
Novel predictors of breast cancer survival derived from miRNA 
activity analysis

Vasily N. Aushev1,2, Eunjee Lee3, Jun Zhu3, Kalpana Gopalakrishnan1, Qian Li1, Susan L. 
Teitelbaum1, James Wetmur4, Davide Degli Esposti5, Hector Hernandez-Vargas5, Zdenko 
Herceg5, Humberto Parada6, Regina M. Santella7, Marilie D. Gammon6, and Jia Chen1,8,9,10,*

1Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount 
Sinai

2Carcinogenesis Institute of N.N. Blokhin Russian Cancer Research Center

3Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai

4Department of Microbiology, Icahn School of Medicine at Mount Sinai

5Epigenetics Group, International Agency for Research on Cancer

6Department of Epidemiology, University of North Carolina at Chapel Hill

7Department of Environmental Health Sciences, Columbia University

8Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

9Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount 
Sinai, New York, NY 10029, USA

10Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 
10029, USA

Abstract

Purpose: Breast cancer is among the leading causes of cancer death; discovery of novel 

prognostic markers is needed to improve outcomes. Combining systems biology and 

epidemiology, we investigated microRNA-associated genes and breast cancer survival in a well-

characterized population-based study.

Experimental Design: A recently developed algorithm, ActMiR, was used to identify key 

microRNAs “activities” corresponding to target gene degradation which were predictive of breast 

cancer mortality in published databases. We profiled microRNA-associated genes in tumors from 

our well-characterized population-based cohort of 606 women with first primary breast cancer. 

Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence 

intervals (CI), after 15+ years of follow-up with 119 breast cancer-specific deaths.

*Corresponding Author: Jia Chen, ScD, Professor, Department of Environmental Medicine and Public Health, Box 1057, Ichan School 
of Medicine at Mount Sinai, Telephone: 212-241-7592; jia.chen@mssm.edu. 

Disclosure of Potential Conflicts of Interest:
The authors have no competing financial interests to declare

HHS Public Access
Author manuscript
Clin Cancer Res. Author manuscript; available in PMC 2019 February 01.

Published in final edited form as:
Clin Cancer Res. 2018 February 01; 24(3): 581–591. doi:10.1158/1078-0432.CCR-17-0996.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results: miR-500a activity was identified as a key microRNA for estrogen receptor positive 

breast cancer mortality using public databases. From a panel of 161 miR-500a associated genes 

profiled, 73 were significantly associated with breast cancer-specific mortality (FDR<0.05) in our 

population, among which two clusters were observed to have opposing directions of association. 

For example, high level of SUSD3 was associated with reduced breast cancer-specific mortality 

[HR 0.3, 95% CI: 0.2-0.4], while the opposite was observed for TPX2 [HR 2.7, 95% CI: 1.8-3.9]. 

Most importantly, we identified set of genes for which associations with breast cancer-specific 

mortality were independent of known prognostic factors including hormone receptor status and 

PAM-50 derived Risk of Recurrence scores. These results are validated in independent datasets.

Conclusions: We identified novel markers that may improve prognostic efficiency while 

shedding light on molecular mechanisms of breast cancer progression.

Introduction

Recent advances in molecular phenotyping of breast cancer have significantly advanced our 

capabilities to treat breast cancer based on molecular features of the tumor and ultimately to 

improve survival (1). Different gene expression panels, such as Oncotype DX™, 

MammaPrint™ and Prosigna™, have been developed and approved for clinical use for 

predicting risk of recurrence for early stage breast cancer (2). Using different platforms and 

detection techniques, these panels allow relatively robust prediction of the risk of breast 

cancer relapse in the short term (0-5 years), but lower prediction power for long-term 

follow-up (3). Development of a risk score plays an important role in choosing treatment 

modality: high-risk patients typically undergo more aggressive chemotherapy, while low-risk 

patients fare well with hormonal treatment alone (4). While the treatment regimen for high- 

and low-risk groups is chosen with a high degree of certainty, the choice of treatment for the 

patients with intermediate risk is more difficult; heterogeneity of outcome within this group 

means a certain number of patients will be misclassified (5). Thus there is urgent need to 

identify additional molecular markers that can refine the risk prediction for long-term 

survival. Given that currently approved diagnostic gene panels involve between 21 and 70 

genes, it would be beneficial to develop a simpler prognostic panel with a smaller number of 

genes to better characterize breast cancer mortality risk.

