospective study 

of a Michigan cohort found no association between PBB and diabetes incidence (411).

5. PAHs—Although PAHs have not been as extensively studied as other environmental 

contaminants for their potential relationship to diabetes, the studies reviewed here show 

positive associations between PAH exposure and diabetes. In studies of merged 2001–2006 

NHANES data, urinary PAH biomarkers, 1-naphthalene, 2-naphthalene, 2-phenanthrene, 

and 1-pyrene were associated with diabetes in adults (28) (324). Furthermore, in a study of 

Chinese adults, urinary PAH metabolites had a dose-response association with an increased 

risk of diabetes (432). Therefore, although the literature for PAH exposure and diabetes is 

not as extensive as other POPs, results support an association between PAHs and diabetes 

prevalence.

6. Phthalate Esters—While studies have often found positive associations between 

phthalates and diabetes, there are inconsistent findings that may be attributable to differing 

effects between phthalate metabolites, categorized as DEHP metabolites, low molecular 

weight metabolites, or high molecular weight metabolites. Urinary DEHP metabolites 

(MEHP, MECPP, MEHHP, MEOHP) have been positively associated with diabetes (378), 

HOMA-IR (395) (163), insulin resistance (395), and fasting levels of blood glucose and 

insulin (163). However, studies on LMW metabolites (MEP, MBP, MiBP, and MBP) have 

yielded inconsistent results. In an analysis on the Nurses’ Health Study (NHS) and NHSII 

female adults, MBP, MiBP, and total phthalate metabolites were positively associated with 

incident T2D in the younger NHSII cohort; however, no association was found between 

phthalates and incident T2D in the older NHS cohort (376). In data from NHANES 2001–

2008 in adults without diabetes, MnBP and MiBP were positively associated with fasting 

blood levels of glucose and insulin and HOMA-IR (163). Furthermore, adult males in 
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NHANES 1999–2002 had positive associations between MEP and HOMA (370). In 

contrast, results from studies in adults outside of NHANES have failed to show associations 

between LMW metabolites and diabetes. In NHANES adolescents and elderly Korean 

adults, no associations were found between LMW phthalates and HOMA-IR (201) (395). 

The high molecular weight metabolites (MBzP, MCPP) have yielded perhaps the most 

inconsistent results. While MECPP positively associated with fasting blood levels of glucose 

and insulin and HOMA-IR (163), MBzP has been both positively and negatively associated 

with diabetes. In 1999–2002 NHANES, MBzP was associated with increased HOMA in 

adult males (370). However, in a study of healthy Mexican women, MBzP was negatively 

associated with diabetes (378). Therefore, the effect of phthalates on diabetes may differ 

depending on the particular metabolite examined, but also depending on the gender of the 

exposed individual. 7. BPA. Results from studies examining BPA exposures have generally 

supported a positive association between both serum and urine BPA and diabetes incidence 

(376), diabetes prevalence (20) (23) (349) (216), HbA1c (23), and impaired fasting glucose 

(20). However, two studies found no association between BPA and diabetes (201) (376). 

Differences in the relationship between BPA and diabetes between these studies could 

potentially be explained by the age of the population or the amount or duration of exposure.

In summary, in general, evidence supports an association between POPs, obesity and 

diabetes, particularly among the extensively-studied organochlorines. The relationship 

between POPs and obesity and diabetes may be complicated by differing effects between 

individual congeners, between genders, and between ages. Age may add complexity to the 

study of the role of environmental pollutants on diabetes due to the two phases of diabetes 

pathogenesis: insulin resistance and beta cell dysfunction. The age at the time of study and 

the age of diabetes onset may determine the relative importance of each phase of 

pathogenesis, as age is associated with greater beta cell dysfunction and insulin secretory 

effects (68). The stage of diabetes pathogenesis of the individuals within a study may, 

therefore, result in distinctive overall associations with POPs and dose-response 

relationships. Furthermore, an interaction of age on the association between adiposity and 

diabetes risk has been suggested (45), which deserves particular attention considering the 

complexity that obesity adds to the study of diabetes.

The consistent findings of nonmonotonic and inverted U-shaped associations between POPs 

(particularly PCBs) and disease outcomes are of particular interest. As compared to a linear 

dose response, in which the sign of the slope (i.e. negative or positive) does not change, a 

nonmonotonic relationship is characterized by a dose response curve with a slope that 

changes sign over the range of concentrations studied. These nonmonotonic dose response 

relationships indicate that lower levels of POPs, such as those in background levels of the 

general population, may be more harmful in terms of the development of diabetes and 

obesity than high exposures experienced in chemical spills. An inverted U-shaped 

association indicates that the maximal effect (i.e. highest disease incidence or prevalence) is 

observed at intermediate concentrations of POPs and drops off at increasing doses. Inverted 

U-shaped associations could explain the seemingly conflicting results of studies 

investigating the effects of POPs on obesity and diabetes. Different studies may indeed 

investigate different portions of the U-shaped curve based on the range of exposure 
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concentrations studied. For example, studies in a population with low exposures may 

observe the initial positive linear portion of the inverted U, while studies in populations with 

intermediate and high exposure concentrations could experience null or inverse associations. 

Furthermore, studies are complicated by the lack of a true reference population, as all 

individuals are exposed to some level of POPs. Therefore, low, chronic exposure to POPs 

may be more detrimental to health than previously thought. The effects at background levels 

of exposure may not be properly predicted by studies performed in populations with high, 

occupational exposure in POPs exhibiting nonmonotonic dose responses.

Potential mechanisms to explain the inverted U-shaped associations observed in studies of 

the effect of exposure to POPs on obesity and diabetes may stem from the effects these 

toxicants have as endocrine-disrupting chemicals, including cytotoxicity, cell-specific 

receptors, differences in receptor selectivity, receptor downregulation, desensitization, and 

receptor competition (409). Cytotoxicity, perhaps the simplest explanation for nonmonotonic 

responses, could explain how disease prevalence is increased at low concentrations, at which 

the toxicant can exert physiological effects, but disease prevalence drops off at higher 

concentrations at which the POP becomes acutely toxic (409). Furthermore, dose response 

to POPs is complicated by cell-specific receptors that can activate different pathways. 

Different receptors may have different responses to a POP, and a single cell might exhibit 

different responses at different concentrations of exposure; as such, these overlapping 

responses can create an nomonotonic association overall (409). Furthermore, a response to a 

particular POP may decrease at increasing concentrations due to receptor downregulation, 

degradation, and desensitization (409). Therefore, an inverted U-shape curve may result 

from a decreased number of receptors or a decreased receptor response at increasing 

concentrations of POPs. An additional factor that may contribute to nonmontonic 

associations between exposure levels and disease is the ability of some POPs to induce 

enzymes involved in their own metabolism and detoxification. Lastly, nonmonotonic 

responses can occur due to receptor competition, which may be particularly relevant given 

that exposure, particularly background levels of exposure, to POPs occurs as a mixture and 

not as a single toxicant.

Obesity contributes to the development of diabetes; furthermore, as previously discussed, 

increased consumption of fatty foods can increase the body burden of lipophilic POPs, and 

expanded adipose tissue in obesity serves as a reservoir of POPs. Just as obesity and weight 

loss can alter the balance between sequestration in fat and release of POPs into the 

bloodstream, diabetes development and progression may influence the circulating levels of 

POPs, which raises issues of potential reverse causality. Just as circulating POP levels are 

dictated not only by exposure, but also by the individual’s history of weight gain and loss, 

serum levels of POPs at the time of study may be influenced by the progression of diabetes, 

complicating any potential associations. Simply put, are higher serum levels of POPs 

contributing to the development and progression of diabetes or is diabetes pathogenesis 

altering the metabolism of POPs, leading to an increase in serum levels? These are important 

considerations to be made when analyzing the existing literature and when formulating new 

studies on POPs and health outcomes.
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Conclusion

It is clear that POPs have physical characteristics that enable their bioaccumulation in 

adipose tissue, resulting in greater body burdens of a wide array of environmental toxicants 

with distinct mechanisms of action in the setting of expanded AT mass. It is also clear that 

accumulating evidence supports a role for various POPs in the development of obesity, and 

in obesity-associated conditions such as type 2 diabetes. Association of POPs with obesity 

and/or diabetes have indicated that low level exposures, as would be experienced by the 

majority of US citizens, may influence not only the development of diabetes in adults, but 

also exert gestational influences that influence the health of offspring. There are many 

unanswered questions that warrant further investigation. Below, we summarize several 

unresolved issues and questions of significance related to POPs, AT, and disease 

development.

Do POPs contribute to the development of obesity and diabetes?

In 2013, at a National Toxicology Program Workshop, an evaluation of the literature in 

terms of consistency, strengths and weaknesses of the clinical diagnosis, exposure 

assessment and study population characteristics was performed to evaluate the area of POP 

exposures and diabetes outcomes (382). While the authors found that there was insufficient 

evidence to conclude a positive association of some organochlorine POPs with type 2 

diabetes, strongest positive correlations occurred for DDE, PCBs, TCDD and TCDD-like 

chemicals. Within the appendix of this analysis, the authors provide an extensive list of data 

gaps and research recommendations that if performed, would provide more definitive 

information related to POP exposures and type 2 diabetes. It is unclear if any of these issues 

have been resolved to move this field forward.

Is bioaccumulation of POPs in AT helpful or harmful?

