ARTICLE

Predicting soil thickness on soil mantled hillslopes

Nicholas R. Patton', Kathleen A. Lohse® "2, Sarah E. Godsey', Benjamin T. Crosby' & Mark S. Seyfried>

Soil thickness is a fundamental variable in many earth science disciplines due to its critical
role in many hydrological and ecological processes, but it is difficult to predict. Here we show
a strong linear relationship (r2 = 0.87, RMSE = 0.19 m) between soil thickness and hillslope
curvature across both convergent and divergent parts of the landscape at a field site in Idaho.
We find similar linear relationships across diverse landscapes (n = 6) with the slopes of these
relationships varying as a function of the standard deviation in catchment curvatures. This
soil thickness-curvature approach is significantly more efficient and just as accurate as
kriging-based methods, but requires only high-resolution elevation data and as few as one
soil profile. Efficiently attained, spatially continuous soil thickness datasets enable improved
models for soil carbon, hydrology, weathering, and landscape evolution.
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oil thickness results from the balance between the rates of

soil production and transport! =3 and is a critical attribute of

many hydrological and ecological processes?. In geomor-
phology, it is crucial in determining hillslope stability, drainage
density, and channel initiation®-8, In the hydrological and eco-
logical sciences, it governs runoff responses®, water residence, and
travel time distributions!%-12, it determines plant-available water,
storage, and sourcing!>!4, and it often sets the lower boundary
conditions for soil carbon and other elemental accumulation and
storage!®. Despite its importance, spatially distributed soil
thickness data are rarely obtained due to the physical and
monetary cost of excavating soil to the required depths. To date,
soil thickness cannot be efficiently predicted across a landscape.
As such, it remains a poorly constrained yet key parameter that
hinders advancements in landscape evolution, hydrological, and
earth system models!216:17.

Soil thickness is heterogeneous in space and time across
landscapes, and models often assume that thickness scales
inversely with erosion rate? or relief!®1°, Attempts to quantify
and model the relationship between soil thickness, production,
and topography have typically used hillslope mass balance models
and cosmogenic radionuclide (CRN)-derived erosion rates%3:20~
22 More recently, numerical models for geochemical mass bal-
ance??, soil production!?24-27, landscape-scale pedogenesis?3,
and soil transport?>30 have been applied to this problem.

Assuming sediment flux is linearly proportional to slope,
conservation laws predict an inverse linear relation between the
soil production rate and hillslope curvature>>2! (C), quantified as
the rate of change in slope from a fixed point on a landscape in all
directions. Researchers have also independently demonstrated
that soil production rates decrease exponentially with increasing
soil thickness®320-2229.30 Combining these two relationships
establishes soil thickness as proportional to the natural logarithm
of curvature?!:26, explicitly on convex, divergent hillslopes
(associated with negative curvatures). In contrast to convex areas,
concave, convergent areas have received less attention in part
because soil production is reduced under thick soil cover and
theoretical predictions using the natural logarithm of curvature
fail for positive values.

Recent, field-calibrated numerical models that estimate soil
thickness show thick soils in concave hollows and thin soils on
convex ridges and predict relative thicknesses in catchments of
varying lithology reasonably well?®%7. However, accurate pre-
dictions of absolute thicknesses have not been obtained?’, and soil
thickness models remain over-parameterized and require exten-
sive and computationally expensive analyses?42>27,

Here we explore the empirical relationship between curvature
derived from high-resolution digital elevation models (DEMs)
and field-measured thickness of mobile regolith (TMR) and test
the assertion that soil thickness varies as the natural logarithm of
curvature. Because the terms soil thickness and soil depth are not
used consistently across disciplines, we use the term TMR to
define the portion of the soil profile that is mobile via slope or
mixing processes>!33 (Supplementary Fig. 1). We show a strong
linear relationship between soil thickness and hillslope curvature
across both convergent and divergent topography at our site in
Idaho and then observe similar relationships across other catch-
ments, although the slopes and y-intercepts vary widely. We
demonstrate that the slopes of these functions vary with the
standard deviations in catchment curvatures and that the catch-
ment curvature distributions are centered on zero. The sig-
nificance of the curvature distributions being normally
distributed and centered on 0 m™! is that the intercept of the
curvature-TMR function represents the mean TMR within each
catchment. We present and validate a simple empirical model for
predicting the spatial distribution of soil thickness in a variety of

catchments based only on high-resolution elevation data and few
soil profiles. Our findings indicate that our linear TMR-curvature
model produces TMR estimates that are just as reliable as kriging-
based interpolations with significantly less labor and cost. Our
model also provides more robust estimates of TMR across the full
range of curvature values than using a natural logarithm relation.