MicroRNAs are known as “universal regulators” of gene expression and are involved in 

post-transcriptional regulation of multiple fundamental cellular processes in cancer 

pathophysiology including cell proliferation, differentiation, apoptosis and the stemness of 

the cancer cells. These processes in turn, can be linked to tumor initiation, progression, and 

metastasis (6). Because their mechanism of action involves limited complementarity, each 

miRNA can potentially repress hundreds of mRNA targets. It is now clear that miRNAs are 

involved in virtually all signaling pathways including those crucial for cell transformation 

and cancer progression (6). It is thus not surprising that recent studies have attempted to 

include miRNAs as potential biomarkers of progression (7). However, miRNA expression 

level is not equivalent to its functional activity (8). Instead, the relative abundance of 

miRNAs to its target genes determines the functional activity levels of miRNAs (9). We have 

recently reported a novel computational approach, ActMiR, for identifying active miRNAs 

and miRNA-mediated regulatory mechanism and have shown stronger associations between 
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the “activity” of miRNAs with clinical outcomes (including breast cancer survival) 

compared to the level of expression (10). For example, we identified that high activities of 

let-7d and miR-18a were associated with better survival outcomes for estrogen receptor 

negative human epidermal growth factor receptor 2 negative (ER−/HER2−) breast cancer. As 

we report in the current study, the same ActMiR algorithm also suggests that high miR-500a 

activity would be associated with poor survival among ER+ breast cancer patients. Because 

miR-500a activity cannot be directly measured but only inferred through expression of its 

associated genes, we designed the translational study reported here to investigate the 

association of miR-500a mediated gene expression with long-term breast cancer survival.

Materials and Methods

Study population

We utilized resources from the follow-up component of the Long Island Breast Cancer Study 

Project (LIBCSP), which includes a population-based cohort of women newly diagnosed 

with first primary breast cancer who participated in the baseline interview within two to 

three months of diagnosis (11) and were subsequently re-interviewed about five years later 

and followed for vital status (12). Participants were 1508 women newly diagnosed with first 

primary breast cancer between August 1, 1996 and July 31, 1997, who resided in Nassau 

and Suffolk counties of Long Island, NY, predominantly (90%) Caucasian, and aged 25-98 

(median age 58). Potentially eligible women were identified through daily or weekly contact 

with pathology/cytology departments of 33 collaborating institutions, and confirmed by 

medical record. The National Death Index (NDI) was used to ascertain all-cause and breast 

cancer-specific mortality among study participants, who were followed from diagnosis until 

December 31, 2014, for an average of 162 months (range 2.7 – 224 months, median 213 

months). We obtained sufficient RNA for profiling from paraffin-embedded tumor tissue 

from 616 of the 1508 patients (for the other LIBCSP patients, tumor slides were not made 

available by the diagnosing hospitals (n=763) or the extracted RNA was of insufficient/low 

quality (n=139); of these, 606 further passed QC. Demographic description of both the 

overall patient cohort and the subset with sufficient tissue RNA is presented in Table S1. 

Among the 606 women with successfully profiled tumor tissue, 275 deaths occurred by the 

end of the follow-up period, of which 119 (43%) were related to breast cancer (ICD codes 

174.9 and C-50.9 listed as a primary or secondary code on the death certificate). The study 

protocol was approved by the Institutional Review Boards of the collaborating institutions.

Activity of microRNAs

We recently developed a computational method, ActMiR, which infers miRNA activity 

based on expression levels of miRNAs and their potential target genes (10). In brief, three 

pieces of information are used in this method: (i) a list of predicted targets of a given 

miRNA; (ii) expression levels of this miRNA samples of interest; (iii) mRNA expression 

levels of predicted targets in the same samples. This approach infers “functional activity” of 

a given miRNA using a regression-based model based on the expression levels of all miR 

predicted target genes. For the predicted target list of miRNAs, we used a collection of 

predicted target genes for 1537 unique mature miRNAs from TARGETSCAN 

(www.targetscan.org) that considers all conserved miRNA binding sites inherited from 23-
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way alignments of UTR sequences (13). In order to obtain robust results, we filtered out 

miRNAs whose number of target genes was smaller than 10. High miRNA activity 

corresponds to the high degradation effect on their target genes. To identify microRNAs of 

which activity was associated with breast cancer survival, we used “The Cancer Genome 

Atlas” database (tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp) and data described in Dvinge et 
al. (14).

Selection of miR-500a mediated genes

We previously published a novel computational method, ActMiR, for inferring microRNA 

activity (10). High miR-500a “activity” was predicted to be associated with increased ER+ 

breast cancer mortality (see Supplementary Methods). Because the “activity” of miR-500 

can only be inferred by expression of its mediated genes, we selected miR-500a mediated 

genes to be profiled in the LIBCSP tumor samples. They included genes that were 

significantly correlated with imputed miR-500a activity and also those differentially 

expressed after modulation of miR-500a in breast cancer cells. A total of 161 miR-500a 

mediated genes were selected. We also included all genes of the PAM50 panel by 

NanoString (15) in order to take into account of known risk-of-recurrence factors; 22 genes 

of the PAM50 set overlapped with the miR-500a-mediated gene set. Lastly, 6 genes were 

used as housekeeping controls and for normalization: CLTC, GAPDH, GUSB, HPRT1, 

PGK1 and TUBB. These bring the total number of genes profiled to 195; the complete list is 

shown in Table S2.

