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Abstract

High Angular Resolution Diffusion Imaging (HARDI) can characterize complex white matter 

micro-structure, avoiding the Gaussian diffusion assumption inherent in Diffusion Tensor Imaging 

(DTI). However, HARDI methods normally require significantly more signal measurements and a 

longer scan time than DTI, which limits its clinical utility. By considering sparsity of the diffusion 

signal, Compressed Sensing (CS) allows robust signal reconstruction from relatively fewer 

samples, reducing the scanning time. A good dictionary that sparsifies the signal is crucial for CS 

reconstruction. In this paper, we propose a novel method called Tensorial Spherical Polar Fourier 

Imaging (TSPFI) to recover continuous diffusion signal and diffusion propagator by representing 

the diffusion signal using an orthonormal TSPF basis. TSPFI is a generalization of the existing 

model-based method DTI and the model-free method SPFI. We also propose dictionary learning 

TSPFI (DL-TSPFI) to learn an even sparser dictionary represented as a linear combination of 

TSPF basis from continuous mixture of Gaussian signals. The learning process is efficiently 

performed in a small sub-space of SPF coefficients, and the learned dictionary is proved to be 

sparse for all mixture of Gaussian signals by adaptively setting the tensor in TSPF basis. Then the 

learned DL-TSPF dictionary is optimally and adaptively applied to different voxels using DTI and 

a weighted LASSO for CS reconstruction. DL-TSPFI is a generalization of DL-SPFI, by 

considering general adaptive tensor setting instead of a scale value. The experiments demonstrated 

that the learned DL-TSPF dictionary has a sparser representation and lower reconstruction Root-

Mean-Squared-Error (RMSE) than both the original SPF basis and the DL-SPF dictionary.

1 Introduction

Diffusion MRI (dMRI) is a unique non-invasive imaging technique to explore white matter 

in human brain by measuring the diffusion of water molecules. The diffusion process is fully 

characterized by the diffusion propagator P(R), called the Ensemble Average Propagator 

(EAP), in the displacement R-space [1]. With the narrow pulse assumption, the diffusion 

signal attenuation E(q) is the 3D Fourier transform of P(R), i.e., P(R) = ∫ℝ3 E(q) 

exp(−2πqTR)dq. A hot topic in dMRI is to recover the continuous signal E(q) and the EAP 

P(R) from a limited number of signal samples with noise.
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Diffusion Tensor Imaging (DTI) [2] is the most popular method for diffusion data 

reconstruction. With the Gaussian diffusion assumption, E(q) = exp(−4π2τqTDq) where τ is 

the diffusion time and D is the 3 × 3 diffusion tensor. Many other methods, categorized as 

High Angular Resolution Diffusion Imaging (HARDI), were proposed to avoid the Gaussian 

assumption and characterize more general diffusion processes due to complex 

microstructure. Diffusion spectrum imaging [3] does not impose any assumption on 

diffusion signal, but it requires a long scan time, and only estimates diffusion signal and 

propagator in discretized samples, not in a continuous domain. MAP-MRI [4,5] and 

Spherical Polar Fourier Imaging (SPFI) [6,7] are two state-of-the-art methods, which 

estimate continuous E(q) and P(R) from arbitrary sampling schemes by representing E(q) 

using orthonormal basis functions with analytic Fourier transform.

The Compressed Sensing (CS) technique recovers a signal from measurements by 

considering the sparsity of the signal under a dictionary. CS methods have been proposed in 

dMRI to recover diffusion signal and propagator using both discretized [8] and continuous 

bases [7]. The most important advantage of the continuous basis representation is that it 

allows the analytical Fourier transform without numerical error. In CS reconstruction, a 

dictionary that yields sparse representation of diffusion signals plays an important role. 

MAP-MRI was first proposed using an isotropic tensor in its basis [4], then using a general 

tensor [5]. SPFI first used SPF basis [9,6], then learned an adaptive sparser dictionary based 

on SPF basis from continuous Gaussian signal space [7]. All those evolutions make the 

dictionaries in MAP-MRI and SPFI sparser and more suitable for CS reconstruction. 

However, existing MAP-MRI in [5] still uses manually devised basis without performing 

dictionary learning, and existing SPFI in [6] and DL-SPFI in [7] use isotropic Gaussian 

diffusion in its dictionary, which is limited to represent diffusion signals with high 

anisotropy.