Results

Sampling thickness of mobile regolith and curvature. We
measured curvature and TMR in a small (1.8 km?), semi-arid
granitic catchment, Johnston Draw, in the Reynolds Creek Cri-
tical Zone Observatory (CZO) and Experimental Watershed
(RCEW) in Idaho, USA. We sampled thirty-nine locations across
the full range of curvature values and elevations (Supplementary
Fig. 2) and determined TMR by digging soil pits vertically from
the surface to the contact between mobile regolith and immobile
weathered bedrock (Supplementary Fig. 1). This contact was
determined from observation of original parent material structure
including exfoliation sheets, planar flow fabrics, or jointing sets3!.

We compared this dataset to equivalent datasets collected from
catchments representing a wide range of climates and vegetation
types on predominantly felsic parent materials?3-20-22 and then
cross-validated on catchments with felsic3#3> as well as mixed
mafic-felsic lithologies (Table 1). Thickness determinations were
standardized to the highest degree possible (See Methods,
Supplementary Fig. 3), and uncertainties were propagated
through all analyses.

Curvature was calculated as the rate of change in slope from a
fixed point relative to eight neighboring cells3®37 using a
geographical information system (ArcGIS v.10.2.2, ESRI, Red-
lands, CA). We utilized ArcGIS primary curvature output, which
is derived from Zevenberger and Thorne*® and Moore et al.?’
equations. The ArcGIS curvature function differentiates the slope
in percent rather than the actual gradient, and reverses the sign so
to compute curvature values in units 1 m~!, we divide the ArcGIS
output by —100. We extracted curvature values for Johnson Draw
from a Light Detection and Ranging (LiDAR) DEM resampled to
3-m resolution because a sensitivity analysis showed that this
resolution provided the highest correlation between TMR and
curvature (Table 2). When comparing Johnson Draw with other
datasets, we resampled the LiDAR data to 5 m resolution because
some of the cross-site datasets were manually collected at this
resolution®320-22,

Linear TMR-curvature relationship. Similar to other studies
(Table 1), we observed the thinnest TMR on ridges and noses and
the thickest TMR in hollows and valleys in Johnston Draw. In
contrast to previous findings, we found that TMR varied as a
robust, positive linear function of curvature across both con-
vergent and divergent parts of the landscape (N = 26, r> =0.87,
RMSE = 0.19 m, Fig. 1a). The slope of the TMR-curvature rela-
tionship was 22.8 m? with a y-intercept of 1.01 m. Note that for
this relationship, the y-intercept is defined as the value when x =
0; in this case, the y-intercept is the TMR on a planar surface
where the curvature is 0 m~!. We tested the predictive power of
this relationship by comparing predicted and observed values
(30% of Johnston Draw dataset was reserved for validation, N =
12, Fig. 1b). The null hypothesis that the predicted vs. observed
slope was significantly different than 1 was rejected (f = —0.53 <
critical ty05,11 = 2.20). We also evaluated model selection within
the convex, negative curvature regions and found more support
for TMR varying linearly (N = 22, 2 = 0.63, RMSE = 0.18) rather
than in proportion to the natural logarithm of curvature (r> =
0.37, RMSE = 0.22) (Supplementary Fig. 4a). This is in conflict
with the current theoretical paradigm and may result from failed
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Table 1 Site characteristics

Site Major aspect Mean MAP MAT  Lithology Mean Curvature Reference
elevation (mm/y) (©0) curvature standard
(m) (m-1) deviation (m~1)
Johnston Draw, North and South 1600 550 7.4 Granite-Diorite and 0.0001 0.021 This study
ID, USA Quartz-Monzonite
Tennessee Valley, Northeast and 170 760 14 Greenstone, —0.00012  0.034 23
CA, USA Southwest Greywacke and
Chert
Coos Bay, OR, West and East 669 1500 1.5 Sandstone and —0.00013  0.059 2
USA Siltstone
Nunnock River, Northwest and 950 910 13.5 Granite-Diorite ND ND 20
NSW, AU Southeast
Point Reyes, CA,  South 12 430 1.5 Quartz-Diorite and  0.00004 0.039 22
USA Granite-Diorite
Marshall Gulch North and South 2439 875 10 Granite, Quartzite ~ —0.00009  0.071 27
(sub-catchment), and Amphibolite
AZ, USA
Babbington Creek, North and South 1500 513 7.4 Granite-Diorite and —0.00004  0.018 This study
ID, USA Quartz-Monzonite
Gordon Gulch, North and South 2583 519 5.1 Biotite-Gneiss 0.00006 0.040 34,35
CO, USA
Reynolds West and East 2082 866 5.2 Rhyolitic Tuff and 0.00002 0.020 This study
Mountain, ID, Basalt
USA

resolution (5 meter) digital elevation model (DEM) for cross-site analysis and model validation. Light a