The physical chemical properties of POPs result in their bioaccumulation within adipocyte 

lipids. When trapped in triacylglycerol lipid droplets, POPs are sequestered away from target 

effectors, suggesting that bioaccumulation in adipocyte lipids may minimize harmful effects 

of POPs. However, sequestered POPs dynamically equilibrate between adipocyte lipids and 

the intracellular/extracellular environment, most likely resulting in low level tonic 

stimulation of effectors. Moreover, given that the total body burdens of lipophilic POPs 

increase with their bioaccumulation in an expanded AT mass of obese subjects, and that 

many POPs exert inflammatory actions that could contribute to the development of insulin 

resistance, low level POP exposures may contribute to the development of diabetes and other 

inflammatory-related conditions. Alternatively, when lipids are mobilized from adipocyte 

stores, POPs also mobilize and can act at effector targets to negatively influence health. As 

an example, given that 66% of the adult population are overweight and/or obese and 

attempting to lose weight, lipolysis-mediated release of POPs may negatively influence AT 

(and other target organs), mitigating the positive health benefits of weight loss. Therefore, 

areas of additional investigation would be identification of therapies and/or approaches that 

mitigate the harmful effects of liberated POPs. Moreover, it would be informative to 

understand ramifications of rapid versus slow weight loss as a means of influencing the 

bioaccumulation, actions and elimination of POPs from the body.
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What are the implications of mixtures of POPs and their influence on AT function?

Our body burden of POPs reflects mixtures we are exposed to through the environment. As 

discussed, mechanisms of POPs to influence AT function vary, and this is complicated by 

not only differences in mechanism of action between parent compounds within mixtures, but 

also influences of metabolic bi-products of POP metabolism. Moreover, even within a given 

class of POPs, interactions with target effectors may occur through the same binding site, or 

through allosteric mechanisms, suggesting additive and/or synergistic effects of POP 

mixtures at a given target effector. An advantage of experimental models is that they enable 

investigators to determine effects of individual POPs at exposure levels that hopefully mimic 

those experienced by humans. However, humans are exposed to and bioaccumulate a broad 

array of POPs that are further influenced by not only the level of adiposity, but also 

influenced by the regional deposition of AT. Thus, further studies are needed to define 

molecular interactions of mixtures at specific target effectors, integrated whole body 

responses to POP mixtures, and the influence of regional AT deposition on bioaccumulation 

and health-related effects of POPs.

Is biomedical remediation of POPs possible?

Considerable efforts are underway to remediate POPs from our environment. In contrast, 

aside from reducing environmental exposures, there are few avenues available to remediate 

POP burdens from humans experiencing chronic low level exposures, or to treat acutely 

exposed populations. This is alarming, as obesity prevalence continues to increase in 

children and adults, resulting in greater body burdens of POPs. Moreover, a preponderance 

of evidence suggests that prenatal POP exposures negatively influence the health of 

offspring, and an alarming number of child-bearing women are overweight and/or obese and 

would predictably have increased body burdens of POPs during gestation. Thus, biomedical 

remediation is needed not only to influence the health of the mother, but to minimize 

potential harmful effects of POPs on future generations. Additional studies should identify 

potential therapies, including lifestyle interventions and/or pharmacologic approaches, that 

can mitigate the harmful effects of liberated or tonically released POPs that decrease the 

bioaccumulation of POPs in AT lipids, or that hasten their elimination.

Are there variables that influence the bioaccumulation within and/or toxicity of POPs at 
AT?

Results from human exposure studies suggest that dose-response relationships (e.g., 

nonmonotonic dose-response), gender, and POP chemical class influence their 

bioaccumulation in AT, effector mechanisms, and toxicity. However, mechanisms for these 

relationships are not well defined. For example, it is unclear why some studies indicate more 

prevalent associations between POP exposures and obesity/diabetes in females compared to 

males, or vice versa. Additional studies are warranted at the experimental level to dissect 

potential mechanisms for these variables and their influence on POP toxicity.

In conclusion, physical/chemical characteristics of lipophilic POPs result in their 

bioaccumulation in AT, a site where these toxicants not only are sequestered away from 

effector targets, but also where they may exert actions that influence metabolism. Given that 

almost all humans harbor some level of POPs, further studies are warranted to define their 
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contribution to diseases of increasing prevalence (obesity, diabetes), mechanisms of action, 

effects of POP mixtures, and the development of biomedical remediation therapies.
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Table 1

List of Abbreviations

AhR Aryl hydrocarbon receptor

AR Androgen receptor

ARNT Aryl hydrocarbon receptor nuclear translocator

AT Adipose tissue

BADGE Bisphenol A diglycidyl ether

BCF Bioconcentration factor

BDE Brominated diphenyl ether

BFDGE Bisphenol F diglycidyl ether

BFRs Brominated flame retardants

β-HCH β-Hexachlorocyclohexane

BMI Body mass index

BP Blood pressure

BPA Bisphenol A

ClBPA Monochloro-BPA

Cl2BPA Dichloro-BPA

Cl3BPA Trichloro-BPA

CYP Cytochrome P450

DBP Dibutyl phthalate

DDE Dichlorodiphenyldichloroethylene

DDT Dichlorodiphenyltrichloroethane

DEHP Di(2-ethylhexyl) phthalate

DRE Dioxin response element

ER Estrogen receptor

ERE Estrogen response element

ERK Extracellular signal-regulated kinase

Glut-4 Glucose transporter type 4

HAHs Halogenated aromatic hydrocarbons

HBCD Hexabromocyclododecane

HCB Hexachlorobenzene

HDL High density lipoprotein

HMW High molecular weight

HOMA Homeostatic model assessment

HOMA-B Homeostatic model assessment-beta

HOMA-IR Homeostatic model assessment- insulin resistance

HpCDD 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin

HxCDD 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin

Kow Octanol-water partition coefficient
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LDL Low density lipoprotein

LMW Low molecular weight

MEK Mitogen-activated protein kinase kinase

MBP Mono-butyl phthalate

MBuP Mono-sec-butyl phthalate

MBzP Monobenzyl phthalate

MCP-1 Monocyte Chemoattractant Protein-1

MEHHP Mono(2-ethyl-5-hydroxyhexyl) phthalate

MEHP Mono-(2-ethylhexyl) phthalate

MEOHP Mono(2-ethyl-5-oxohexyl) phthalate

MEP Mono-ethyl phthalate

MetS Metabolic syndrome

MiBP Mono-isobutyl phthalate

MnBP, Mono-n-butyl phthalate

NDL Non-dioxin-like

NHANES National Health and Nutrition Examination Survey

OC Organochlorine

OCDD Octachlorodibenzodioxin

PAHs Polycyclic aromatic hydrocarbons

PBBs Polybrominated biphenyls

PBDEs Polybrominated diphenyl ethers

PCBs Polychlorinated biphenyls

PCDDs Polychlorinated dibenzo-p-dioxins

PCDFs Polychlorinated dibenzofurans

PCP Pentachlorophenol

PeCB Pentachlorobenzene

PhIP 2-amino-1-methyl-6-phenylimidazo[4-5-b]pyridine

POPs Persistent organic pollutants

PPARγ Peroxisome proliferator-activated receptor gamma

RXR Retinoid X receptor

scAT Subcutaneous adipose tissue

T1D Type 1 diabetes

T2D Type 2 diabetes

TBBPA Tetrabromobisphenol A

TBDD Tetrabrominated dinenzo-p-dioxin

TBT Tributyltin chloride

TCBPA Tetrachlorobisphenol A

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TNF-α Tumor necrosis factor alpha

TPTO Bis(triphenyltin) oxide
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TR Thyroid receptor

vAT Visceral adipose tissue

VLDL Very low density lipoprotein

WC Waist circumference

XRE Xenobiotic response element
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se
 o

f 
ch

lo
rd

an
e 

w
er

e 
ha

lte
d 

in
 1

98
8 

(4
).

 
H

ow
ev

er
, t

he
 h

al
f-

lif
e 

fo
r 

ch
lo

rd
an

e 
in

 s
oi

l i
s 

10
-2

0 
ye

ar
s;

 th
er

ef
or

e,
 th

is
 p

es
tic

id
e 

re
m

ai
ne

d 
in

 s
oi

l s
ur

ro
un

di
ng

 a
re

as
 tr

ea
te

d 
w

ith
 c

hl
or

da
ne

 (
42

).
 H

ep
ta

ch
lo

r 
is

 a
 c

om
po

ne
nt

 a
nd

 
de

gr
ad

at
io

n 
pr

od
uc

t o
f 

ch
lo

rd
an

e 
(1

0)
. I

t w
as

 u
se

d 
ex

te
ns

iv
el

y 
pr

io
r 

to
 1

97
0,

 b
ut

 n
ow

 th
e 

on
ly

 p
er

m
itt

ed
 u

se
 is

 f
or

 f
ir

e 
an

t c
on

tr
ol

. H
ep

ta
ch

lo
r 

is
 c

on
ve

rt
ed

 to
 it

s 
ep

ox
id

e,
 h

ep
ta

ch
lo

r 
ep

ox
id

e,
 u

po
n 

en
vi

ro
nm

en
ta

l e
xp

os
ur

e 
an

d 
hu

m
an

 in
ge

st
io

n.
 T

he
 e

po
xi

de
 a

cc
um

ul
at

es
 a

nd
 b

io
m

ag
ni

fi
es

 in
 th

e 
fo

od
 c

ha
in

 (
10

).

M
ir

ex
/C

hl
or

de
co

ne
So

il,
 A

ir
 a

nd
 W

at
er

In
se

ct
ic

id
e

M
ir

ex
 is

 a
 d

er
iv

at
iv

e 
of

 c
yc

lo
pe

nt
ad

ie
ne

, a
nd

 w
as

 u
se

d 
in

 th
e 

U
ni

te
d 

St
at

es
 in

 th
e 

19
60

s 
an

d 
19

70
s 

as
 a

 p
es

tic
id

e 
ag

ai
ns

t f
ir

e 
an

ts
 a

nd
 a

ls
o 

as
 a

 f
la

m
e 

re
ta

rd
an

t a
dd

iti
ve

 (
13

).
 