In this paper, we propose Tensorial SPFI which generalizes SPFI [6] by considering a 

general adaptive tensor setting instead of using just a simple scalar value, and we also 

propose TSPFI with optimal dictionary learning, called DL-TSPFI, to learn an even sparser 

dictionary from only a small subspace of SPF coefficients of Gaussian diffusion signals. The 

learned dictionary is proven to be capable to sparsely represent an arbitrary mixture of 

Gaussian diffusion signals, by considering an adaptive tensor setting. The learned dictionary 

is then adaptively applied to all voxels using a weighted LASSO optimization with adaptive 

tensor setting from DTI for CS reconstruction. Experiments demonstrated that TSPFI and 

DL-TSPFI provide sparser representation and yield low RMSE in CS reconstruction than the 

state-of-the-art SPFI [6] and DL-SPFI [7].

2 Tensorial Spherical Polar Fourier Imaging (TSPFI)

The SPF basis is a continuous orthonormal basis that can sparsely represent Gaussianlike 3D 

signal [9,6]. In SPFI, the diffusion signal is represented by the SPF basis 

{ Bnlm(q |ζ) = Gn(q |ζ)Y l
m(u)}, i.e.,

Cheng et al. Page 2

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E(qu |ζ) = ∑
n = 0

N
∑
l = 0

L
∑

m = − l

l
anlmGn(q |ζ)Y l

m(u), Gn(q |ζ) = 2n!
ζ3/2Γ(n + 3/2)

1/2
exp − q2

2ζ Ln
1/2(q2

ζ )

(1)

where q = qu, u ∈ 2, ζ is the scale parameter and Y l
m(u) is the real spherical harmonic basis. 

It was proven that the EAP can be analytically represented by dual SPF basis [6]:

P(Rr |ζ) = ∑
n = 0

N
∑
l = 0

L
∑

m = − l

l
anlmFnl(R |ζ)Y l

m(r) Bnlm
dual(R |ζ) = Fnl(R |ζ)Y l

m(r) (2)

where R = Rr, r ∈ 2, and the definition of Fnl(R|ζ) can be found in [6]. It can be seen that 

B000(q) is just an isotropic Gaussian function, which makes the SPF representation sparse 

for isotropic Gaussian signal E(q) = exp(−4π2τqTDq). However it requires more basis 

elements to represent a Gaussian signal with a highly anisotropic tensor. The representation 

error is actually inevitable for any finite order N and L, although increasing the orders can 

reduce the representation error. DL-SPFI was proposed in [7] to learn a sparser dictionary 

from Gaussian diffusion signals with different mean dif-fusivity and fractional anisotropy 

(FA), and adaptively set the scale value ζ based on the mean diffusivity. [7] also 

demonstrated that the DL-SPF dictionary keeps the same level of sparsity for Gaussian 

diffusion with different FA, while the sparsity in SPF dictionary decreases for signals with 

higher FA.

Theorem 1 (TSPF Basis and Dual TSPF Basis). Let D be 3 × 3 positive definite matrix 

with eigen-decomposition D = Q∧2QT, QTQ = I, then { |Λ|Bnlm(ΛQTq |ζ)} is an orthonormal 

basis set, called the Tensorial SPF (TSPF) basis. Its Fourier transform is 

{ 1
|Λ| Bnlm

dual(Λ−1QTR |ζ)} called the dual TSPF basis, which is also complete and orthonormal 

in the dual Fourier space.

We propose Tensorial SPFI (TSPFI) to further sparsely represent Gaussian-like signals. 

Theorem 1 demonstrates TSPF basis and dual TSPF basis which are the affinely transformed 

SPF basis and dual SPF basis1. TSPFI represents diffusion signal E(q) using TSPF basis in 

Eq. (3), then the diffusion propagator is analytically represented as dual TSPF basis in Eq. 

(4), where we set ζ0 = (8π2τ)−1 such that |Λ|B000(ΛQTq |ζ0) is proportional to Gaussian 

function exp(−4π2τqTDq).

1All proofs in this paper are omitted due to space limitation, available upon request.
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E(qu |D) = |Λ| ∑
n = 0

N
∑
l = 0

l
∑

m = − l

l
anlmGn(q)(q uTDu |ζ0)Y l

m ΛQTu
‖ΛQTu‖

(3)

P(Rr |D) = 1
|Λ| ∑nlm

anlmFnl(R rTD−1r |ζ0)Y l
m Λ−1QTr

‖Λ−1QTr‖
(4)

The representation using TSPF basis is sparse for Gaussian-like diffusion signals when we 

set tensor D appropriately, and the first basis is enough to represent Gaussian diffusion 

signals. Note that MAP-MRI basis [5] also uses an anisotropic Gaussian function as the zero 

order basis, while it can be proven that MAP-MRI basis can be linearly represented by the 

TSPF basis with a finite order, but the opposite is not true, which means TSPF basis is more 

general than MAP-MRI basis.