These include major aspect, mean elevation, mean annual precipitation (MAP), mean annual temperature (MAT), lithology, and catchment curvature mean and standard deviation derived from high

were derived from reported local observations20, and mean and distribution of curvature were not obtained

nd Ranging (LIDAR) data was not available for the Nunnock River. Mean elevation and curvatures

for the Johnston Draw data set (N =38)

Table 2 Sensitivity of curvature-thickness of mobile regolith (TMR) relationship to resolution of digital elevation model (DEM)

DEM resolution  Catchment curvature TMR uncertainty Curvature Slope Intercept (m) RMSE (m) r2 p-Value
(m?) standard deviation (m~1) (m) uncertainty (m~1)  (m?)

1 0.126 0.13 0.1521 0.4 1.05 0.54 0.02 <0.0001
3 0.036 0.13 0.0169 22.80 1.01 0.20 0.86 <0.0001
5 0.021 0.13 0.0061 21.58 1.04 0.40 0.44 <0.0001
10 0.018 0.13 0.0015 20.56 1.00 0.45 0.30 0.0004
20 0.0m 0.3 0.0004 24.76 0.98 0.48 0.21 0.0039
30 0.007 0.13 0.0002 37.90 0.96 0.47 0.25 0.0013
50 0.006 0.13 0.0001 59.73 0.95 0.47 0.23 0.0022

TMR uncertainty reported as standard error is based on propagation of error of the average observed TMR (see Methods). Horizontal and vertical uncertainty in DEM were obtained through metadata
associated with 2007 Light and Ranging (LiDAR) dataset. Curvature uncertainty as measured by standard error was calculated by the Method of Moments assuming correlation between uncertainty of
neighbor and center cell points are O (r=0). Slope of curvature-TMR, intercept value, root-mean-squared error (RMSE), coefficient of determination (r2), and p-value based on linear regression

assumptions surrounding steady state soil thickness, the linear
relation between slope and sediment flux and/or the exponential
formulation of the soil production model. The linear TMR-
curvature relation is also advantageous compared to the natural
logarithm because it can handle both positive and negative values
of curvature.

We anticipated that TMR-curvature relations would exhibit
greater variation at larger positive curvatures (concave, con-
vergent areas) owing to either over-thickening or recently failed
soils in zero-order hollows. However, there was no change in
variability with curvature at our site, evidenced by homogeneity
in variance around the best-fit line (Fig. la). These findings
suggest that the soil thickness in concave hollows of Johnston
Draw are regulated by frequent and efficient transport processes
instead of erratic evacuations as suggested by Dietrich et al..
Instead of thickening indefinitely, hollows may be maintained by
creep or surface erosion. Similarly, TMR thicknesses on concave

toe slopes on terraces or floodplains may be regulated by creep or
surface erosion rather than evacuation by lateral channel
migration. This supposition is consistent with findings by
Dietrich et al.> who found predicted soil thicknesses >1 m on
toe slopes, but warrants further study in this and other landscapes
to understand the processes underlying this linear relationship.

Cross-site comparison. Consistent with our observations at
Johnston Draw, we found similar linear relationships between
TMR and curvature in the cross-site dataset (Fig. 2a), but the
best-fit slopes and intercepts of those relationships varied from
site to site. The y-intercepts for the cross-site dataset (the soil
thickness on planar surfaces) ranged from 0.57m to 1.11 m. In
the convex regions of the coherent sites (Table 1), linear models
again outperformed natural logarithm models (Supplementary
Fig. 4b-g).
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Fig. 1 Curvature and thickness of the mobile regolith plot and predictive map. a The thickness of the mobile regolith (TMR) varies as a strong linear
function of curvature (C) in Johnston Draw. Black dots represent randomly selected build dataset (70% of sites). Gray dots represent test set to validate
the model. The white dot is a location that was excluded owing to proximity to both a rock outcrop and a stream channel. Uncertainty is reported as the
standard error by the Method of Moments. b Predicted TMR map for the granitic portion of Johnston Draw derived from the TMR-curvature function using
a 3m Light Detection and Ranging (LiDAR)-derived digital elevation model. Darker shades indicate larger TMR (2.75 + m) and lighter shades indicate
smaller TMR (0 m) including those areas excluded as rock outcrops or streams. Hatched areas indicate non-granitic portions of the watershed that were

not modeled

In Johnston Draw, we observed that curvatures were normally
distributed within the catchment (Fig. 2b) with a mean of 0 m~!
and a standard deviation of 0.0209 m~L. Similarly, for the cross-
site dataset, catchment curvature distributions were also normally
distributed with a mean of 0 m~!, indicating a tendency of the
curvature distributions to center around planar surfaces (Fig. 2b).
Therefore, using the linear TMR-curvature relationship, we find
that the y-intercept defines the mean soil thickness within each
catchment.