C
hl

or
de

co
ne

 is
 a

 tr
an

sf
or

m
at

io
n 

pr
od

uc
t o

f 
m

ir
ex

. I
t w

as
 in

 u
se

 u
nt

il 
19

77
, b

ut
 d

ue
 to

 it
s 

st
ab

ili
ty

, h
ig

h 
lip

op
hi

lic
ity

, a
nd

 r
es

is
ta

nc
e 

to
 m

et
ab

ol
is

m
 it

 h
as

 a
 h

ig
h 

po
te

nt
ia

l t
o 

bi
om

ag
ni

fy
 in

 th
e 

fo
od

 c
ha

in
 (

11
1)

 (
16

5)
. H

ow
ev

er
, n

o 
in

fo
rm

at
io

n 
on

 le
ve

l i
n 

hu
m

an
s 

or
 a

di
po

se
 is

 a
va

ila
bl

e.

M
et

ho
xy

ch
lo

r
So

il,
 A

ir
 a

nd
 W

at
er

In
se

ct
ic

id
e

M
et

ho
xy

ch
lo

r 
w

as
 u

se
d 

as
 a

 p
es

tic
id

e 
fr

om
 1

94
6 

- 
20

00
; i

t t
ig

ht
ly

 b
in

ds
 to

 s
oi

l a
nd

 e
xh

ib
its

 e
st

ro
ge

ni
c 

ac
tiv

ity
 (

12
) 

(8
8)

.

E
nd

os
ul

fa
n

So
il,

 A
ir

 a
nd

 W
at

er
In

se
ct

ic
id

e
E

nd
os

ul
fa

n 
w

as
 u

se
d 

as
 a

 p
es

tic
id

e 
si

nc
e 

19
54

, h
ow

ev
er

 f
ol

lo
w

in
g 

th
e 

20
11

 S
to

ck
ho

lm
 C

on
ve

nt
io

n,
 e

nd
os

ul
fa

n 
us

e 
w

as
 c

om
pl

et
el

y 
di

sc
on

tin
ue

d 
by

 J
ul

y 
31

, 2
01

6 
(8

).
 E

nd
os

ul
fa

n 
is

 
a 

de
ri

va
tiv

e 
of

 h
ex

ac
hl

or
oc

yc
lo

pe
nt

ad
ie

ne
, a

nd
 is

 c
he

m
ic

al
ly

 s
im

ila
r 

to
 a

ld
ri

n,
 c

hl
or

da
ne

, a
nd

 h
ep

ta
ch

lo
r. 

Te
ch

ni
ca

l-
gr

ad
e 

en
do

su
lf

an
 is

 c
om

pr
is

ed
 o

f 
a 

7:
3 

m
ix

tu
re

 o
f 
α

- 
an

d 
β-

en
do

su
lf

an
 is

om
er

s,
 w

hi
ch

 a
re

 a
ls

o 
kn

ow
n 

as
 e

nd
os

ul
fa

n 
I 

an
d 

II
, r

es
pe

ct
iv

el
y 

(8
).

 T
he

 β
 is

om
er

 s
lo

w
ly

 c
on

ve
rt

s 
to

 th
e 

m
or

e 
st

ab
le

 α
-e

nd
os

ul
fa

n.

To
xa

ph
en

e
So

il,
 A

ir
 a

nd
 W

at
er

In
se

ct
ic

id
e

To
xa

ph
en

e,
 a

 p
ro

du
ct

 o
f 

ch
lo

ri
ne

 g
as

 a
nd

 c
am

ph
en

e,
 is

 a
 p

es
tic

id
e 

th
at

 w
as

 u
se

d 
he

av
ily

 in
 th

e 
so

ut
he

rn
 U

S 
to

 c
on

tr
ol

 p
es

ts
 o

n 
liv

es
to

ck
 a

nd
 c

ro
ps

. A
lth

ou
gh

 it
 w

as
 o

nc
e 

on
e 

of
 th

e 
m

os
t h

ea
vi

ly
 u

se
d 

pe
st

ic
id

es
, i

t h
as

 s
in

ce
 b

ee
n 

ba
nn

ed
 f

or
 u

se
 in

 th
e 

U
ni

te
d 

St
at

es
 (

15
) 

(2
28

).

H
ex

ac
hl

or
ob

en
ze

ne
So

il,
 A

ir
 a

nd
 W

at
er

Fu
ng

ic
id

e;
 I

nd
us

tr
ia

l 
C

he
m

ic
al

s;
 B

y-
 p

ro
du

ct
s 

du
ri

ng
 c

om
bu

st
io

n 
an

d 
ot

he
r 

in
du

st
ri

al
 p

ro
ce

ss
es

; 
Im

pu
ri

tie
s 

in
 c

er
ta

in
 

pe
st

ic
id

es

H
ex

ac
hl

or
ob

en
ze

ne
 w

as
 in

tr
od

uc
ed

 in
 1

94
5 

as
 a

 f
un

gi
ci

de
 to

 p
ro

te
ct

 f
oo

d 
cr

op
s.

 D
ue

 to
 it

s 
st

ru
ct

ur
al

 s
ta

bi
lit

y 
an

d 
re

si
st

an
ce

 to
 b

io
de

gr
ad

at
io

n 
an

d 
m

et
ab

ol
is

m
, H

C
B

 is
 r

ec
og

ni
ze

d 
as

 o
ne

 o
f 

th
e 

m
os

t e
nv

ir
on

m
en

ta
l p

er
si

st
en

t p
ol

lu
ta

nt
s 

(1
1)

. T
he

 e
st

im
at

ed
 h

al
f-

lif
e 

in
 s

oi
l i

s 
3 

- 
6 

ye
ar

s 
(1

1)
, a

nd
 it

 c
an

 e
xi

st
 in

 th
e 

at
m

os
ph

er
e 

an
d 

en
vi

ro
nm

en
t l

on
g 

af
te

r 
it 

is
 u

se
d.

 
H

ex
ac

hl
or

ob
en

ze
ne

 h
as

 a
ls

o 
be

en
 u

se
d 

as
 a

 r
ef

er
en

ce
 c

om
po

un
d 

fo
r 

B
C

Fs
 in

 f
is

h 
(1

9)
.

p,
p′

-D
D

T
/p

,p
′-

D
D

E
So

il,
 A

ir
, W

at
er

, a
nd

 
Fo

od
In

se
ct

ic
id

e

D
ic

hl
or

od
ip

he
ny

lt
ri

ch
lo

ro
et

ha
ne

 (
p,

p′
-D

D
T

) 
w

as
 in

iti
al

ly
 u

se
d 

as
 a

n 
in

se
ct

ic
id

e 
du

ri
ng

 W
W

I 
to

 p
ro

te
ct

 a
ga

in
st

 m
al

ar
ia

, t
yp

hu
s,

 a
nd

 o
th

er
 d

is
ea

se
s 

tr
an

sm
itt

ed
 b

y 
in

se
ct

s 
(6

).
 I

t i
s 

an
 e

xt
re

m
el

y 
pe

rs
is

te
nt

 p
ol

lu
ta

nt
, w

ith
 a

pp
ro

xi
m

at
el

y 
50

%
 r

em
ai

ni
ng

 in
 th

e 
so

il 
10

-1
5 

ye
ar

s 
af

te
r 

ap
pl

ic
at

io
n.

 A
lth

ou
gh

 it
 w

as
 b

an
ne

d 
du

e 
to

 it
s 

to
xi

c 
ef

fe
ct

s 
on

 b
ir

ds
, D

D
T

 h
as

 b
ee

n 
de

te
ct

ed
 in

 f
oo

d 
w

or
ld

w
id

e.
 A

s 
su

ch
, f

oo
d-

 b
or

ne
 D

D
T

 is
 th

e 
gr

ea
te

st
 s

ou
rc

e 
of

 h
um

an
 e

xp
os

ur
e.

 p
,p

′-
 D

ic
hl

or
od

ip
he

ny
ld

ic
hl

or
oe

th
yl

en
 e

 (
p,

p′
-D

D
E

) 
is

 th
e 

pr
im

ar
y 

m
et

ab
ol

ite
 

pr
od

uc
ed

 b
y 

th
e 

de
hy

dr
oc

hl
or

in
at

io
n 

of
 D

D
T

 in
 h

um
an

s,
 a

nd
 is

 a
ls

o 
co

ns
id

er
ed

 a
 p

er
si

st
en

t e
nv

ir
on

m
en

ta
l p

ol
lu

ta
nt

 th
at

 c
an

 h
av

e 
ad

ve
rs

e 
ef

fe
ct

s 
on

 h
um

an
 h

ea
lth

 (
33

).