Tissue processing and RNA extraction

Formalin-fixed paraffin-embedded (FFPE) tumor sections from the population-based cohort 

were histopathologically reviewed by a trained pathologist and the cancer tissue was 

separated using manual microdissection (16). Total RNA was extracted from tumor tissues 

using the Qiagen miRNeasy FFPE kit (Qiagen, MD). RNA concentration and quality were 

determined with a NanoDrop spectrophotometer (Thermo Scientific, MA). In total, 606 

samples with sufficient RNA concentration were used in our analyses.

Gene expression profiling

Gene expression analysis was performed with the NanoString nCounter platform (Seattle, 

WA), using a custom-designed codeset and following the manufacturer’s instructions. 

Briefly, 100 ng RNA was incubated with reporter and capture probes overnight at 65°C. 

Following hybridization, unbound probes were removed, and the purified complexes were 

aligned and immobilized on imaging cartridges using an nCounter Prep station. Code count 

detection was carried out by scanning cartridges in an nCounter Digital Analyzer to 

determine gene expression levels. As a quality control filter, we excluded all samples having 

less than 50000 total counts for positive probes, or having less than 1.5*blank counts for 

housekeeping and endogenous genes. Raw counts were imported from RCC files with the 

NanoStringQCPro R package (version 1.6.0), background was subtracted as mean of 

negative controls counts, geometrical mean of housekeeping genes counts was used for 

normalization, and values were log-transformed for further analysis.
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Coexpression of profiled genes was analyzed in R by building a covariance matrix; principal 

component analysis was performed with “pca” function of “pcaMethods” package (17).

Molecular characteristics of tumors and risk-of-recurrence score

We were able to obtain hormone receptor (HR) status determined by immunohistochemistry 

(IHC) from medical records for 475 out of 606 profiled samples, among which 75% and 

62% were positive for estrogen receptor (ER+) and progesterone receptor (PR+), 

respectively. In addition, mRNA levels corresponding ESR1 and PGR were measured by 

NanoString in all tumor samples. For analyses in this study, we redefined ER/PR status 

based on ESR1/PGR mRNA expression levels (see Supplementary Methods). The 

expression-based method resulted in prevalence of 78% for ER+ (kappa=0.77) and 67% for 

PR+ (kappa=0.66) breast tumors (Fig. S1, Fig. S2).

Recently, more advanced prognostic tools based on larger gene panels, such as PAM50-

derived “Prosigna™” , have been approved for clinical use and shown to improve breast 

cancer survival (18). In this study, we profiled expression of PAM50 (15) genes and 

determined molecular subtype and risk-of-recurrence (ROR) score using R code of Joel S. 

Parker from https://genome.unc.edu/pubsup/breastGEO/PAM50.zip archive (15). Risk-of-

recurrence score was calculated in the “Subtype + Proliferation” variant.

Survival analysis

Cox proportional hazards models (19) were used for estimating the multivariate-adjusted 

hazard ratios (HRs) and 95% confidence intervals (CIs) for breast cancer-specific mortality 

associated with gene expression among the 606 women in our population-based cohort. 

Survival analysis was performed using “survival” package in R (20). For each gene, range 

of cutoff thresholds (from second to eighth decile) was tested and the threshold with the 

lowest p-value was used (21). For each gene, a Cox model was built using coxph function 

with age and tumor stage (invasive or in situ) included as cofactors. Multiple comparison 

adjustment was applied, where indicated, with the false discovery rate (FDR) threshold at 

0.05.

All models were initially adjusted for age at diagnosis (continuous) and tumor stage. We 

further evaluated potential confounding using the methods described by Rothman and 

Greenland (22) starting with a full multivariate model and using backward elimination. 

Potential confounder considered included: menopausal status (pre-/post-menopausal), family 

history of breast cancer in a first-degree relative, body mass index (BMI) at diagnosis, tumor 

size and education. If eliminating a covariate from the full Cox regression model changed 

the effect estimate by 10% or more, the covariate was considered a confounder and kept in 

the model. Otherwise that covariate was dropped from the multivariate model. None of the 

covariates tested met such criterion, thus, only results adjusted for age and tumor stage were 

presented.