In contrast to the observation that curvature distributions were
normal and centered on Om~! for all catchments,
surface roughness, defined here as the standard deviation in
catchment curvature (g,) at a given scale3®, varied from 0.0209 to
0.0713 m~! across sites (Table 1, Fig. 2¢). Sites varied in the slope
of their TMR-curvature function from the steepest best-fit slope
at Johnston Draw to the shallowest at Marshall Gulch. Among the
sites, the slope of the TMR-curvature function varied linearly
with o, (Fig. 2¢). Sites with high o, (e.g. Marshall Gulch and Coos
Bay) had TMR-curvature slopes near zero indicating that
curvature poorly predicted TMR. In these sites, large magnitude,
high frequency stochastic disturbances (e.g. tree-throw, mass
movements and burrowing) alter both the surface topography
and the TMR?1:?7, In contrast, sites with low o, (e.g. Johnston

Draw and Point Reyes) had both high TMR-curvature slopes and
2 values. In these catchments, soil formation and transport
processes are likely driven by low-magnitude, gradual processes
(rheologic creep, lesser bioturbation) that smooth surface
topography, resulting in curvature values that explain much of
the variation in TMR (Fig. 2a).

Interestingly, comparison of o, and published soil production
rates showed that catchments with high o, such as Coos Bay
also had the highest soil production and erosion rates?!. In
contrast, those with lower o, such as Tennessee Valley had
lower production and erosion rates3, possibly indicating that
catchment curvature distributions may also provide a useful
proxy for soil production rates*®41. Consistent with this idea,
one study showed that catchment roughness as measured by the
standardized topographic position index can be used as a proxy
for sediment availability*? suggesting that catchment surface
roughness may have some utility as a proxy for mapping
different geomorphic processes or process rates. Recent work
extends theoretical linkages supporting the idea that landscapes
with narrow slope distributions are dominated by diffusion-like
processes whereas rough, juvenile landscapes with broad slope
distributions are affected by a stochastic combination of
diffusive soil creep, advective river incision, and noise*3. The
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Fig. 2 Cross-site evaluation. a Cross-site evaluation of six catchments in which the thickness of the mobile regolith (TMR)-curvature (C) function is
evaluated using a 5-m digital elevation model (DEM). b Depicts catchment curvature distributions based on a 5m DEM centered on O m~". ¢ Cross-site
comparison of the slope of the TMR-curvature function (and associated standard error) with the local standard deviation in catchment curvature (o.).
Nunnock River (light green squares) dataset was not included in plots b or ¢ due to the lack of high resolution Light Detection and Ranging (LIDAR) data;
curvature estimates for Nunnock River in a were derived from reported local observations20. Note, the curvature distributions are derived from all cells

within the catchment's DEM

linkages between the statistical properties of topography (slope
and curvature) and geomorphic processes merit continued
investigation.

Simple empirical model to predict TMR. Based on the above
analyses, we present a simple empirical model to predict TMR at
any location within a catchment using high-resolution LiDAR
data and a limited number of TMR measurements. We start with
the following equation that generalizes the relationship between
TMR at a point (h) and the curvature at that point (C):

Ah -
(o v

where 2 is the slope of the TMR-curvature relationship illu-
strated in Fig. la and A is the average h found within a catchment.
The slope parameter % can be estimated directly from the
equation in Fig. 2c based on catchment o.. Because all catch-
ments examined have a normally distributed curvature centered
at 0m~! (Fig. 2b), h can be determined by measuring TMR at

(1)

Ah

selected locations with planar (C=0 m~!) surfaces (at least one
estimate of h is required, additional pits will improve estimate
and constrain uncertainty). We note that we adapted self-
correlation diagnostic methods described by Worrall et al.** to
assess this relationship, and we could not entirely reject the
possibility that the strength of the relationship in Fig. 2c might be
partially due to self-correlation because the linear regression
slopes of the TMR-curvature relationships in Fig. 2a partially
depend on the variability of the sample population of catchment
curvatures. However, given the benefits of predicting TMR from
easily derived topographic characteristics, this approach merited
cross-validation with data from other locations.