Po
ly

br
om

in
at

ed
 b

i-
/d

i-
 p

he
ny

l e
th

er
s

PB
D

E
s/

T
B

B
PA

/H
B

C
D

So
il,

 A
ir

, F
oo

d 
an

d

Fl
am

e 
re

ta
rd

an
ts

; 
In

du
st

ri
al

 c
he

m
ic

al
s;

 B
y 

- 
pr

od
uc

ts
 o

f 
de

br
om

in
at

io
n 

of
 o

th
er

 B
D

E
s

W
hi

le
 b

ro
m

in
at

ed
 f

la
m

e 
re

ta
rd

an
ts

 a
re

 b
en

ef
ic

ia
l i

n 
nu

m
er

ou
s 

m
at

er
ia

ls
 f

or
 th

ei
r 

fi
re

-r
es

is
ta

nt
 c

ha
ra

ct
er

is
tic

s,
 s

om
e 

m
ay

 p
os

e 
a 

th
re

at
 to

 h
um

an
 a

nd
 e

nv
ir

on
m

en
ta

l h
ea

lth
. S

in
ce

 m
os

t 
fl

am
e 

re
ta

rd
an

ts
 a

re
 n

ot
 c

he
m

ic
al

ly
 b

ou
nd

 to
 th

e 
m

at
er

ia
l, 

th
ey

 c
an

 le
ec

h 
in

to
 th

e 
en

vi
ro

nm
en

t, 
w

he
re

 th
ey

 r
es

is
t b

io
de

gr
ad

at
io

n.
 O

f 
al

l t
he

 b
ro

m
in

at
ed

 f
la

m
e 

re
ta

rd
an

ts
, P

B
D

E
, 

T
B

B
PA

, a
nd

 H
B

C
D

 r
an

k 
hi

gh
es

t i
n 

gl
ob

al
 c

on
su

m
pt

io
n 

(1
38

).
 P

ol
yb

ro
m

in
at

ed
 d

ip
he

ny
l e

th
er

s 
(P

B
D

E
s)

 a
re

 g
en

er
al

ly
 c

ha
ra

ct
er

iz
ed

 b
y 

tw
o 

br
om

in
at

ed
 b

ip
he

ny
l r

in
gs

 jo
in

ed
 b

y 
an

 e
th

er
. A

ll 
PB

D
E

s 
ar

e 
lip

op
hi

lic
 s

ub
st

an
ce

s 
th

at
 a

re
 v

er
y 

lik
el

y 
to

 a
ds

or
b 

on
 p

ar
tic

ul
at

e 
m

at
te

r 
an

d 
no

t l
ik

el
y 

to
 v

ol
at

ili
ze

 f
ro

m
 w

at
er

 p
ha

se
. T

et
ra

br
om

ob
is

ph
en

ol
 A

 (
T

B
B

PA
) 

re
ac

tiv
e 

fl
am

e 
is

 a
 r

et
ar

da
nt

 u
se

d 
in

 e
le

ct
ri

c 
eq

ui
pm

en
t. 

A
lth

ou
gh

 it
 is

 a
 p

ol
yb

ro
m

in
at

ed
 c

om
po

un
d,

 it
 d

oe
s 

no
t s

ha
re

 th
e 

sa
m

e 
to

xi
ci

ty
 p

ro
fi

le
 a

s 
PB

D
E

s.
 I

t i
s 

pr
od

uc
ed

 b
y 

br
om

in
at

in
g 

bi
sp

he
no

l A
, a

nd
 is

 r
ap

id
ly

 m
et

ab
ol

iz
ed

 a
ft

er
 e

xp
os

ur
e 

(3
31

) 
(3

59
).

 T
B

B
PA

 is
 n

ot
 c

on
si

de
re

d 
a 

pe
rs

is
te

nt
 a

nd
 b

io
ac

cu
m

ul
at

iv
e 

to
xi

ca
nt

 (
63

).
 T

B
B

PA
 h

as
 a

 lo
g 

K
ow

 o
f 

6.
53

 a
t a

 lo
w

 p
H

, b
ut

 a
t p

H
 6

-9
 T

B
B

PA
 is

 in
 a

 d
is

so
ci

at
ed

 f
or

m
 a

nd
 h

as
 a

 lo
w

er
 lo

g 
K

ow
 (

21
1)

. P
B

D
E

s,
 h

ex
ab

ro
m

oc
yc

lo
do

de
ca

ne
 (

H
B

C
D

),
 a

nd
, t

o 
a 

le
ss

er
 e

xt
en

t, 
T

B
B

PA
, a

re
 

br
om

in
at

ed
 b

ip
he

ny
l e

th
er

s 
th

at
 p

os
se

ss
 f

ir
e-

re
si

st
an

t a
nd

 d
eg

ra
da

tio
n-

re
si

st
an

t p
ro

pe
rt

ie
s 

th
at

 a
llo

w
 th

em
 to

 b
io

ac
cu

m
ul

at
e 

an
d 

m
ov

e 
up

 th
e 

fo
od

 c
ha

in
 (

24
2)

 (
28

1)
 (

92
).

 N
ot

e 
th

at
 

H
B

C
D

 is
 a

 b
ro

m
in

at
ed

 c
yc

lic
 a

lip
ha

tic
 c

om
po

un
d,

 n
ot

 a
 d

ip
he

ny
l e

th
er

.

E
nd

oc
ri

ne
 D

is
ru

pt
or

s
Ph

en
ol

s/
Ph

th
al

at
es

Fo
od

, W
at

er
In

du
st

ri
al

 c
he

m
ic

al
s

B
is

ph
en

ol
 A

 (
B

PA
) 

is
 m

os
t c

om
m

on
ly

 u
se

d 
fo

r 
“b

in
di

ng
, p

la
st

ic
iz

in
g,

 o
r 

ha
rd

en
in

g 
pl

as
tic

s”
 a

nd
 a

s 
an

 a
dd

iti
ve

 in
 f

la
m

e 
re

ta
rd

an
ts

 (
11

6)
. A

lth
ou

gh
 B

PA
 is

 n
ot

 a
s 

pe
rs

is
te

nt
 a

s 
ot

he
r 

PO
Ps

, d
ue

 to
 it

s 
co

m
m

on
 u

se
, B

PA
 is

 f
re

qu
en

tly
 r

el
ea

se
d 

in
to

 th
e 

en
vi

ro
nm

en
t, 

w
hi

ch
 c

an
 le

ad
 to

 in
di

re
ct

 h
um

an
 e

xp
os

ur
e.

 P
ht

ha
la

te
s 

ar
e 

a 
cl

as
s 

of
 c

om
po

un
ds

 th
at

 a
re

 u
se

d 
fo

r 
a 

va
ri

et
y 

of
 p

ur
po

se
s 

an
d 

ar
e 

ge
ne

ra
lly

 n
on

-p
er

si
st

en
t i

n 
hu

m
an

s 
(2

62
) 

(1
56

).
 D

i (
2-

et
hy

lh
ex

yl
) 

ph
th

al
at

e 
(D

E
H

P
) 

is
 a

 m
an

uf
ac

tu
re

d 
ch

em
ic

al
 th

at
 is

 c
om

m
on

ly
 a

dd
ed

 to
 p

la
st

ic
s 

to
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C
at

eg
or

y
E

nv
ir

on
m

en
ta

l C
he

m
ic

al
s

E
xp

os
ur

e
U

se
G

en
er

al
 C

ha
ra

ct
er

is
ti

cs

in
cr

ea
se

 th
ei

r 
fl

ex
ib

ili
ty

 (
7)

, a
nd

 c
an

 b
e 

ab
so

rb
ed

 f
ro

m
 f

oo
d 

an
d 

w
at

er
 (

35
1)

. M
on

o-
(2

-e
th

yl
he

xy
l)

 p
ht

ha
la

te
 (

M
E

H
P

) 
is

 th
e 

pr
im

ar
y,

 a
ct

iv
e 

m
et

ab
ol

ite
 o

f 
D

E
H

P.
 P

ht
ha

la
te

s 
ar

e 
lip

op
hi

lic
 a

nd
 m

ay
 a

cc
um

ul
at

e 
in

 a
di

po
se

 ti
ss

ue
. M

E
H

P 
ac

cu
m

ul
at

io
n,

 in
 p

ar
tic

ul
ar

 h
as

 b
ee

n 
fo

un
d 

to
 im

pa
ct

 li
po

ly
si

s 
an

d 
gl

uc
os

e 
up

ta
ke

/g
ly

co
ly

si
s 

in
 f

at
 c

el
ls

 (
73

).

Po
ly

cy
cl

ic
 A

ro
m

at
ic

 H
yd

ro
ca

rb
on

s
PA

H
s/

B
en

zo
(a

)p
yr

en
e

A
ir

, W
at

er
, F

oo
d

In
du

st
ri

al
 c

he
m

ic
al

s;
 B

y-
 

pr
od

uc
ts

 o
f 

er
up

tin
g 

vo
lc

an
oe

s 
an

d 
fo

re
st

 f
ir

es

P
ol

yc
yc

lic
 a

ro
m

at
ic

 h
yd

ro
ca

rb
on

s 
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Table 3

Summary of Toxicant Structures and Partition Coefficients

Compound General Structure Partition Coefficient 
(Log Kow or Log P)

References

Hexachlorobutadiene (HCBD) 4.78 (141)

Aldrin 5.17–7.40 (327)

Dieldrin 3.69–6.20 (327)

Endrin 3.21–5.34 (327)

Chlordane 6 (327)

Endosulfan 3.83 (α isomer); 3.62 (β 
isomer) (141)
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Compound General Structure Partition Coefficient 
(Log Kow or Log P)

References

Toxaphene 3.23–5.50 (327)

Heptachlor 4.40–5.50 (327)

Mirex 6.89 (412)

Chlordecone 5.41 (141)

α-/β-Hexachlorocyclohexane (HCH) 3.78 (141)

Lindane (γ-HCH) 3.8 (141)
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Compound General Structure Partition Coefficient 
(Log Kow or Log P)

References

Pentachlorobenzene (PeCB) 5.18 (141)

Hexachlorobenzene(HCB) 3.03–6.42 (327)

Pentachlorophenol (PCP) 5.12; PCP sodium salt: 
1.3 at pH 10 (66) (141)

Polycyclic aromatic hydrocarbons (PAHs) 3.30–6.84 (141) (253)

Polychlorinated naphthalenes (PCNs) 3.90–8.3 (87)

Polychlorinated biphenyls (PCBs) 4.30–8.26 (327)
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Compound General Structure Partition Coefficient 
(Log Kow or Log P)

References

Polychlorinated dibenzo-p-dioxins (PCDDs) 4.75–8.20 (327)

Polychlorinated dibenzofurans (PCDFs) 4.9–6.92 (356)

Dichlorodiphenyl-trichloroethane (DDT) 4.89–6.91; 3.88–8.18 (158) (327)

Methoxychlor 4.68–5.08 (159)

Bisphenol A 3.32 (141)

Bisphenol A diglycidyl ether (BADGE) 3.84 (268)
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Compound General Structure Partition Coefficient 
(Log Kow or Log P)

References

Tetrabromobisphenol A (TBBPA)

Polybrominated diphenyl ethers (PBDEs)

Polybrominated 6.39 (Hexabromo–

biphenyls (PBBs) biphenyl)

Hexabromo-cyclododecane (HBCD) 5.6

Di-(2-ethylhexyl) phthalate (DEHP) 7.6

Mono-(2-ethylhexyl) phthalate (MEHP) 4 (170)
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Compound General Structure Partition Coefficient 
(Log Kow or Log P)

References

Trifluralin 5.34 (141)

Pendimethalin 5.2 (392)
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Table 6

POP Mechanisms of Action in AT

Pathway Normal function in adipose tissue Purported disruptors Impacts of disruption

PPARγ Increase adipogenesis, increase lipogenesis, 
increase glucose uptake

Phthalates
Organotins
BFRs?