We also performed stratified analyses by ER/PR status as well as ROR scores discussed 

above. Kaplan-Meier survival (23) plots were built for visualization of unadjusted 

associations between gene expression and breast cancer-specific mortality.
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To estimate receiving operator characteristics (ROC), we first used R package pROC (24). 
This package allows to perform a standard ROC analysis and calculates the Area Under the 

Curve (AUC) for binary outcome, i.e. censored (death by breast cancer) vs. uncensored 

(survived at the end of followup). However, this is not the optimal estimator for such time-

dependent variable as patients survival, therefore we further re-analyzed our data using the 

survivalROC package (25). This package takes into account the survival duration and is 

considered more appropriate for this type of data (25). We used Nearest Neighbor 

Estimation (NNE) variant of the survivalROC function, with time point of 365 days and span 

parameter of 0.07.

Results

Activity of miR-500a and breast cancer mortality

The large public cancer dataset, the Cancer Genome Atlas (TCGA), contains multiple types 

of data (e.g. DNA copy number arrays, DNA methylation, exome sequencing, messenger 

RNA array, microRNA sequencing and reverse-phase protein arrays) performed on the same 

set of samples and provides comprehensive molecular portraits of several subtypes of breast 

cancers (26). We previously reported that high activities of let-7d and miR-18a were 

associated with better survival outcomes ER−/HER2− breast cancer (10). However, the 

majority of breast tumors in the United States are hormone receptor positive. We previously 

showed that the miRNA-mRNA correlation structure for ER+ and ER-/HER2- is markedly 

different, suggesting miRNA regulatory mechanisms are cancer-subtype specific (10).

We subsequently evaluated relationships between miRNA and mRNAs expression levels in 

ER+ breast cancer using public databases. For each miRNA-mRNA pair, we calculated 

Pearson correlations between miRNA and mRNA expression levels. We inferred miRNA 

activity based on ActMiR method that we developed (10). miR-500a emerged as a key 

prognostic miRNAs for ER+ breast cancer. In the TCGA dataset, high “activity” of 

miR-500a was strongly associated with increased breast cancer mortality (Fig. 1A); a similar 

association was observed using data from Dvinge et al. (14). It is worth noting that in 

comparison with the “activity”, the “expression” level of miR-500a showed no associations 

with breast cancer survival (Fig. 1B).

Expression of miR-500a associated genes and breast cancer mortality

Given that the activity of miR-500a can only be inferred by its associated genes, we profiled 

195 candidate genes (161 were miR-500a associated genes) in tumors from 606 LIBCSP 

patients. As shown in Table 1, among the profiled patients, 70% are postmenopausal, 20% 

have first degree relatives with breast cancer, and 75% and 62% are ER+ and PR+, 

respectively; these distributions are all similar to the overall patient cohort (11). The only 

notable difference is that there were fewer in situ (7% vs. 16%) and small (≤2 cm) tumors 

(72% vs. 80%) represented in the profiled patients compared to the overall cohort, likely due 

to the limited RNA yield in small and in situ tumors.

From the 195 genes profiled, 98% (n=186) were detectable in more than 50% of the samples 

(Fig. S3). Among the detectable genes, median raw counts varied from 10 (KAT8 probe) to 
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12547 (FTH1P11 probe) for candidate genes and the 6 housekeeping genes ranged from 66 

(HPRT1 probe) to 1956 (GAPDH probe).

Using Cox proportional hazards models, we calculated HRs for each of miR-500a associated 

genes in relation to breast cancer-specific mortality, adjusted for age and tumor stage, among 

the LIBCSP population-based cohort of women with breast cancer. Fig. 2 displays log-

transformed p-values (y-axis) and HRs (x-axis) for these associations. Detailed results are 

reported in Table S3. From 161 miR-500a associated genes, 74 displayed significant 

(FDR<0.05) associations with breast cancer-specific mortality. With increasing gene 

expression levels, 31 were associated with reduced breast cancer-specific mortality (HR<1), 

whereas 43 showed elevated risk of mortality (HR>1). Many well-known breast cancer-

related genes (e.g. ESR1, AR) were among those demonstrating significant association with 

mortality. The strongest (by p-value) inverse association for breast cancer-specific mortality 

was for SUSD3 (HR=0.3, 95% CI 0.2 - 0.4, p=5.2e-10), and the strongest positive 

association was for BIRC5 (HR=3.3, 95% CI 2.3 - 4.8, p=5.7e-10). These 74 genes also 

demonstrated high degree of correlation with each other; the correlation matrix (Fig. 3) 

indicates two distinct expression clusters with opposing association with breast cancer 

mortality; such clustering was also supported by principal component analysis (Fig. S4): 

PC1 showed a positive association with breast cancer mortality (HR = 4.2, 95% CI 2.9-6.2, 

p=4.8e-14), whereas PC2 showed the opposite (HR = 0.5, 95% CI 0.4-0.8, p=5.3e-4).