Independent tests of model. As independent tests of this model,
we predicted TMR using Eq. (1) from topographic and TMR data
collected from three catchments, two of which had low o, Bab-
bington Creek and Reynolds Mountain (RM), both sub-
catchments of the Reynolds Creek CZO, with granitic and
mixed basalt and rhyolite lithology, respectively. The third
catchment, Gordon Gulch, a gneissic catchment in Boulder Creek
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Fig. 3 Model validation. Validation of the thickness of the mobile regolith (TMR)-curvature (C) approach at Babbington Creek and Reynolds Mountain,
Idaho (a) and Gordon Gulch, Colorado, USA (b). Solid white, gray, and black lines represent best-fit predicted vs. observed TMR values based on curvature
calculated from a Light Detection and Ranging (LiDAR)-derived digital elevation model (DEM) and a single soil pit for Reynolds Mountain (¢), Babbington
Creek (d), and Gordon Gulch (e), respectively. Large dashed black lines represents the 1.1 predicted versus observed line. The best-fit slopes were not
significantly different from one for Babbington Creek (|t| = 0.74 <critical tg.055=2.571) and Reynolds Mountain (|t| = 0.01 < critical to 057 = 2.365),
indicating unbiased models, whereas the slope was significantly lower than one for Gordon (p < 0.001, [t| = 3.64 < critical t5 05,162 = 1.974), indicating over-
prediction with higher TMR than observed. Small white, gray, and black dotted lines represent the 95% prediction intervals (PI)

CZO, had a higher ¢3%%. We expected that curvature would
predict TMR well in Babbington and Reynolds Mountain with
lower o, whereas curvature would explain less variation in TMR
in Gordon Gulch with higher o.

One might assume that TMR in Babbington and Johnston
Draw (Fig. 1) would be similar due to their similar lithology and
climate. However, & was 1.04 m (with 5m DEM) for Johnston
Draw compared to 0.56 m for Babbington based on a single soil
pit on a planar surface, and o, was 0.0209 m~! for Johnston Draw
compared to 0.0184 m~—! for Babbington; & was 0.93 m and ¢, was
0.0191 m~! for Reynolds Mountain, the mixed lithology catch-
ment. Based on these inputs to the model, predicted TMR values
at Babbington agreed well with observed values from the
validation data set (N =6, slope = 1.24, 2 = 0.79, RMSE = 0.30
m, p=0.0181) (Fig. 3a). Predicted TMR values also strongly
agreed with observed values from a validation data set derived
from mixed mafic and extrusive felsic parent material at Reynolds
Mountain (N = 8, slope = 1.002, r> =0.72, RMSE =0.14m, p =
0.0080) (Fig. 3a) suggesting that curvature is an excellent proxy
for predicting TMR in catchments that display low o,. Findings
from Reynolds Mountain also indicate that the model may have
general utility across lithologies.

As expected, the TMR function from Eq. (1) could not explain
as much variability in Gordon Gulch TMR that had a higher o, of
0.040 m~! (N'= 163, slope = 0.64, r> = 0.21, RMSE = 0.20 m, p <
0.0001) (Fig. 3b). It is also worth noting that Gordon Gulch also
had a larger vertical uncertainty in the LiDAR dataset, 0.175 m
compared to 0.034m for both Babbington and Reynolds
Mountain, which may help to explain the lower model
performance. Despite this poorer relative performance, one of
the benefits of the TMR-curvature model for catchments with
higher o, is that it can improve site selection and thus reduce
physical and monetary costs of interpolated TMR estimates
(based on the ¢,). Perhaps more importantly, the TMR-curvature
model, based on a 5 m resolution LiDAR to estimate o, and one
soil profile on a planar surface to estimate the intercept, performs
just as well as kriging-based interpolations. Indeed, comparison of
our approach to simple, ordinary, and regression kriging models
at Gordon Gulch shows that kriging models do not improve TMR
estimates compared to our TMR-curvature model (= 0.19 and
RMSE of ~0.44 m compared to 7% < 0.02 and RMSE of ~0.4 m for
both simple and ordinary kriging and r2=0.06 and RMSE of
~037m for regression kriging). We only conducted
this comparison at Gordon Gulch where there were sufficient
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samples to compare techniques*> (113 build and 50 test pits, 163
total).

Discussion

Findings from our study indicate that our linear TMR-curvature
model may produce TMR estimates that are just as reliable as
kriging-based interpolations with significantly less labor and cost.
Our model also provides more robust estimates of TMR across
the full range of curvature values than using a natural logarithm
relation. Indeed, our analyses showed more support for TMR
varying linearly rather than in proportion to the natural loga-
rithm of curvature (Supplementary Fig. 4) raising questions about
the underlying assumptions of steady state soil thickness, the
linear relation between slope and sediment flux, and/or the
exponential formulation of the soil production model. Our
finding that catchment curvatures are normally distributed
around planar surfaces has high utility in numerous earth science
disciplines because a first-order estimate of the mean TMR () for
a given catchment can be derived from a single soil profile at a
planar position. These results together suggest that the linear
TMR-curvature model may be a good first order estimator of
TMR where good quality, fine resolution DEM data exist and
limited resources are available for digging many soil pits.

