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ABSTRACT
Recent studies have shown that it is possible to engineer substantial increases in triacylglycerol (TAG)
content in plant vegetative biomass, which offers a novel approach for increasing the energy density of
food, feed, and bioenergy crops or for creating a sink for the accumulation of unusual, high-value fatty
acids. However, whether or not these changes in lipid metabolism affect plant responses to biotic and/or
abiotic stresses is an open question. Here we show that transgenic Arabidopsis thaliana plant lines
engineered for elevated leaf oil content, as well as lines engineered for accumulation of unusual
conjugated fatty acids in leaf oil, had similar short-term responses to heat stress (e.g., 3 days at 37�C) as
wild-type plants, including a reduction in polyunsaturated fatty acid (PUFA)-containing polar lipids and an
increase in PUFA-containing neutral lipids. At extended time periods (e.g., 14 days at 37�C), however, plant
lines containing accumulated conjugated fatty acids displayed earlier senescence and plant death.
Further, no-choice feeding studies demonstrated that plants with the highest leaf oil content generated
cabbage looper (Trichoplusia ni) insects with significantly heavier body weights. Taken together, these
results suggest that biotic and abiotic responses will be important considerations when developing and
deploying high-oil-biomass crops in the field.
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Plant oils are valuable agricultural commodities that are typi-
cally used for nutritional purposes, but given the increased
demand for biofuels and bioproducts, there is significant inter-
est in developing novel strategies for producing high amounts
of oil in non-food crop plants.1 One promising approach is to
increase the neutral lipid content in the leaves and stems of
plants, which dominate the harvestable biomass of most crops.
Although these organs typically lack appreciable amounts of
oil, recent studies have shown that plants are remarkably ame-
nable to metabolic engineering strategies that make them “fat”,
with increases in leaf triacylglycerol (TAG) content up to 30%
oil (dry weight) in tobacco leaves.2-4 Further, leaf oil has been
recently shown to serve as an efficient sink for the accumula-
tion of unusual, high-value fatty acids, which expands the num-
ber and types of oils that can be produced in the vegetative
biomass of plants.5,6

While these results show great promise for developing high-
oil, high-biomass crops, there is little information available on
how these plants might respond to adverse field conditions.
Given that TAG metabolism is involved in multiple aspects of
plant growth, development, and stress responses,7,8 and also
influences the caloric value of food,9 we were interested in
understanding how high-leaf-oil transgenic plant lines respond
to elevated temperature and insect predation. Toward this end,
we employed three plant lines from our previous study,6

including i) wild-type Arabidopsis thaliana, ecotype Columbia

(WT); ii) the same line transformed with constitutively-
expressed tung (Vernicia fordii) tree diacylglycerol acyltransfer-
ase 2 (WT/DGAT2), which catalyzes the final, committed step
in TAG biosynthesis10,11 and iii) the WT/DGAT2 line trans-
formed with a constitutively-expressed tung fatty acid conju-
gase (WT/DGAT2/FADX), which synthesizes eleostearic acid
(ESA), an unusual, conjugated fatty acid that has a variety of
both industrial and nutritional end-uses.12,13

As shown in Fig. 1, expression of tung DGAT2 in control
(i.e., non-heat stressed), 35-day-old Arabidopsis leaves elevated
neutral lipid content 8-fold above WT, while co-expression of
DGAT2 and FADX resulted in a 36-fold increase in neutral lip-
ids (compare 0 hour values in Fig. 1). These results are consis-
tent with data reported by Yurchenko et al.,6 who showed that
co-expression of tung FADX and DGAT2 resulted in a synergis-
tic increase in oil content and accumulation of ESA in Arabi-
dopsis leaves. As shown also in Fig. 1, exposure of plants to
high temperature (37�C) over a 24-hour period resulted in
additional increases in neutral lipid content in all three plant
lines. However, despite the 8- and 36-fold differences in start-
ing neutral lipid contents, each plant line accumulated approxi-
mately similar amounts of neutral lipid by the end of the heat
stress, i.e., an additional 2–3 mg neutral lipid per mg dry weight
(Fig. 1). This increase in neutral lipid content was paralleled by
decreases in polar lipid content in all three plant lines (Fig. 2A).
Further investigation of fatty acid composition showed that the
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neutral lipids accumulating in response to elevated temperature
were predominantly enriched in polyunsaturated fatty acids
(PUFAs), e.g., 18:2 and 18:3 fatty acids, while the polar lipids
were generally reduced in these same fatty acids (Fig. 2B).
These trends are similar to other studies of heat responses in
plants and are consistent with membrane remodeling pro-
cesses, whereby membrane destabilizing lipids such as PUFA-
containing monogalactosyl diacylglycerols are converted to
diacylglycerols (DAGs), which are subsequently converted to
TAG and stored in cytoplasmic lipid droplets.14-17 These altera-
tions in polar lipid composition help to maintain the overall
fluidity and integrity of cellular membranes, a process referred
to as homeoviscous adaptation.14-17 Thus, the engineered plant
lines appear to fully retain the capacity to adapt at the biochem-
ical level to elevated temperature, despite their large, pre-exist-
ing differences in neutral lipid content. Furthermore, the
increase in neutral lipid content in response to heat stress also
increased the accumulation of ESA (Fig. 2B, bottom left panel),