We selected the genes to be profiled based on their association with miR-500a “activity”, 

both positive as well as negative associations. While a negative association suggests “direct 

targets” which represents the conventional mechanism of miRNA function, a positive 

association, which was also frequently observed, implicates mechanisms of indirect target or 

other modes of action. Fig. 4 depicts associations between HRs of each tested gene and its 

correlation with miR-500a activity by ActMiR algorithm for TCGA dataset. Based on our a 
priori hypothesis that high miR-500a activity confers increased breast cancer mortality, 

miR-500 associated genes should reside in Quadrant II or III, which is largely consistent 

with our findings (Fig. 4). There are a small number of genes resided in Quadrant I and IV 

implicating unknown modes of action. It is important to point out that 22 (including BIRC5) 

of the 161 miR-500a genes are also part of PAM50 gene panel (pink dots on Fig. 4); 16 

showed significant association with breast cancer mortality (FDR<0.05)

Prognostic markers independent of PAM50 and ER/PR status.

Given that hormone receptor status and PAM50-derived risk scores are established factors 

associated with breast cancer survival, we set out to investigate whether miR-500a 

associated genes can predict survival, once we adjusted for these predictors.

Among the 606 tumors profiled, 78% were ER+ and 67% were PR+ resulting in 80% ER+ 

or PR+ (ER+/PR+) and 20% ER− and PR− (ER−PR−) based on gene expression-based 

categorization. These numbers are similar to what have been reported by other studies of 

Caucasian Americans based on IHC status (27–29) (range from 81%−86% for ER+/PR+). 

We first re-evaluated associations between miR-500a associated genes and breast cancer-

specific mortality by adjusting for ER/PR status; 43 out of 73 genes initially associated with 

breast cancer mortality remained significant (FDR<0.05). When we performed stratified 
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analyses with respect to ER/PR status, 61 genes were significantly associated with breast 

cancer-specific mortality in ER+/PR+ group (BIRC5 and SUSD3 remained the strongest 

predictors of higher and lower mortality, respectively) while only 2 genes were significant 

for ER−PR− group (TMPRSS2: HR=3.4, 95% CI 1.8 - 6.5; CLDN7: HR=3.3, CI 1.7 - 6.3) 

(Table S3).

We then investigated whether miR-500 associated genes were associated with breast cancer 

mortality, once we adjusted/stratified for PAM50 risk scores. All PAM50 genes were at 

measurable levels in all 606 LIBCSP tumor samples. Risk-Of-Recurrence (ROR) scores 

(high, medium and low) were computed using the algorithm (15) that takes into account 

expression of PAM50 genes as well as the patient’s age and tumor stage. The associations of 

ROR scores and breast cancer-specific mortality are shown in Fig. S5. The survival curves 

were similar among patients with low and medium ROR scores so we combined them as 

reference group (Fig. S5). As expected, high ROR was associated with increased breast 

cancer-specific mortality (HR=3.6, 95% CI 2.4 - 5.2, p=1.2e-10) compared to the reference 

group. When we evaluated ROR-adjusted HRs for all 73 genes initially associated with 

breast cancer mortality, 31 remained significant (FDR < 0.05). We then stratified by ROR 

scores, high vs. low/medium combined. In the high-risk group (249 patients, 81 deaths), 10 

genes were significantly associated with breast cancer mortality (FDR<0.05), with AKT1 
(HR=3.0, 95% CI 1.9-4.8) and CROT (HR=0.3, 95% CI 0.1-0.6) showing the strongest 

positive and negative correlations with breast cancer mortality, respectively. In the low/

medium risk group (357 participants, 38 death), TMPRSS2 (HR=4.0, 95% CI 2.1-7.8) and 

SUSD3 (HR=0.3, 95% CI: 0.1-0.5) demonstrated significant associations with survival.

Additional evaluation of the predictive value of miR-500a-related genes was performed 

using a calculation of receiving operator characteristics (ROC analysis.). One of the 

advantages of this approach is that it is not based on the “optimal threshold” but takes the 

whole range of predictor’s values. As a reference, we first calculated AUC (area under 

curve) for the risk-of-recurrence score. Without adjustment for the survival length, AUC for 

the PAM-50 derived ROR-P score was very similar to the AUC of our most significantly 

associated gene SUSD3 (0.70 vs 0.69, Fig. 5A). However when we applied time-dependent 

modeling (25) using survivalROC package to consider survival length (within one year after 

diagnosis), SUSD3 alone outperformed ROR-P score (AUC 0.86 vs 0.62, Fig. 5B).

Lastly, we validated our findings in two public datasets, i.e. METABRIC dataset (30) which 

includes 1980 breast cancer cases (77% ER+), and a combined dataset of KMPlot service 

kmplot.com (31) with 2862 cases (72% ER+). Most significant survival-associated genes 

from our study displayed the same direction of survival association in those datasets. (Fig. 

S6, Fig. S7). As an example, Fig. S8 shows data for our top gene SUSD3: it is consistent 

among all 3 datasets, and for both ER+ and ER− subsets.