Findings from our study also indicate that surface roughness as
measured by the standard deviation in catchment curvature at a
given scale reflects the degree to which local topography governs
soil thickness in a given catchment. In our Idaho study sites
(Johnston Draw, Babbington Creek, and Reynolds Mountain),
local topography as measured by curvature is the primary
determinant of TMR. In contrast, topography explains less of the
variation in TMR in catchments with broad curvature distribu-
tions. Indeed, uncertainty in the model increases as o, increases
such that the predictive capability of the model declines in these
regions; other physical or biological model parameters may be
needed to explain the variability in TMR where surface roughness
is high.

We posit that soil thicknesses in catchments with high surface
roughness are not governed solely by local topography but rather
by multiple geomorphic processes (e.g. mass movements, tree
throw, etc.) and in-situ soil evolution that may influence soil
production rates33. Marshall Gulch, Coos Bay, and Gordon Gulch
appear to be good examples of this where TMR is relatively
insensitive to curvature as indicated by the slope of TMR-
curvature function approaching zero (Fig. 2). In these catch-
ments, steep hillslopes and the abundance of trees can result in
more frequent and spatially heterogeneous topographic dis-
turbances such as landslides and tree throw that increase surface
roughness and therefore influence the variability in TMR. In
Johnston Draw, Marshall Gulch and Gordon Gulch, rock out-
crops create similar local disturbances, features not captured in
our model or others?®?7. As a consequence, pit locations within
10m of rock outcrops were excluded from our analysis. Other
possible limitations to the model include uncertainty in esti-
mating TMR in complex environments: in colluvium where
defining the basal boundary is difficult, in floodplains where
disturbance introduces and exhumes materials, in aeolian land-
scapes where soil development is driven by atmospheric inputs®>,
and in glaciated landscapes where topography results from ero-
sion or deposition by ice. Finally, our model has not been tested
in more stable landscapes with deeper soils, which will likely
exhibit thicker immobile regolith, another feature not captured by
our mobile regolith model. We would not expect our model to
work for predicting total regolith (mobile 4 immobile)
because variations in climate and substrate will control saprolite
thickness.

Further testing and appraisal of the limitations of this model
await the collection of additional data that combine spatially
distributed, high-resolution elevation data with extensive TMR
measurements. Currently, the low availability of TMR measure-
ments limits the application of this model. Studies that dig to
refusal, bedrock or at a predetermined depth may include or
exclude portions of the mobile regolith resulting in incon-
sistencies. In addition, methods such as augering, soil tile pole,
and knocking pole may underestimate thickness in rocky soils
and/or overestimate depth if penetrating fractures in bedrock.
Without properly identifying the mobile regolith boundary with
soil pits, the likelihood of producing topographic relationships is
low. For this reason, comparisons of our work to other studies
that used these other methods*®*” are problematic and require
considerable knowledge of both the research methods and site
location.

In contrast to TMR measurements, high-resolution elevation
data are becoming increasingly abundant and technology asso-
ciated with unmanned aerial vehicle, airborne and remotely
sensed data collection is advancing rapidly and will likely provide
sufficient elevation data on demand. Our sensitivity analysis at
Johnston Draw indicates that the TMR-curvature relationship is
highly sensitive to scale (Table 2), with some deterioration of the
relationship with the 5 m resolution resampling and considerable
deterioration at 30 m resolution, which is typical of widely
available DEM’s. Our cross-site comparison using consistent
TMR measurements and high resolution LiDAR data may explain
why our findings have not been previously reported.

The spatial distribution of soil thickness at the landscape scale
remains largely unknown due to the difficulties in its direct
measurement. Beyond practical applications to forestry, con-
struction and transportation industries where soil thickness is a
key parameter for predicting landslides, we contend that our
TMR model has the potential to advance many earth science
disciplines by efficiently providing accurate and spatially dis-
tributed thickness estimates, especially in those catchments with
low curvature variability. With high-resolution elevation data and
a limited set of soil thickness measurements, this model can
constrain thickness parameters, which are currently key uncer-
tainties in surface process models. As the number of sites with
TMR measurements increase, our model will likely be com-
plementary to the digital and global soil mapping community*$,
enabling rigorous testing of global soil thickness models?®. In
hydrologic models, spatially distributed thickness estimates can
help to constrain rooting depths*® and define catchment control
volumes and thus reduce uncertainty in streamflow, water sto-
rage, water and nutrient residence time, and sourcing to
streams®~14, This model can be also coupled with measurements
of carbon to obtain rapid and cost efficient budgets of the total
soil carbon reservoir across complex terrain®’. These advances
will improve soil carbon budgets and intermediate scale carbon
cycling and earth system modeling!7->1->2,