Similarly with [7], considering E(0) = 1, we have ∑0
N anlmGn(0) = 4πδl

0, 0 ≤ l ≤ L, −l ≤ m ≤ 

l. Then we can separate the coefficient vector a into a = (a0
T, a′T)T, where a0 = (a000, …, 

a0LL)T, a′ = (a100, …, aNLL)T, and represent a0 using a′, i.e.,

a0lm = 1
G0(0) 4πδl

0 − ∑
n = 1

N
anlmGn(0) , 0 ≤ l ≤ L, −l ≤ m ≤ l (5)

Then based on Eq. (3), a′ can be estimated from measurements of E(q) via weighted 

LASSO.

min
a′ ‖M′a′ − e′‖2

2 + ‖Ha′‖1 (6)

M′ =

|Λ| B100(ΛQTq1 |ζ0) −
G1(0 |ζ0)
G0(0 |ζ0)B000(ΛQTq1 |ζ0) ⋯ |Λ| BNLL(ΛQTq1 |ζ0) −

GN(0 |ζ0)
G0(0 |ζ0) B0LL(ΛQTq1 |ζ0)

⋮ ⋱ ⋮

|Λ|(B100(ΛQTqs |ζ0) −
G1(0 |ζ0)
G0(0 |ζ0)B000(ΛQTqS |ζ0) ⋯ |Λ|(BNLL(ΛQTqS |ζ0) −

GN(0 |ζ0)
G0(0 |ζ0) B0LL(ΛQTqS |ζ0)

, e′ =

E1 − exp ( − 4π2τq1
TDq1)

⋮

ES − exp ( − 4π2τqS
TDqS)

,

where {Ei} are signal measurements in q-space, e′ is the measurement vector removing its 

Gaussian part, M′ is the basis matrix used for reconstruction, H is the regularization matrix. 

After estimating a′, a0 can be obtained using Eq. (5), then E(0) = 1 is automatically 
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satisfied. For Gaussian diffusion signal, if D is estimated correctly, then e′ = 0, a′ = 0, and 

only a000 is non-zero. Thus Eq. (6) mainly focus on the non-Gaussian fitting.

3 TSPFI with Optimal Dictionary Learning (DL-TSPFI)

Based CS theory [10], a dictionary with sparser representation gives better reconstruction. 

Following DL-SPFI in [7], we consider a more general formulation:

min
c

‖M′Wc − e′‖2
2 + ‖Vc‖1 . (7)

Note that Eq. (7) actually considers a general dictionary represented as a linear combination 

of TSPF basis, i.e., M′W, where W is the combination matrix and c is the new coefficient 

vector under transformed dictionary. When W is identity, Eq. (7) becomes TSPFI in Eq. (6). 

As we discussed that MAP-MRI basis can be linearly represented by TSPF basis, W can be 

specifically designed such that M′W is the MAP-MRI basis removing its Gaussian part, 

then Eq. (7) becomes MAP-MRI.

Instead of using specific W in TSPFI and MAP-MRI, we would like performing dictionary 

learning to learn a good W as well as a good dictionary M′W from a set of given signals 

{ ei′}. such that the representation {ci} are all sparse, i.e.

minC, W, D ∑
i

‖ci‖1 s.t . ‖M′Wc j − e′ j‖2 ≤ ∈ , ∀ j . (8)

Considering real data always suffers from noise and a limited number of samples, similarly 

with [7], we perform dictionary learning in synthetic mixture of Gaussian signals. 

Considering simulated signals can be generated in continuous q-space and TSPF basis is an 

orthonormal basis showed in Theorem 1, Eq. (8) is equivalent to Eq. (9), where the 

dictionary learning can be performed in the space of TSPF coefficients with a small 

dimension, not the space of simulated measurements of E(q) with infinite dimension.

minC, W, D ∑
i

‖ci‖1 s.t . ‖Wc j − a′ j‖2 ≤ ∈ , ∀ j . (9)

The learned result (W*, D*) is actually determined by the chosen space of diffusion signals. 