Discussion

Despite the fact that overall breast cancer mortality rates declined 36% from 1989 to 2012 

(2015-2016 Report from American Cancer Society), breast cancer remains the second 

leading cause of cancer death among US women. The decline in breast cancer mortality has 
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been partially attributed to improvements of treatment, in which molecular phenotyping has 

played a significant role. Hormone receptor-positive breast cancer represents more than 80% 

of patients among US women (32). This category of patients is typically treated with 

adjuvant endocrine therapy, with or without adjuvant chemotherapy (4). Whether the patient 

should receive chemotherapy is a difficult choice between risk of recurrence and adverse 

effects of the therapy: while treatment is usually toxic and decreases patients’ quality-of-life, 

it is often used to prevent relapse of the tumor. Early approaches of estimating a high-risk 

subgroup were based on “clinical” characteristics of disease including tumor size, presence/

number of lymph node metastases, and histology of tumor tissue (33), then came the 

inclusion of immunohistological staining for hormone receptor proteins (estrogen and 

progesterone receptors) (33). The simplest assay, IHC4, is based on just four 

immunohistochemical markers (ER, PR, HER2 and Ki67) determined in an FFPE tumor 

tissue sample, and was shown to have good performance in a centralized study when 

combined with clinical characteristics (34). However, usage of this assay in decentralized 

conditions is much less robust (33). All IHC-based assays share similar technical limitations: 

staining is highly dependent on the quality of sample, variability of antibodies used, and 

subjective nature of scoring of the intensity of staining. Gene expression-based assays 

minimize these limitations and allow measurement of multiple targets in one assay. As a 

result, almost all recently developed assays are based on measuring mRNA instead of 

protein levels. Currently there are several approved gene expression panels for clinical use, 

three of which have the majority of the market: 21-gene Oncotype DX™, 50-gene Prosigna™ 

and 70-gene Mammaprint™ (35).

MicroRNAs represent a special type of molecular mechanism of gene regulation, and have 

the capacity to repress almost any gene having a corresponding target sequence. Their 

involvement in cancer-related pathways has been clearly demonstrated, and including 

miRNA-related scores in disease prediction panels is a logical next step (7). It should be 

noted, however, that not all platforms designed for mRNA level detection are compatible 

with miRNA measurement, mainly due to shorter length of miRNAs. More importantly, 

miRNA “expression” level is not equivalent to its regulatory “activity” (8, 36), because 

activities of miRNAs are modulated through the accessibility of proteins or RNAs that is 

essential for miRNA functions and the relative abundance of miRNA to its target genes (37–

39). Thus, miRNA expression levels might not be the best functional indicator. For our 

cases, miR-500a expression levels were measured by qPCR on a small subset of paired 

tumor/adjacent premalignant tissues and no significant difference was observed (Fig. S9); 

therefore we did not measure miR-500a expression in the entire cohort.

In our study, we reported that miR-500a activity (but not expression) was associated with 

survival of ER-positive patients with early stage breast cancer in two public databases. We 

profiled a set of miR-500a associated genes, including potential direct and indirect targets, 

and aimed to investigate their prognostic significance in the well-characterized population-

based cohort of breast cancer patients with long-term follow-up. Our study revealed a set of 

genes strongly associated with the survival of breast cancer patients, in agreement with what 

is predicted by ActMiR (10). Moreover, most of these associations were validated in two 

independent populations, including a large dataset of METABRIC (30) and the combined 

dataset provided by KMplot.com portal (31). At the same time, gene expression data from 
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the set of clinical samples used in this study are not sufficient to claim that ActMiR-

calculated `miR-500a activity` matches real biological activity: more specific in vitro 
experiments need to be performed in order to justify that type of equivalence. However, the 

direction of associations observed in this study was largely consistent with what was 

predicted by ActMiR (see Fig. 4) which strongly suggests that the panel of genes we assayed 

was indeed related to miR-500a activity.

Although many of the predictor genes revealed in our study are novel for breast cancer 

prognosis, it does not mean they are better predictors of breast cancer survival because they 

can be highly correlated with established prognostic markers. To address this issue, we re-

iterated survival analysis by taking into account two well-established prognostic markers 

(ER/PR status and PAM50-derived ROR score). Large proportion of genes that showed 

significant associations in overall breast cancer patients remained significant, even after 

adjusting for ER/PR status (43 out of 73) or PAM50-derived ROR scores (31 out of 73). 

Among the high-risk (ER−PR− or high ROR) or low-risk (ER+/PR+, or low/medium ROR) 

group, we were able to identify a set of genes that show significant associations with 

survival and differentiate the group with different survival profiles. This is an important 

finding because it might potentially help to better classify patients and improve precision of 

treatment or general care for these patients.