Methods

Study area. The study was conducted at the Reynolds Creek Critical Zone
Observatory (RC CZO) co-located within the USDA Agricultural Research Service
(USDA-ARS) Reynolds Creek Experimental Watershed, a 239 km? catchment
located in southwestern Idaho, USA. We focused our study on Johnston Draw, a
1.8 km? sub-catchment oriented east to west (Fig. 1). The bedrock in the sub-
catchment is primarily ~66-62 Ma biotite muscovite granodiorite and quartz
monzonite from the Idaho Batholith3. The relatively spatially continuous lithology
weathers to a consistent sandy loam soil texture (average: 67% sand, 18% silt, and
15% clay). Minor lithologic discontinuities in the sub-catchment include a com-
bination of quartz latite, and rhyolite flows covering the high plateau at the top of
the catchment and a small ~15.2 Ma olivine-rich basalt flow near the outlet®*
(Fig. 1b); these sparse lithologies were excluded from this analysis to control for
lithology while varying topography.
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Johnston Draw has asymmetric aspects; steep north-facing slopes average 16.8°
and cover 37% of the catchment area and shallow south-facing slopes with average
slopes of 13.9° cover the rest of the catchment. The south-facing slopes have larger
and more frequent rock outcrops compared with the north-facing slopes. The lack
of geomorphic evidence of landslides supports our assertion that hillslope transport
in Johnston Draw is dominated by soil creep. Based on our field observations,
stream channels with drainage areas >~6000 m? are incised to bedrock, and all
sediment delivered to these channels is transported out of the system, primarily via
snowmelt runoff.

The mean annual precipitation is 550 mm yr—! and the mean annual
temperature is 7.4 °C. Johnston Draw is located within the rain-snow transition
zone®>% with elevations ranging from 1490 m to 1850 m. Precipitation primarily
occurs in the fall and winter. Lower elevations receive precipitation as rain while
higher elevations receive precipitation as snow, and drifts typically accumulate in
select locations in the upper basin. Wyoming Big Sagebrush (Artemisia tridentata
ssp. wyomingensis) is the dominant plant species on both aspects representing
50-75% of the catchment, with mountain mahogany (Cercocarpus ledifolius), aspen
(Populus tremuloides), bitterbrush (Purshia stansburyana), and western juniper

(Juniperus occidentalis) making up the remaining major vegetation®>.

Study design and sampling. We determined the curvature frequency distribution
within Johnston Draw using a 3 m posting DEM derived from a 2007 Light
Detection and Ranging (LiDAR) dataset using the ArcGIS curvature toolbox. A 3 m
DEM was selected based on a sensitivity analysis of the TMR-curvature function to
the resolution (scale) of the DEM (Table 2); the original 1 m DEM was resampled
to 3, 5, 10, 20, 30, and 50 m DEM utilizing the mean elevation of the nine adjacent
cells. The TMR-curvature relationship was strongest for curvature derived from the
3m DEM (N = 38, r2 =0.86, RMSE = 0.20 m) whereas it deteriorated some with
the 5m resolution resampling (N = 38, r> = 0.44, RMSE = 0.40 m) and con-
siderably at a resolution of 30 m (N =38, 2 = 0.25, RMSE = 0.47 m). For local
estimates of soil thickness (Fig. 1b), the 3 m DEM was used.

Sample sites for TMR were selected from a dataset of soil pits that were
originally identified to map watershed soil carbon across an elevation gradient. The
pits were chosen via stratified random sampling across six elevation strata, and
represent the full range of curvature (Supplementary Fig. 2). TMR was determined
by digging 39 soil pits (note that a handful of pits were located on non-granitic
parent material and were excluded for this study). Pits were ~1 m deep by 2 m long
throughout the granitic portion of the catchment. Similar to Heimsath et al.,
measurements were taken vertically from the top of the profile to the contact of
mobile regolith and weathered bedrock to validate thickness measurements (slope
normal to soil thickness).

The largest sources of variability in TMR determination were the designations
of the upper and lower boundaries for thickness measurements. Due to matted
vegetation, surface cracking, bioturbation and other processes, a fine scale surface
roughness of +0.05 m was observed at most soil pit surfaces, making the location of
the upper boundary uncertain. For consistency, all measurements were made at the
average surface height as exemplified in Supplementary Fig. 3a. Similar to surface
measurements, lower boundary measurements were often difficult. In shallow
(<0.50 m) mobile regolith, sharp boundaries were observed with variability around
+0.05 m (Supplementary Fig. 3b). However, as the TMR increased, the uncertainty
in the lower boundary increased; soil pits deeper than 1.50 m exhibited a diffuse
lower boundary with variability up to +0.20 m (Supplementary Fig. 3c). The
observed variability in the upper and lower boundary conditions were incorporated
into error propagation of the TMR-curvature model.