Promote adipogenesis

AhR Xenosensor, regulation of lipogenesis Dioxins
PCBs
PAHs
BFRs?

Wasting syndrome
Increased body weight, increased fat mass, 
increased inflammatory response, impaired 
glucose tolerance

ER Inhibit lipogenesis, reduce body weight/fat mass, 
maintain glucose homeostasis

BPA Prenatal exposure linked to increased body 
weight and adiposity in adults

AhR interaction Inhibition of normal estrogen function to reduce 
body weight and adiposity

AR Promote glucose uptake DDE, PCBs Insulin resistance

TR Regulation of lipid mobilization and storage BFRs AhR interaction Unknown
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Table 7

Prenatal POP Exposure and Associations with Obesity

Class Compound(s) Studied Population Finding Reference

Organochlorines PCBs, DDE Mothers of Michigan fisheaters 
cohort and their daughters

Prenatal exposure to DDE associated 
with increased offspring BMI. 
Prenatal PCB had no effect.

(189)

PCBs, DDE, HCB Rhea study of pregnant women and 
their children in Greece.

Prenatal exposure to HCB associated 
with BMI, obesity, abdominal 
obesity, greater skinfold thickness, 
and systolic BP. Prenatal DDE 
associated with BMI, abdominal 
obesity, and diastolic BP. PCBs not 
associated with offspring obesity.

(402)

PCB, DDE Mother-child pairs from ENRIECO 
cohort

Postnatal NDL PCB-153 associated 
with a decrease in weight-for-age z-
score. Prenatal DDE associated with 
increased weight-for- age z-score.

(174)

Dioxins, PCBs, lead, 
HCB, DDE, HCH

Russian Children’s Study: young 
boys. Background exposure.

Early exposure. Serum HCB, β-
HCH, DDE negatively associated 
with 4 year follow-up BMI in boys.

(58)

PBB and PCB Daughters of women in the 
Michigan PBB cohort.

Prenatal PCB exposure negatively 
associated with weight for height 
females.

(47)

PCBs, PBB, DDT Women and children in Michigan 
at risk for PCB exposure

Prenatal PCB associated with lower 
weight at 4 years.

(176)

PCB, DDE, DDT Mothers and African American 
children of National Collaborative 
Perinatal Project (NCPP). 
Background exposure.

Maternal levels of dioxin-like PCBs 
negatively associated with girl’s 
weight.
Non-dioxin-like PCBs (PCB 15) not 
associated with girl’s weight.
Maternal levels of dioxin-like PCBs 
marginally associated with boy’s 
weight.

(214)

PCBs Pregnant women of CHDS 
prospective cohort study.
Background exposure.

Maternal PCBs associated with lower 
birth weight in males.

(151)

PCBs, DDE, DDT, HCB AMICS-INMA Spanish cohort of 
pregnant women and children. 
Background exposure.

Maternal PCB and DDE associated 
with overweight in females but not in 
males. DDT associated with 
overweight in males but not 
associated in females.

(408)

PCBs, DDE Mothers and newborns in Belgium. 
Background exposure.

Maternal DDE and PCBs associated 
with BMI 1-3 years.

(414)

DDE, DDT Mothers and male children with 
normal birth weights in Mexico. 
Background exposure.

Prenatal DDE exposure no 
association with BMI in males.

(89)

PCBs and DDE North Carolina Infant Feeding 
Study children. Background 
exposure.

Maternal transplacental DDE 
positively associated with weight in 
boys but not girls at 14yrs old. 
Lactational and trasnsplacental PCBs 
and lactational DDE not associated 
with weight.

(127)

DDE, HCB, β- HCH, 
NDL PCB

INMA cohort in Spain. 
Background exposure.

Maternal serum: Prenatal DDE 
associated with BMI z-scores at 14 
months and rapid growth (stronger 
association in boys).
Other OCs (HCB, β-HCH, and NDL 
PCB) not associated with BMI.

(265)

PCBs, DDE Mothers of Michigan fisheaters 
cohort and their daughters.

Prenatal DDE associated with BMI 
and BW in adult female offspring. 

(189)
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Class Compound(s) Studied Population Finding Reference

Prenatal PCBs not associated with 
BMI in adult female offspring.

DDE, DDT CPP study mothers and male 
offspring. Background exposure.

Prenatal DDE and DDT from 
breastmilk not associated with BMI 
in boys.

(126)

DDT, DDE CHAMACOS cohort of pregnant 
women and children in California.
Background exposure.

Maternal DDE and DDT not 
significantly associated with BMI 
and did not significantly increase 
odds of overweight and obesity.

(422)

HCB, PCBs, DDE, DDT Mothers and children in Asthma 
Multicenter Infants Cohort in 
Spain.
Background exposure.

Maternal HCB associated with 
higher BMI and increased risk of 
being overweight and obese at age 
6.5yrs old.

(362)

PCB, DDE Mother-child pairs fromFaroe 
Islands. Background exposure.

Prenatal PCB associated with BMI 
and waist circumference in 7yr old 
girls with overweight mothers. In 
girls with normal weight mothers, 
PCBs were associated with increased 
WC but not associated with BMI. In 
girls with overweight mothers, DDE 
was associated with WC at 7yrs old. 
No associations between PCB or 
DDE and BMI in 5yr old girls. No 
associations in boys.

(383)

PCB 153, DDE European birth cohorts. 
Background exposure.

PCB-153 cord serum inversely 
associated with birth weight. DDE 
not associated with birth weight.

(131)

Phthalates, BPA, PCBs, 
HCH, HCB, PBDE

Pregnant Spanish birth cohort 
study of Environment and 
Childhood project. Background 
exposure.

Exposure to HCB, β-HCH, PCB 138 
(NDL), PCB 180 (NDL) associated 
with increased BMI at age 7. DDE 
not significantly associated with 
increased BMI. HCB, β-HCH, NDL 
PCBs, and DDE associated with 
increase in overweight at age 7.

(21)

PCBs, PCDD, PCDF, Caucasian mother- infant pairs in 
Netherlands.
Background exposure.

NDL PCBs in cord plasma and 
maternal plasma negatively 
associated with birth weight and 
growth rate 0-3 months in formula 
fed babies but not body fat.

(308)

NDL PCBs, DL PCBs, 
DDE, HCB

14-15yr old Flemish adolescents.
Background exposure.

Serum DL PCBs associated with 
increased BMI and NDL PCBs and 
HCB associated with decreased BMI 
at puberty in males and females. 
DDE not associated with BMI.

(104)

DDE, HCB, NDL PCBs INMA birth cohort in Spain. 
Background exposure.

Prenatal DDE and HCB associated 
with rapid growth 0-6 months and 
overweight at 14 months. PCBs not 
associated with rapid growth or 
overweight.

(405)

DDE, phthalates, NDL 
PCB

Dutch mother- daughter pairs. 
Background exposure.

Maternal DDE associated with 
increased BMI 6-11 months. NDL 
PCB not associated with BMI.

(95)

DDE, HCB, NDL PCBs Spanish mother-child pairs Maternal HCB and DDE associated 
with rapid growth and overweight. 
PCBs not associated with postnatal 
growth.

(407)

DDE, DDT, PCBs, HCH CPP mother-child pairs in US. 
Background exposure.

Prenatal HCB, heptachlor, β-HCH, 
DDE, total PCBs, trans-nonachlor, 
and oxychlordane not associated with 
obesity or BMI at age 7. Dieldrin 
associated with obesity but not BMI.

(90)

NDL PCBs, DDE, HCB Flemish mother-child pairs from 
FLEHS I

Prenatal DDE associated with WC 
and waist/height ratio in girls. PCBs, 

(101)
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Class Compound(s) Studied Population Finding Reference

dioxins, HCB not associated with 
WC.

DDE, DDT American mother- child pairs in 
CHAMACOS study

In boys, prenatal DDT associated 
with BMI, WCz-scores, and 
overweight/obesity at 9yrs old. DDE 
not associated. Girls not associated.

(423)

PCB, DDE, HCB Danish children in EYHS study PCBs, DDE, HCB in 8-22yr olds not 
associated with obesity.

(384)

DDT, DDE, HCB, β-
HCH, total PCBs

Mother-child pairs in Spain. 
Background exposure.

Prenatal DDT and DDE associated 
with decreased birth weight. HCB, β-
HCH, PCB not associated.