We have several theoretical results to design a small space for training data to learn a general 

dictionary. 1) Theorem 2 proved that the single tensor model 

{ E(q) = exp ( − 4π2τqTDq) |D ∈ Sym+
3 }, where Sym+

3  is the space of 3 × 3 positive definite 

matrices, is sufficient to learn a dictionary to sparsely represent signals from mixture of 

tensor models. The theorem works for both DL-SPFI in [7] and DL-TSPFI. 2) Theorem 3 
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shows that the dictionary (W*, D*) can be learned from a small space S0 ⊂ Sym+
3 , then the 

learned dictionary can be affinely transformed to another tensor space. Note that for every 

single Gaussian signal, the sparsest c is 0 once we set the tensor D correctly. However this 

does not help us to handle arbitrary mixture of Gaussian signals with noise where a single 

tensor D cannot fully represent all Gaussian components. Thus we have to learn a common 

dictionary for a subspace of Sym+
3 , such that even when the tensor D is not correctly set, the 

learned dictionary still yields a sparse representation. 3) Theorem 4 demonstrated that we 

can fix a tensor D0 and learn a sparse dictionary W* from Gaussian signals with D in a 

geodesic ball d(D0, D) < Δ[11]. Then the learned dictionary can be adaptively applied to 

Gaussian signals with D in another geodesic ball d(D1, D) < Δ by adaptively setting tensor in 

TSPF basis as D1. The geodesic ball actually mimics the difference between the tensor used 

in TSPF basis and the ground truth tensor in each Gaussian component in the mixture of 

Gaussian model.

Theorem 2 (Sparsity of Mixture of Tensors [7]). A dictionary learned from signals 

generated by single tensor model can sparsely represent signals generated by arbitrary 

mixture of tensor model.

Theorem 3 (Optimal Dictionary). For signals generated from the single tensor model with 

tensors {exp(−4π2τqTDq) | D ∈ S0}, if the dictionary {W*, D*} is the optimal solution for 

(9), then for another space {exp(−4π2τqTADATq) | D ∈ S0} with non-singular A, {W*, 

AD*AT} is still the optimal solution.

Theorem 4 (Traning Space and Adaptive Tensor). Let D0 be a fixed tensor. If training 

signals are from {exp(−4π2τqTDq) | d(D0, D) < Δ}, where d(D0, D) is the Riemannian 

distance between D0 and D [11], and if we set D* = D0 and estimate W* in dictionary 

learning, then (W, D1) can sparsely represent signals from {exp(−4π2τqTDq) | d(D1, D) < 

Δ}

Because of Theorem 4, it is possible to choose any D0 and generate signals from the 

geodesic ball of D0. In practice, in order to better mimic the representation error of tensors, 

we simply set D0 = 0.7 × 10−3I as a typical isotropic tensor in human brain, and then 

generated Gaussian signals with mean diffusivity (MD) in range [0.5, 0.9] × 10−3mm2/s, FA 

in range [0, 0.9], uniformly orientated in 321 directions from sphere tessellation. Note that 

we used a relatively small range of MD, while a relatively large range of FA. It is because 

when using a tensor model to fit a mixture of Gaussian signal, the MD value of the tensor 

model normally has relatively less error than its FA value compared to the ground truth MD 

and FA in each Gaussian component. For example, considering a mixture of three Gaussian 

functions with FA = 0.9 and MD = 0.7 × 10−3 respectively along x, y and z axises, after DTI 

fitting, the estimated MD is still close to 0.7 × 10−3, but the estimated FA is close to 0. Note 

that when choosing isotropic D0, the TSPF coefficients {ai} become SPF coefficients with 

the corresponding scale, and the dictionary learning process is the same as the one used in 

DL-SPFI [7]. The SPF coefficients of the Gaussian signals were calculated via numerical 

inner product with N = 4, L = 8. Then we performed an efficient online learning method 

implemented in the SPAMS toolbox [12] to learn W with 250 atoms using the initialization 
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of identity matrix. We added the atoms {Bn00(q)}
n = 1
N  back to sparsely represent isotropic 

signals. Thus we have total 254 columns in the learned W. Then we estimated the energy 

{hj} of dictionary atoms via the coefficients {ci}, and set V in Eq. (7) as a diagonal matrix 

with elements V j = S
h j

λ, where λ is a tuning regularization parameter, S is the dimension of 

measurements. This is to penalize the dictionary atom with low energy of coefficients. With 

the learned W and V, Eq. (7) first performs DTI to estimate a tensor D for TSPF basis 

matrix M′, then performs weighted LASSO for CS reconstruction of c, then a′ = Wc, and a 
can be obtained accordingly based on Eq. (5).