suggesting that the DAG utilized for TAG synthesis can also
serve as a substrate for incorporation of ESA.

As shown in Fig. 3, both engineered plant lines, i.e., WT/
DGAT2 and WT/DGAT2/FADX, displayed similar overall mor-
phologies in comparison to WT plants after three days of pro-
longed heat stress. After 14 days, however, WT/DGAT2/FADX
plants showed more pronounced yellowing, necrosis and plant
death in comparison to WT or WT/DGAT2 plants (Fig. 3).

Taken together, the results from biochemical and physiolog-
ical studies (Fig. 1–3) suggest that the engineered plant lines
have similar short-term responses to elevated temperature as
WT plants, and this abiotic stress treatment can even increase
the yields of oil and ESA in vegetative biomass. At extended
time periods, however, the engineered lines containing ESA
showed greater susceptibility to heat stress.

To determine whether the high-leaf-oil plant lines might
also be more or less susceptible to biotic stress, we conducted
no-choice feeding studies whereby newly-hatched cabbage
looper (Tricholplusia ni) caterpillars, a generalist lepidopteran
herbivore, were fed a diet of WT or engineered plants and then
weighed after 8 days.18 As shown in Fig. 4, insects cultivated on
WT/DGAT2/FADX plants, the highest oil and only ESA-con-
taining line (Fig. 1 and 2), were significantly heavier than
insects fed on WT or WT/DGAT2 plants. This indicates that
the increased oil content and perhaps the resulting increased
energy density may have caused the insects to perform better;
however, multiple factors, such as changes in stress signaling
molecules such as jasmonate (which are oxylipins derived from
fatty acids), or specialized metabolites with anti-herbivory
properties (e.g., glucosinolates), could have contributed to the
final outcome19,20 and, thus the exact reason needs to be further
clarified. Still, these and other studies9 suggest that elevating
leaf oil content might alter plant-pest interactions and be an
important consideration when developing and testing these
kinds of crops in the field. One possibility for protecting high-
oil crops from animal predation might be to engineer higher
percentages of unusual fatty acids in leaf oil, which might ren-
der the oil less digestible or cause other physiological disturban-
ces.21 For instance, our WT/DGAT2/FADX line contains
approximately 12% ESA in the neutral lipid fraction of leaves,
while seed oil of the tung tree contains about 80% ESA.22 Nota-
bly, many plant species are known to produce seed oils contain-
ing up to 80% of a single unusual fatty acid22 and some of these
fatty acids, such as the hydroxy fatty acids in castor bean seed
oil, are known to act as laxatives and can induce labor in preg-
nant females.21 Whether such alterations in leaf oil composition
might discourage animal predation remains to be determined
and this would, of course, be applicable only in those cases
where high-oil crops are engineered for production of indus-
trial feedstocks or biofuels, not for food or feed.

Finally, there is increasing evidence that TAGs and lipid
droplets in leaves play important roles during both biotic and
abiotic stress responses, providing substrates for lipid signaling
pathways, a cellular platform for remodeling membrane lipids,
or serving as centers for organizing proteins involved in stress
responses.7,8,23,24 As such, it is likely that new lipid droplet pro-
teins will be identified in the future that, when co-expressed in
high-leaf-oil lines, might render the plants more resistant to
biotic and/or abiotic stresses.