(248)

PCBs Mother-child pairs in NY. 
Background exposure.

Preconception PCBs associated with 
reduced birth weight.

(284)

Poly-brominated 
flame retardants 
(BFRs)

PBDE Pregnant Long-Evans hooded rats 
dosed with 1 or 10mg/kg 
bodyweight PBDE- 99

Prenatal exposure to PBDE-99 
increased rat offspring birth weight.

(238)

PBB and PCB Daughters of women in the 
Michigan PBB cohort.

Moderate (but not high) prenatal 
PBB exposure associated with 
increased weight for height in 
females.

(47)

Phthalates, BPA, PCBs, 
HCH, HCB, PBDE

Pregnant Spanish birth cohort 
study of Environment and 
Childhood project. Background 
exposure.

PBDE not associated with child 
weight status.

(21)

PBDE Mexican-American mother-child 
pair of CHAMACOS study

Maternal PBDE associated with 
decreased BMI z-scores in girls but 
NS in boys.
Child’s serum BDE-153 negatively 
associated with BMI and WC at 7yrs 
old in both sexes.

(113)

PBDE Mexican-American mother-child 
pairs of CHAMACOS

Maternal PBDEs associated with 
lower birth weight, but effect is 
nonsignificant when maternal weight 
gain is included.

(144)

Polycyclic 
Aromatic 
Hydrocarbons 
(PAHs)

PAH MOCEH study in Korea without 
diabetes

Consumption of foods high in PAH 
(i.e. grilled or roasted meat) 
associated with reduced birth weight.

(215)

PAH Birth cohort in Poland, 
nonsmoking mothers.

Maternal dietary and airborne PAH 
exposure associated with reduced 
birth weight.

(180)

PAH Birth cohort in Poland. 
Background exposure.

Newborn PAH-DNA adduct levels 
associated with reduced birth weight.

(315)

PAH Birth cohort in Poland. 
Background exposure.

Newborn PAH-DNA adduct levels 
associated with reduced birth weight.

(314)

PAH Krakow Caucasians, NYC African 
Americans, NYC Dominicans

Relatively low levels of prenatal PAH 
exposure associated with reduced 
birth weight.

(76)

PAH NHANES 2003-2008 16-18yr olds PAH metabolites associated with 
BMI and WC in 6-18yr olds. High 
exposure to both PAH and 
environmental tobacco smoke 
associated with increased obesity as 
compared to low-PAH, low-ETS.

(197)

PAH African-Americans and Hispanic 
children and mothers in NY

Prenatal PAH exposure associated 
with higher childhood BMI and risk 
for obesity at 5-7yrs old.

(335)

PAH NHANES 2001-2006 6-19yr olds Early exposure: mass sum of PAH 
associated with BMI z-score, WC, 
and obesity.

(346)
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Class Compound(s) Studied Population Finding Reference

Phthalate Esters Phthalates, BPA Korean girls 6-14yrs old Early exposure 6-14yr old female: 
urine MEP not associated with 
childhood obesity. Urine PA 
associated with obesity. Serum MEP, 
PA, and DBP associated with 
childhood obesity.

(77)

Phthalates NHANES 1999-2002. Background 
exposure.

Early exposure: serum MEP 
associated with BMI and WC in 
12-19yr old females, but not 
associated in 6-11yr old males or 
females, or in 12-19yr old males. 
MEHP associated with decreased 
BMI in 12-19yr old females, not 
associated in 6-11 males and 
females, or in 12-19yr old males. 
MBP and MEOHP were not 
associated with BMI.

(145)

Phthalates, BPA Girls in US MEP, MEHHP, MEHP, MECPP, 
MBzP, MiBP, MCPP, MBP, and 
MEOHP not associated with BMI in 
6-9yr old girls.

(428)

Phthalates, BPA, PCBs, 
HCH, HCB, PBDE

Pregnant Spanish birth cohort 
study of Environment and 
Childhood project. Background 
exposure.

Phthalates inversely associated with 
overweight.

(21)

Phthalates INMA Spanish birth cohort. 
Background exposure.

High MW phthalate metabolites 
associated with lower weight gain 
and BMI z-score in boys and higher 
BMI in girls. Low MW metabolites 
not associated with BMI or weight 
gain.

(406)

Phthalates Hispanic and Black NY children 
6-8yrs old

Early exposure: MEP and low MWP 
associated with BMI and WC in 
overweight children but not normal 
weight children.

(388)

Phthalates NHANES 2003-2008 Early exposure: Low MW 
metabolites (Mn BP, MEP, and 
MiBP) associated with obesity in 
male children and adolescents. Not 
associated for high MW and obesity

(59)

DDE, phthalates, NDL 
PCB

Dutch mother-daughter pairs. 
Background exposure.

Maternal exposure to low exposure 
of MEOHP (DEHP metabolite) 
associated with higher BMI.

(95)

Phthalates Mother-child pairs in China Prenatal DBP associated with low 
birth weight.

(436)

Phthalates Children 4-9yrs old in Denmark 
without diabetes

Urinary MEHP (percent of DEHP 
metabolites excreted as MEHP) 
associated with wetght.

(48)

Bisphenol A and 
Bisphenol A 
diglycidyl ether 
(BADGE)

BPA RHEApregnancy cohort in Greece BPA levels at 4 years associated with 
BMI and WC. Prenatal BPA 
negatively associated with BMI and 
adiposity in girls and positively in 
boys.

(403)

Phthalates, BPA Girls in US BPA associated with decreased BMI 
in 6- 9yr old girls.

(428).

Phthalates, BPA, PCBs, 
HCH, HCB, PBDE

Pregnant Spanish birth cohort 
study of Environment and 
Childhood project. Background 
exposure.

BPA not associated with child weight 
status.

(21)

BPA CHAMACOS study in California 
birth cohort. Background exposure.

Prenatal urinary BPA inversely 
associated with BMI and %body fat 
at 9 years in girls but not boys. 

(143)
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Class Compound(s) Studied Population Finding Reference

Urinary BPA at 5 years not 
associated with BMI. Urinary BPA at 
9 years positively associated with 
BMI, body fat, and overweight/
obesity.

BPA INMA birth cohort in Spain. 
Background exposure.

BPA weakly associated with 
increased WC at 4 years but not 
associated with BMI or WC at earlier 
ages.

(405)

Phthalates, BPA Korean girls 6-14yrs old Early exposure 6-14yr old females: 
urine BPA not associated with 
childhood obesity.

(77)

BPA Chinese school children 8-15yrs 
old. Background exposure.

Early exposure: BPA associated with 
BMI in males and females.

(417)

BPA 2003-2008 NHANES children 
6-9yrs old

Early Exposure: BPA associated with 
obesity and BMI z-score.

(394)

BPA Mother-child pairs with or without 
occupational BPA exposure

Maternal exposure to BPA in 
workplace associated with decreased 
birth weight.

(269)
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Table 8

Adult POP Exposure and Associations with Obesity

Class Compound(s) Studied Population Finding Reference

Organochlorines OC pesticides, PCBS, 
PBB, DDE, DDT

CARDIA prospective study in 
young adults without diabetes. 
Background exposure.

Serum p, p’-DDE, p, p’- DDT, and 
some PCB congeners predicted BMI. 
Several PCB congeners nonlinearly 
associated with increased BMI. 
Oxychlordane, trans-nonachlor, HCB, 
β- HCH, Mirex not associated with 
BMI.

(230)

Dioxins, dioxin-like 
PCBs, non-dioxin-like 
PCBs, DDE, β-HCH, OC 
pesticides

NHANES 1999- 2002. Adults 
without diabetes. Background 
exposure.

PCDD, DDE, β-HCH and PCBs 
associated with waist circumferences. 
NDL PCB inverted U-shaped 
association with WC.

(223)

Dioxin, PCBs Cross-sectional study of general 
population in Japan with and 
without diabetes

Dioxins and PCBs associated with 
MS.

(399)

PCDDs, PCDFs, PCBs, 
OC pesticides

NHANES 1999- 2002 adults with 
background exposure.

HpCDD, OCDD, and DDE positively 
associated with BMI. PCB 153 
negatively associated with BMI. 
Oxychlordane, trans- nonachlor not 
associated with BMI.

(224)

HCH, HCB, OC 
pesticides, TCDD, 
DDE/DDT

Obese adults undergoing bariatric 
surgery in Portugal. Background 
exposure.

Adipose methoxychlor associated 
with LDL. Adipose methoxychlor and 
HCH lindane associated with 
Framingham CVD risk score.

(317)

PCBs, DDE Obese adults without diabetes. Adipose PCBs and DDE associated 
with weight, BMI, WC, and CT-VAT. 
Adipose PCBs and DDE associated 
with visceral adipose and visceral/
subcutaneous ratio.

(107)

HCH, endosulfans, Aldrin, 
dieldrin, DDT, DDE

Adults with and without MetS. 
Background exposure.

β-HCH and Aldrin associated with 
MetS.

(391)

PCB, OC pesticides, 
dioxin, HCB, DDE, BDE

PIVUS older adults, background 
exposure. Cross-sectional and 
prospective

Cross sectional: Trans- nonachlor 
positively associated with WC in 
males, no association in females. 
DDE positively associated with WC 
in males and females. HCB positively 
associated with WC in males but not 
in females. OCDD not associated 
with WC in males or females. PCB 
associations were positive, negative, 
or null based on congener and gender. 
Prospective: trans- nonachlor not 
associated with WC. OCDD 
associated with WC in females but 
not in males. DDE associated with 
WC in males but not in females. PCB 
associations were positive, negative, 
or null based on congener and gender.

(226)

PCBs, OC pesticides PIVUS older adults, background 
exposure.