4 Experiments

Signal Sparsity in Miture of Gaussian Model

We would like to demonstrate the importance of adaptive tensor setting and validate the 

theorems. We generated Gaussian diffusion signals with different FA in range [0, 0.9], along 

different directions, and with two MD values respectively 0.6 × 10−3 and 1.1 × 10−3. These 

signals from single tensor model with the same FA and MD but different orientations were 

also randomly mixed to obtain mixture of Gaussian signals. Then with N = 4, L = 8, we 

performed adaptive scale setting to obtain adaptive SPF basis and DL-SPF basis, and 

performed adaptive tensor setting to obtain adaptive TSPF basis and DL-TSPF basis. Then 

for each signal, we calculated the coefficients a′ respectively for SPF basis and TSPF basis 

using numerical inner product, then calculated the coefficients c respectively for DL-SPF 

and DL-TSPF basis using Eq. (9). For the obtained coefficients under each basis, we 

calculated the number of non-zero values as the sparsity of the representation. The value in a
′ or c is considered to be non-zero if its absolute value is larger than 0.01‖a′‖ or 0.01 ‖c‖. 
The sparsity of signals with two MD values were showed in the top two subfigures of Fig. 1. 

The top left subfigure showed that although DL-TSPF basis was learned from signal 

Gaussian diffusion signals, it can sparsely represent signals from mixture of Gaussian 

functions, which validated Theorem 2 The top right subfigure showed that although the MD 

value 1.1 × 10−3 is outside of the MD range used in dictionary learning, the sparse 

representation still holds by adaptively setting diffusion tensor in DL-TSPF basis, which 

validates Theorem 3 and 4. Both subfigures demonstrated the DL-TSPF basis obtains 

sparser representation than DL-SPF basis [7], and TSPF basis is sparser than SPF basis.

RMSE in Cylinder Model

We evaluated the different basis using the Soderman cylinder model [13] which is different 

from the Gaussian signals used in dictionary learning. Using the DSI sampling scheme in [8] 

with bmax = 8000s/mm2, 514 measurements, we generated ground truth DWI signals from 

the cylinder model with the default parameters in [13]. Then we estimated the coefficients 

under different basis from an under-sampled dataset with 170 samples and reconstructed the 

DWI signals in all 514 samples. Root-Mean-Square Error (RMSE), which is defined based 

on the difference of the estimated signal and ground truth signal in these 514 samples, was 

used to quantify the reconstruction accuracy. We also added Rician noise with signal-to-

noise ratio (SNR) of 20 and performed Monte-Carlo simulation. We set λ = λl = λn = 10−8 
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for the noise-free dataset and 10−5 for the noisy dataset for all methods. The second row of 

Fig. 1 indicates that DL-TSPFI yields the lowest RMSE than DL-SPFI and L1-SPFI in both 

noiseless and noisy conditions.

RMSE in Real Data

We also tested CS reconstruction using DL-TSPFI on a real DSI data set released by Bilgic 
2, which was also used to validate DL-SPFI [7]. This dataset uses the same DSI sampling 

scheme as the above cylinder data experiment. With DL-SPFI and DL-TSPFI, we perform 

CS reconstruction with λ = 10−6 respectively using full 514 measurements and a subset of 

170 samples, then we calculated two RMSEs, one is based on the difference of coefficients 

using full measurements and the subset of measurements, and the other one is based on the 

difference of recovered DWI signals in these 514 points using full samples and subsamples. 

Fig. 2 showed that DL-TSPFI obtains less RMSE than DL-SPFI, especially for RMSE 

defined using coefficients in white matter area.

5 Conclusion

In this paper, we propose a novel Tensorial SPFI (TSPFI) which allows a continuous 

representation for both the diffusion signal and the diffusion propagator. TSPFI is a 

combination of existing DTI and SPFI. We also propose a dictionary learning strategy, called 

DL-TSPFI, to learn a sparser dictionary from mixture of Gaussian signals. The learned 

dictionary can be optimally and adaptively applied to different voxels by adaptive tensor 

setting. The proposed TSPFI and DL-TSPFI yield a sparser representation with lower CS 

reconstruction error than existing SPFI and DL-SPFI. The source codes of TSPFI and DL-

TSPFI will be available in the DMRITool package3.
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Fig. 1. Synthetic Experiments
First row: the average number of non-zero coefficients for SPF, DL-SPF, TSPF and DL-

TSPF basis. Second row: RMSE of different methods using the Söderman cylinder model 

with and without noise.
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Fig. 2. Real Data Experiment
RMSE calculated from estimated SPF coefficients and recovered 514 DWI samples.
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