Figure 1. Changes in total neutral lipid content in response to heat stress. Arabi-
dopsis plants of the indicated lines were grown in a growth chamber with a 16 h/
8 h day-night cycle at 22�C/20�C, respectively. Then, after 35 days, a portion of the
plants from each line were transferred to a second chamber with the same light
cycle, but at a 37�C/33�C temperature regime. Fully-expanded leaves from each
line were harvested and lipids extracted at 3, 6 and 24 hours, as indicated, then
fractionated into neutral lipid and polar lipid classes and analyzed by gas chroma-
tography with flame ionization detection. Values represent the means and stan-
dard error of the means based on a pooled estimate of the variance among
replicates (n D 2).
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Materials and methods

Heat treatment and analysis of lipids

Arabidopsis thaliana plant lines included ecotype Columbia
(WT), the same line transformed with tung DGAT2 (WT/
DGAT2), or the WT/DGAT2 line transformed with tung FADX
(WT/DGAT2/FADX).6 Plants were grown in pots in soil and
randomized in a growth chamber, with a 16 h/8 h day-night
cycle at 22�C/20�C. After 35 days, a portion of the plants from
each line were transferred to a second chamber with the same
light conditions, but a 37�C/33�C temperature regime. Six to
eight fully expanded leaves, corresponding to one biological
replicate (approximately 500 mg fresh weight), were harvested
from each plant line at 3, 6 and 24 hours, then samples were

snap-frozen in liquid nitrogen and stored at ¡80�C until used.
Two biological replicates were used for the experiments. Inter-
nal standards including 17:0 TAG (Sigma-Aldrich, St. Louis,
MO) and 15:0 phosphatidylcholine (Avanti, Alabaster, AL)
were added, then total lipids were extracted using a hot isopro-
panol method,7 which suppresses phospholipase activity.25

Total lipids were separated into polar and neutral lipid fractions
using solid-phase extraction cartridges, then fatty acid methyl
esters were prepared using sodium methoxide.6 Fatty acids
were identified and quantified by gas chromatography with
flame ionization detection, using the appropriate internal stan-
dard as a reference. Data are reported as means and standard
error of the means based on a pooled estimate of the variance
among replicates (n D 2).

Figure 2. Comparison of changes in total neutral and polar lipid content (A) or fatty acid composition (B) after six hours of control or heat treatment. Arabidopsis plants
from each of the three lines (as indicated) were cultivated and analyzed as described in the legend for Fig. 1. Values represent the means and standard error of the means
based on a pooled estimate of the variance among replicates (n D 2).
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Insect feeding studies

Cabbage looper caterpillar feeding studies were carried out
essentially as described.18 Briefly, newly-hatched cabbage
looper (Trichoplusia ni) caterpillars (n>50) were allowed to
feed on individual 3-4-week-old Arabidopsis WT, WT/DGAT2,
or WT/DGAT2/FADX plants lines for 8 days in a growth cham-
ber maintained at 21�C with a 10 h/14 h day-night cycle.
Thereafter, insects were recovered and individually weighed.
Student’s t-tests were used to determine significant difference
of weights of insects grown on WT/DGAT2 or WT/DGAT2/
FADX plants in comparison to WT plants (P � 0.01).
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Figure 3. Changes in plant morphology in response to prolonged heat stress. Ara-
bidopsis plants from each line (as indicated) were cultivated and heat stressed as
described in the legend of Fig. 1. Pictures were taken at daily intervals to monitor
susceptibility to heat stress, and images shown for 3 and 14 days are representa-
tive of four independent replicates. Note that two independent transgenic lines
were used to evaluate the WT/DGAT2/FADX genotype/transgene combination.6

Figure 4. Comparison of cabbage looper caterpillar weights after cultivation on
WT, WT/DGAT2 or WT/DGAT2/FADX plant lines. Newly-hatched cabbage looper (Tri-
choplusia ni) caterpillars were allowed to feed on individual 3-4-week-old Arabi-
dopsis WT, WT/DGAT2, or WT/DGAT2/FADX plant lines for 8 days after which the
insects were recovered and individually weighed. Shown are representative
images of insects cultivated on the different plant lines (A) and quantification of
average insect weights (B). (Mean § standard deviation, n>50; asterisks denote
significant difference in comparison to WT [(P � 0.01]).
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