Data analysis. Seventy percent (70%) of the TMR measurements from Johnston
Draw were randomly selected to quantify the relationship between curvature and
TMR. We used a linear regression model with curvature and TMR. We propagated
vertical LIDAR uncertainty based on reported flight metadata for each cell
according to the equations from Moore et al.3” and Zevenbergen et al.3® cited by
Arc’s curvature algorithm. To be consistent with current literature, we removed the
negative curvature and percent convention, as used by ArcGIS, by dividing cur-
vature values by —100. We used the Method of Moments approach to determine
standard error, allowing the correlation in uncertainty between elevations of
adjacent cells to vary between —1 and +1. Because the degree of correlation was
unknown, we reported the uncorrelated errors, which were the central tendency of
the range of correlated errors. The remaining 30% of the TMR samples were used
as a validation test set to evaluate the goodness of fit of the model. Predicted TMRs
and their confidence intervals (95%) were compared to the observed TMR. We
tested whether predicted vs. observed slopes were significantly different than 1. We
adopted a significance level « = 0.05 for all statistical tests. Residuals were exam-
ined for normality and structure as well as spatial dependence.

A map of TMR for every 3 m pixel within the catchment was estimated using
the derived curvature-TMR function within ArcGIS version 10.2.2 (ESRI,
Redlands, CA, Fig. 1b). TMR within two areas in the catchment - near rock
outcrops and in stream channels - were post-processed and reclassified. Stream
channels were reclassified with TMR values of 0 m based on field interpretation of
exposed bedrock beds (accumulations of 26000 m?). National Agricultural Imagery
Program (NAIP) imagery was used to delineate all outcrops, and these cells were
reclassified to thicknesses of 0 m. Within 10 m of rock outcrops, local TMR values

were observed to differ from TMR patterns throughout the sub-catchment. Within
that buffer area of 10 m, TMR values were linearly interpolated from the outcrop
base (0 m) to the predicted TMR value at 10 m. Masking of these areas was not

utilized to avoid influence on the curvature distributions and derived relationships.

Cross-site evaluation. We compiled the TMR values in Table 1 using Data Thief
I11°7 and curvature data from OpenTopography and evaluated the generality of
the TMR-curvature function across sites. These sites varied dramatically in
bedrock age, substrate, climate, topography, and biota (Table 1), but observa-
tions of curvature and soil thickness were consistent across all sites (see refer-
ences for more details on the sites). We resampled LiDAR for all data sets
(including Johnston Draw) to a 5-m resolution DEM due to the lack of higher
resolution in all datasets. A curvature-frequency distribution of Nunnock River
was not determined because LiIDAR was unavailable for this site. The sub-
catchment of Marshall Gulch had thicknesses to refusal rather than mobile
regolith. This method may have resulted in overestimations of thicknesses and
increased variability in thickness determination, but likely would not have sig-
nificantly altered the TMR-curvature slope of 0.002 m? (Fig. 2c); curvature
distributions were very broad indicating high curvature variability. As above, we
used linear regression models of curvature and TMR, and we propagated vertical
LiDAR uncertainty based on reported flight metadata for each cell according to
the equations from Moore et al.>” and Zevenbergen et al.3® cited by Arc’s cur-
vature algorithm and divided by -100. Horizontal and vertical uncertainties were
obtained through metadata provided on OpenTopography. Curvature uncer-
tainty was calculated as standard error using the Method of Moments where we
assumed correlation between uncertainty of neighbor and center cell points was
0 (r=0). When vertical uncertainty was not provided, we assumed an uncer-
tainty of 0.1 m (Supplementary Table 1). The effect of measurement scale on the
TMR-curvature relationship in different environments merits further investi-
gation because it defines the scale of TMR variation on the landscape. At present,
combinations of spatially extensive TMR and high-resolution elevation data are
rare (we have included all that we are aware of). These limitations will likely
change as high resolution elevation data become increasingly available, though
the labor of digging pits presents the main obstacle.

We performed independent tests of the model based on Eq. (1) on three
catchments, Babbington Creek, Reynolds Mountain, and Gordon Gulch, using the
standard deviations of curvature from all points of each catchment to estimate a
TMR-curvature slope function. We estimated the intercepts from TMR
observations on a planar surface at each catchment. Only a limited set of pits (6)
were available for validation at Babbington compared to Reynolds Mountain where
we had 8 pits. Two hundred and one (201) soil pits were available in Gordon
Gulch, but pits were removed from this analysis if they fell within 10 m of rock
outcrops and within areas that were recently glaciated, leaving 163 validation
points.

Data availability. The datasets generated during and/or analyzed during the
current study are available at BSU ScholarWorks [https://doi.org/10.18122/
B2PM69]%8. Every sample at RC CZO is registered with an International Geo
Sample Number through System for Earth Sample Registration (SESAR).
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