Sum of OC pesticides and of less-
chlorinated PCBs were positively 
associated with weight gain. Sum of 
highly- chlorinated PCBs were 
negatively associated with weight 
gain.

(241)

PCBs Non-obese adults in the 
Seguimiento Universidad de 
Navarra (SUN) Project

PCBs associated with increased risk 
of becoming obese.

(108)

PCBs, DDE, β-HCH Obese and normal weight 
individuals in Belgium. Case- 
control. Background exposure.

β-HCH positively associated and 
NDL PCBs negatively associated with 
BMI, WC, fat mass percentage, and 

(106)
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Class Compound(s) Studied Population Finding Reference

total adipose tissue. DDE not 
associated.

Dioxin, oxychlordane, 
trans-nonachlor, DDT

NHANES 1999- 2002 adults. 
Cross-sectional. Background 
exposure.

DDT positively associated with WC 
in females but negatively associated 
in males. OC pesticides positively 
associated with BMI in males and 
negatively associated in females.

(110)

NDL PCB, DL PCB, 
HCB, DDE

Flemish adults. Background. In men and women, NDL PCB 
negatively associated with BMI and 
HCB positively associated with BMI. 
Also in women, DDE and DL PCB 
positively associated with BMI.

(104)

PCBs, dioxin, BDE, DDE, 
OC pesticides

PIVUS older adults, background 
exposure.

OCDD, PCBS 74, 99, 105, 118, HCB, 
and DDE positively associated with 
fat mass. PCBs 156, 157, 169, 170, 
180, 189, 194, 206, and 209 
negatively associated with fat mass.

(332)

PCBs, DDE, HCB Adults in highly polluted Eastern 
Slovakia.

PCBs, DDE, HCB associated with 
BMI.

(218)

PCBs, DDE, HCB, OC 
pesticides

PIVUS older adults, background 
exposure.

Less chlorinated PCBs (105, 118), 
DDE, HCB, trans-nonachlor were 
positively related to visceral and 
subcutaneous adipose tissue (vAT and 
scAT). More highly chlorinated PCBs 
were negatively associated with vAT 
and scAT. PCB 189 had inverted U-
shaped association with vAT/scAT.

PCBs, DDE, HCB, β- 
HCH, trans-nonachlor, 
oxychlordane

Cross-sectional study of Swedish 
women. Background exposure.

Some DL PCB congeners (PCB-105, 
PCB-118), DDE, HCB, and β-HCH 
positively associated with BMI. NDL 
PCBs (PCB-156 and PCB-180) 
negatively associated with BMI. OC 
pesticides not associated.

(128)

PCBs, β-HCH, DDT, 
DDE, HCB, OC pesticides

Canadian males. Cross-sectional. 
Background exposure.

Total organochlorines not associated 
with BMI. β-HCH, DDE, and 
oxychlordane positively associated 
with BMI. PCBs, HCB, mirex, trans-
nonachlor, and oxychlordane not 
associated with BMI.

(164)

PCBs, β-HCH, DDT, 
DDE, HCB, OC pesticides

Canadian males. Cross-sectional. 
Background exposure.

Total organochlorines, NDL PCBs, 
DDE, HCB, β-HCH, trans- 
nonachlor, oxychlordane positively 
associated with BMI. DDT and mirex 
not associated with BMI.

(312)

DDE African American women in U.S. 
Cross-sectional. Background 
exposure.

DDE positively associated with BMI 
but not waist-hip ratio.

(343)

Polybrominated 
flame retardants 
(BFRs)

PBBs and PBDEs NHANES 2003- 2004 adults. 
Background exposure.

PBB-153 nonlinearly associated with 
MetS and WC. PBDE-153 inverted U 
shaped associated with MetS.

(239)

PBDEs PIN study pregnant women in US. 
Background exposure.

Milk levels PBDEs associated with 
BMI in female moms.

(91)

Polycyclic 
Aromatic 
Hydrocarbons 
(PAHs)

PAH metabolites NHANES 2001- 2008 adults. 
Background exposure.

Urinary 2-phenanthrene positively 
associated with obesity. 1− 
naphthalene negatively associated 
with obesity. 2-naphthalene, 1− 
phenanthrene and 2− phenanthrene 
positively associated with 3+ risk 
factors for MetS.

(324)

Phthalate Esters Phthalates NHANES 2003- 2008 High MW metabolites (MECPP, 
MEHHP, MEOHP, MEHP, MBzP, 
MCNP, and MCOP) associated with 
obesity in male and female adults. 

(59)
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Class Compound(s) Studied Population Finding Reference

DEHP metabolites associated with 
obesity in female adults. DEHP and 
high MW metabolites associated with 
obesity in males 60+ yrs old.

Phthalates NHANES 1999- 2002. 
Background exposure.

MEP associated with BMI in adult 
males and females. MBP inversely 
associated with BMI and WC in 
elderly, non- significant positive trend 
in males but inverse in females. 
MBzP positively associated with BMI 
and WC in adult males, not associated 
in females. MEHP inversely related to 
BMI and WC in adult females. 
MEHHP associated with adult males, 
not associated in females.

(145)

Phthalates NHANES 1999-2002 male adults MBzP, MEHHP, MEOHP, and MEP 
associated with WC.

(370)

Bisphenol A 
(BPA) and 
Bisphenol A 
diglycidyl ether 
(BADGE)

BPA In CHIANTI Italian adults BPA associated with WC and weight (122)

BPA NHANES 2003-2006 adults. BPA associated with general and 
abdominal obesity.

(65)

BPA Cross-sectional study in Chinese 
adults.

BPA associated with general and 
abdominal obesity.

(420)

BPA NHANES 2003- 2004 adults. BPA not associated with BMI. (216)
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Table 9

POP Exposures and Associations with Diabetes

Class Compound(s) Studied Population Finding Reference

Organochlorines OC pesticides, PCBS, 
PBB

CARDIA young adults without 
diabetes, age 27.2+/−3.3yrs 
old, BMI 29.1+/− 6.7 kg/m2. 
Background exposure.

p,p’-DDE and PCBs predicted HOMA-
IR.

(230)

PCDDs, PCDFs, dioxin- 
like PCBs, non- dioxin-
like PCBs, OC pesticides

NHANES 1999-2002. Adults 
without diabetes. Background 
exposure.

Oxychlordane, trans-nonachlor, PCB170, 
PCB187 strongly associated with higher 
HOMA-IR.

(222)

PCDDs, PCDFs, dioxin- 
like PCBs, non- dioxin-
like PCBs, OC pesticides

NHANES 1999-2002.
Adults without diabetes. 
Background exposure.

OC pesticides and PCBs associated with 
high fasting glucose

(223)

PCB, OC pesticides, DDE, 
Dioxins

NHANES 1999-2002.
Adults with background 
exposure.

PCB-153, trans-nonachlor, oxychlordane, 
DDE, OCDD and PCDD 73 strongly 
associated with T2D prevalence. TCDD 
unrelated to diabetes prevalence.

(224)

PCB, OC pesticides, 
dioxin, HCB, DDE, BDE

Prospective Investigation of the 
Vasculature in Uppsala Seniors 
(PIVUS). Older adults, 
background exposure. Cross-
sectional and prospective

PCBs, sum of OC pesticides, and trans-
nonachlor associated with incident T2D. 
Dioxin not associated with incident 
diabetes.

(227)

PCB, PCDD, PCDF, OC 
pesticides

NHANES 1999-2002
Adults with background 
exposure.

Dioxin-like PCBs and OC pesticides 
associated with diabetes.
PCDDs and non-dioxin-like PCBs were 
not associated with diabetes.
PCDFs were weakly associated with 
diabetes.

(225).

PCB, HxCDD, DDT NHANES 1999-2002.
Adults with background 
exposure.

Serum 1, 2, 3, 4, 6, 7, 8-PCDD, PCB 126, 
DDT levels associated with diabetes.

(114)

OC pesticides, DDE, DTT HHANES 1982-1984:
Mexican-American Adults with 
background exposure.

Serum trans-nonachlor, β- 
hexachlorocyclohexane, oxychlordane, 
and highest exposure to DDT and DDE 
associated diabetes. Trans-nonachlor and 
β- hexachlorocyclohexane associated with 
elevated serum glucose.

(85)

PCB, DDE, OC pesticides, 
HCB

Mohawk Nation at Akwesasne 
adults

Serum PCB, DDE, HCB associated with 
diabetes. Mirex negatively associated with 
diabetes.

(80)

PCB, DDE, Great Lakes Consortium for the DDE and dioxin-like mono-ortho (398)

PBDE, BDE Health Assessment of Great 
Lakes Sport Fish Consumption 
adults.

PCBs associated with diabetes. Non- 
dioxin like PCBs and PBDEs were not 
associated with diabetes.

OC pesticides, PCBs, 
PDBE, PBB

CARDIA(Coronary Artery 
Risk Development in Young 
Adults) 18- 30yrs old in US 
without diabetes.
Prospective study, background 
exposure.

Low dose trans-nonachlor, oxychlordane, 
mirex, highly chlorinated PCBs, and PBB 
153 associated with increased risk 
diabetes incidence.

(229)
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Class Compound(s) Studied Population Finding Reference

PCBs, DDE Obese adults without diabetes. 
Background exposure.

Serum PCBs associated with fasting 
glucose and abnormal GTT, while 
negatively associated with HOMA-B. 
Serum PCB180 negative associated with 
fasting insulin. Adipose PCBs associated 
with HbA1C and fasting glucose. Serum 
and adipose DDE associated with glucose 
levels during GTT and abnormal GTT.

(107)

HCH, HCB, OC 
pesticides, TCDD, 
DDE/DDT

Obese adults undergoing 
bariatric surgery in Portugal. 
Background exposure.