Although miR-500a has been identified as one of key players in breast cancer mortality, its 

exact role remains unknown. TargetScan (40) predicts that as many as 3816 possible target 

transcripts for this microRNA but none of them are experimentally validated. There is only a 

handful of publications which suggest that on miR-500a is a potential circulating biomarker 

of such pathologies as autism (41), lung cancer (42), endometriosis (43), and hepatocellular 

carcinoma (44).

Our study discovered a large number of miR-500a genes that demonstrated strong 

associations with breast cancer survival. Many of these associated with poor survival in our 

population-based cohort of women with breast cancer are already part of PAM50 panel (such 

as BIRC5, CEP55, CENPF – all known to be markers of poor survival). However, there were 

many others where we are the first to be report that they are predictive of breast cancer 

survival, even once we adjusted for the PAM50 ROR score. For example, high expression of 

SUSD3 (Sushi Domain-Containing Protein 3) displayed significantly reduced mortality for 

both HR-positive and HR-negative breast cancer cases in our population, and this finding 

was validated in both the METABRIC and combined KMplot datasets (Fig. S6). Its 

association remained significant after adjustment for ROR (HR 0.4, 95% CI 0.3 - 0.7). More 

importantly, SUSD3 level effectively stratified low-ROR group (HR 0.3, 95% CI 0.1 - 0.5) 

identifying the patients with poor survival within this group. According to AUC values, in 

our study the SUSD3 alone performed equaly well with ROR score in its predictability of 

breast cancer survival and performed even better when adjusted for survival length within 

one-year window (Fig. 5). This gene was shown to be a survival biomarker based on 

METABRIC data (45), and increased expression of corresponding protein was reported in 

breast cancer tumor tissue (46). At the same time, there was only one previous study focused 

on deciphering molecular mechanism of this gene. Moy et al. (47) showed that SUSD3 was 

a direct transcriptional target of estrogen receptor in MCF7 breast cancer cells, and its 
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expression was induced after stimulation with estradiol. SUSD3 product was shown to be 

localized at plasma membrane, and its knockdown lead to decreased cell motility and 

proliferation (47). These results cannot easily fit with the inverse association with breast 

cancer mortality in our study. The molecular mechanism of SUSD3 deserves to be further 

investigated experimentally. Another gene highly correlated with breast cancer survival after 

adjustment for PAM50-derived ROR scores (HR 0.4, 95% CI 0.2 - 0.6) was CROT 

(Carnitine O-Octanoyltransferase). Again, its association was highly significant not only in 

our dataset but also by KMplot data (METABRIC data not available for CROT: gene symbol 

not found in the list). This gene is known to be involved in lipid acids metabolism, but was 

not previously linked to cancer. Similar inverse association was shown for ARMCX1 
(armadillo repeat containing, X-linked 1) gene in patients from all three datasets, including 

ROR-adjusted LIBCSP patients (HR 0.5, 95% CI 0.4 - 0.8), with other studies having 

confirmed it as potential tumor suppressor gene (48).

While our study has many strength including a well-characterized population-based cohort 

with long follow-up coupled with a novel systems biology approach, we acknowledge 

limitations of the study. Part of those limitations come from the lack of detailed clinical 

information. For example, we did not have integrated staging information (I – IIA – IIB 

etc.), and only used invasiveness status as an available stage. In addition, we did not perform 

in-depth analysis on treatment, which may influence breast cancer survival. Such exclusion 

stems from several reasons. First, only ~66% participants completed the follow-up survey, 

which may introduce bias to the cohort. Second, only information on the first course of 

treatment was collected while future therapy could be different depending on disease 

progression. Third, multi-center nature of this study (more than 30 participating hospitals) 

assumes there could be certain heterogeneity in choice of the treatment strategies and the 

way it was reported. Finally and importantly, by definition, a confounder (i.e. treatment) has 

to be related to both the independent variable (i.e. gene expression) and outcome (i.e. 

survival). In our case, all tumor samples were collected prior to treatment other than surgery, 

the treatment and molecular profile of the tumor should be considered independent. Also, 

treatment is part of the causal pathway (being impacted by tumor stage or hormone receptor 

status at diagnosis) and including a causal intermediate in the model can bias the effect 

estimates (49).

In summary, by leveraging public databases and our own epidemiologic studies and 

cooperating systems biology approach, we identified a key microRNA, miR-500a, that 

appeared to be strongly linked with breast cancer mortality across platforms. More 

importantly, we identified a miR-500a associated gene panel that was not only strongly 

associated with breast cancer mortality but also can differentiate survival profiles with 

existing prognostic factors such as hormone receptor status and PAM50 derived risk of 

recurrence. These results suggest miR-500a associated genes may improve prognostic 

efficiency of current molecular phenotyping and ultimately improve breast cancer survival. 