Adipose total POPs associated with 
HOMA-IR and dysglycemia. Adipose 
methoxychlor associated with glycemia, 
HbA1c. Adipose DDE associated with 
glucose metabolism and HbA1c.

(317)

PCB, DDT, DDE, HCB Nurse’s Health Study: female 
adults in US. Background 
exposure. Prospective study

Plasma HCB positively associated with 
incident T2D. PCBs not significantly 
associated with increased T2D risk.

(429)

Oxychlordane, trans-
nonachlor, p,p’-DDE, PCB 
153, BDE 153

Adults in Finland. Background 
exposure.

Oxychlordane, trans-nonachlor, p-p’-
DDE, and PCB 153 positively associated 
with prevalent T2D.

(24)

PCB, DDE Elderly adults in Faroese 
Islands. Background exposure

Elderly adults with T2D had higher PCB 
levels. In nondiabetics, increased PCB 
levels associated with increased fasting 
glucose and decreased fasting insulin.

(132)

PCBs, PCDDs, PCDFs Healthy adults in Japan. 
Background exposure.

Accumulated toxic equivalents (TEQs) of 
PCDDs, PCDFs, dioxin-like PCBs, and 
total dioxins associated with HbA1c.

(400)

HCB, DDE Swedish fishermen and their 
wives.

PCB-153 and p,p’-DDE associated with 
diabetes prevalence.

(337)

High levels of exposure

TCDD Healthy adults without diabetes 
around Superfund site in 
Arkansas

TCDD associated with higher plasma 
insulin at fasting and 30, 60, and 120 min 
during GTT

(86)

PCBs, DDE, OC 
pesticides

Anniston Community Health 
Survey adults near PCB- 
contaminated area.

PCB associated with diabetes. When sex-
stratified, PCBs had a positive association 
in women and an inverse association in 
men. DDE associated with diabetes 
prevalence in women.

(357)

PCB, PBB Michigan PBB cohort exposed 
to contaminated food, 
prospective study.

PCB associated with increased incidence 
of diabetes in women.

(411)

PCBs, DDE, HCB Adults in highly polluted 
Eastern Slovakia.

Circulating PCBs, DDE, HCB correlated 
with fasting glucose and seruminsulin.

(218)

OC pesticides Agricultural Health Study: 
pesticide applicators and 
spouses in US without diabetes. 
Occupational exposure

Having ever used and cumulative use of 
aldrin, chlordane, and heptachlor 
increased odds of diabetes incidence.

(276)

PCB, DDE, DDT, HCB, β-
HCH

PCBRISK cross- sectional 
survey of heavily polluted area 
of Eastern Slovakia

PCBs, DDE, DDT, HCB, and β-HCH 
associated with prediabetes, but only 
PCB, DDT, and DDE associated with 
diabetes.

(401)

TCDD US Air Force veterans of 
Operation Ranch Hand (Air 

Agent Orange associated with higher risk 
of glucose abnormalities and T2D.

(150)
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Class Compound(s) Studied Population Finding Reference

Force Health Study) from 
Vietnam War 1961-1971. 
Occupational exposure

TCDD US Air Force veterans of 
Operation Ranch Hand (Air 
Force Health Study) from 
Vietnam War 1961-1971. 
Occupational exposure.

Dose-response relationship between 
TCDD-contaminated Agent Orange and 
T2D in veterans with background levels 
of exposure.

(247)

TCDD Residents surrounding Seveso, 
Italy, industrial accident.

Residents living in medium-exposure 
areas to TCDD had higher T2D mortality 
as compared to high-exposure areas.

(43)

Maternal/PrenatalExposure

PCB and DDE Swedish mothers and their 
children. Background exposure.

Nonsignificant trend of maternal exposure 
to PCB-135 or DDE and decreased T1D 
development in the offspring.

(326)

PCBs Collaborative Perinatal Project 
(CPP): mothers with and 
without diabetes and their 
children

Maternal exposure to PCBs monotonically 
associated with T1D in offspring.

(246)

DDE, PCB, HCB, HCH, 
Organophospha te 
pesticides

PELAGIE cohort of pregnant 
women in Brittany

Prenatal exposure to DDE was associated 
with a decrease in insulin in girls but not 
boys. Prenatal exposure PCB153 was 
associated with decreased insulin.

(100)

PCBs, DDE, HCB Adults frompolluted area of 
Slovakia whose mothers 
experienced high level s of 
exposure.

Maternal exposure to PCBs associated 
with impaired fasting glucose.

(217)

Polybrominated 
flame retardants 
(BFRs)

PBBs and PBDEs NHANES 2003-2004, adults, 
BMI 28.3+/- 5.9kg/m2

PBB-153 and PBDE-153 positively 
associated with prevalent diabetes.
PBB-153 associated with glycemia.
PBDE-99 and PBDE-100 nonsignificant 
positive association with diabetes. 
PBDE-28 and -47 not associated with 
diabetes.

(239)

PCB, DDE, PBDE, BDE Great Lakes Consortium for the 
Health Assessment of Great 
Lakes Sport Fish Consumption 
adults.

PBDEs not associated with diabetes. (398)

OC pesticides, PCBs, 
PDBE, PBB

CARDIA(Coronary Artery 
Risk Development in Young 
Adults) 18-30y olds in US 
without diabetes. Prospective 
study, background exposure.

Low dose PBB153 associated with 
increased risk of diabetes incidence.

(229)

PCB, OC pesticides, 
dioxin, HCB, DDE, BDE

Prospective Investigation of the 
Vasculature in Uppsala Seniors 
(PIVUS). Older adults, 
background exposure. Cross-
sectional and prospective

BDE not associated with T2D prevalence 
or risk of T2D incidence.

(227)

PCB, PBB Michigan PBB cohort exposed 
to contaminated food, 
prospective study.

PBB not a risk factor for diabetes 
incidence.

(411)

Oxychlordane, trans-
nonachlor, p,p’-DDE, PCB 
153, BDE 47, BDE 153

Adults in Finland. Background 
exposure.

BDE 47 and BDE 153 not associated with 
T2D.

(24)

Compr Physiol. Author manuscript; available in PMC 2018 September 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jackson et al. Page 81

Class Compound(s) Studied Population Finding Reference

Polycyclic 
Aromatic 
Hydrocarbons 
(PAHs)

PAHs NHANES merged 2001-2006. 
Adults, background exposure.

Urinary PAH biomarkers positively 
associated with diabetes. 0

(28)

PAHs Chinese adults, background 
exposure.

Urinary PAH metabolites had dose-
response association to increased risk of 
diabetes.

(432)

8 PAH metabolites NHANES 2001-2008 adults. 
Background exposure.

1-naphthalene, 2-naphthalene, 2- 
phenanthrene and 1-pyrene associated 
with T2D.

(324)

Phthalate Esters BPA and phthalate 
metabolites

Nurses’ Health Study (NHS) 
and NHSII female adults. 
Background exposure.

In NHSII- urine butyl phthalates (MBP 
and MiBP) and total phthalate metabolites 
positively associated with incident T2D. 
In older NHS cohort, no significant 
association between phthalates and 
incident T2D.

(376)

Phthalates NHANES 2001-2008 adults 
without diabetes. Background 
exposure.

Urinary MnBP, MiBP, MCPP, and DEHP 
(sum of MEHP, MEHHP, MEOHP) 
positively associated with fasting blood 
glucose, fasting insulin, and HOMA-IR

(163)

Phthalates ElderlyKorean adults. Sum of DEHP metabolites (sum of 
MEHHP and MEOHP) associated with 
HOMA. No association between MnBP 
and HOMA.

(199)

Phthalates and BPA NHANES 2003-2008 
adolescents (12-19yrs old). 
Background exposure.

DEHP metabolites (MEHP, MECPP, 
MEHHP, and MEOHP) associated with 
HOMA-IR and insulin resistance. Lower 
molecular weight phthalates (MEP, MBP, 
MiBP, MBP) (found in cosmetics and 
personal use items) not associated with 
HOMA- IR or insulin resistance.

(395)

Phthalates Healthy Mexican women. 
Background exposure.

Higher levels of DEHP, MEHHP, 
MEOHP, and MECPP are positively 
associated with diabetes. MBzP 
negatively associated with diabetes.

(378)

Phthalates NHANES 1999-2002 MBP, MBzP, and MEP associated with 
increased HOMA, but only MBzP and 
MEP remained significant after 
adjustment for renal and hepatic function.

(370)

Bisphenol A and 
Bisphenol A 
diglycidyl ether 
(BADGE)

BPA National Health Examination 
Survey of Thai adults.
Background exposure.

Serum BPA positively associated with 
diabetes and impaired fasting glucose.

(20)

BPA Adults in Iran. Background 
exposure.

Urine BPA positively associated with 
diabetes prevalence and HbA1c.

(23)

BPA Adults in Korea. Background 
exposure.

Urine BPA not significantly associated 
with T2D.

(201)

BPA NHANES 2003-2008 adults. 
Background exposure.

Urine BPA positively associated with 
diabetes.

(349)

BPA and phthalate 
metabolites

Nurses’ Health Study (NHS) 
and NHSII female adults. 
Background exposure.

In NHSII- urine BPA positively associated 
with incident T2D. In older NHS cohort, 
no significant associations between BPA 
and incident T2D.

(376)
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Class Compound(s) Studied Population Finding Reference

BPA NHANES 2003-2004 adults. BPA associated with diabetes (adjusted 
for BMI, WC).

(216)

BPA NHANES 2005-2006 adults. BPA associated with diabetes, but 
association lost in fully adjusted models 
(age, sex, race, education, income, 
smoking, BMI, WC, urinary creatinine).

(263)
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