Our study on these genes sheds light on breast cancer progression mechanisms and may lead 

to development of new targets for cancer therapy.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Despite recent advances in molecular phenotyping of breast cancer which have 

significantly advanced our capabilities to treat breast cancer and improve survival, breast 

cancer still is the second leading cause of cancer death in American women; identifying 

additional molecular markers that can refine the risk prediction for long-term survival is 

urgently needed. Combining systems biology and epidemiology, we identified a key 

microRNA, miR-500a, that played an important role in breast cancer mortality. 

Importantly, we identified a miR-500a associated gene panel that was strongly associated 

with breast cancer-specific mortality in a population-based cohort of women with breast 

cancer, and this panel is independent of existing prognostic factors such as hormone 

receptor status and PAM50-derived risk of recurrence. Results were validated in 

independent datasets. These results suggest miR-500a associated gene panel may 

improve prognostic efficiency of current molecular phenotyping and ultimately improve 

breast cancer survival.
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Fig. 1. 
Survival curves associated with inferred activity (A) and expression levels (B) of 

miR-500a-5p, based on published datasets of TCGA.
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Fig. 2. 
Age- and stage- adjusted correlation of individual miR500a-related genes expression levels 

with long-term breast cancer-specific survival of LIBCSP patients. Each dot corresponds to 

a gene, with horizontal axis displaying hazard ratio of high expression group comparing to 

low expression group (i.e. genes on the left are associated with better survival, genes on the 

right are associated with worse survival) and vertical axis displaying logarithm of p-value of 

the same Cox model. Genes included in the PAM50 panel are marked with pink color.
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Fig. 3. 
Co-expression of miR-500a-related genes with strongest association with survival, according 

to LIBCSP results. Blue color in gene labels and horizontal bar indicates genes associated 

with worse survival, red color associated with better survival. Color of the plot cells shows 

the correlation in respective pair of genes (red color indicating positive correlation and blue 

color – negative correlation).
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Fig. 4. 
Concordance between two characteristics: association of gene expression with miR-500a 

activity (vertical axis: correlation coefficient) calculated by ActMiR algorithm for TCGA 

dataset, and association of gene expression with survival (horizontal axis: hazards ratio) 

calculated for Cox model for LIBCSP dataset.
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Fig. 5. 
ROC curves for the SUSD3 expression level (left) and risk-of-recurrence score (right). (A) 

Survival as a binary outcome without adjustment for the length of survival. (B) Survival 

within one year time window.
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Table 1.

Demographic and clinical characteristics of profiled patients in comparison to the parent LIBCSP population 

(data from the parent study have been previously published (11)) and METABRIC cohort.

All LIBCSP cases (n=1508) Profiled LIBCSP cases 
(n=606) METABRIC (n=1980)

Title Group No % No % No %

Age of diagnosis

<50 years 407 27% 158 26% 424 21%

50+ years 1101 73% 448 74% 1556 79%

Missing 0 0 0

Family history of breast cancer

No first degree 1166 80% 468 80%

First degree 295 20% 114 20%

Missing 47 24

Menopausal status

Premenopausal 472 32% 180 30% 424 21%

Postmenopausal 1006 68% 414 70% 1556 79%

Missing 30 12 0

Age at menarche

<12 years 391 26% 157 26%

12+ years 1104 74% 442 74%

Missing 13 7

Parity status

Nulliparous 198 13% 83 14%

Parous 1310 87% 523 86%

Missing 0 0

Lactation (among parous)

Never 841 64% 332 63%

Ever 469 36% 191 37%

Missing 0 0

Body Mass Index at reference

<22.3 341 23% 128 21%

22.3-25.1 367 25% 151 25%

25.2-29.2 391 26% 154 26%

>29.2 392 26% 169 28%

Missing 17 4

Stage of breast cancer

In situ 235 16% 44 7% 0 0%

Invasive 1273 84% 562 93% 1980 100%

Missing 0 0 0

Tumor size

<= 2 cm 466 80% 162 72% 838 42%

2-5 cm 102 18% 56 25% 1015 51%

5+ cm 11 2% 6 3% 127 6%

Missing 929 382 0

ER status (by IHC)
Negative 264 27% 119 25% 439 23%

Positive 726 73% 356 75% 1498 77%
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All LIBCSP cases (n=1508) Profiled LIBCSP cases 
(n=606) METABRIC (n=1980)

Title Group No % No % No %

Missing 518 131 43

PR status (by IHC*)

Negative 355 36% 179 38% 940 47%

Positive 635 64% 296 62% 1040 53%

Missing 518 131 0

HER2 status (by IHC)

Negative 554 80% 422 81% 1733 88%

Positive 135 20% 102 19% 247 12%

Missing 819 82 0

*
for PR expression status, METABRIC data had PR_status but not PR_IHC field

**
numbers in the table do not always add up to 1508 and 606 because of missing data
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