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Abstract

This special issue explores the growing intersection between mathematical psychology and 

cognitive neuroscience. Mathematical psychology, and cognitive modeling more generally, has a 

rich history of formalizing and testing hypotheses about cognitive mechanisms within a 

mathematical and computational language, making exquisite predictions of how people perceive, 

learn, remember, and decide. Cognitive neuroscience aims to identify neural mechanisms 

associated with key aspects of cognition using techniques like neurophysiology, electrophysiology, 

and structural and functional brain imaging. These two come together in a powerful new approach 

called model-based cognitive neuroscience, which can both inform cognitive modeling and help to 

interpret neural measures. Cognitive models decompose complex behavior into representations 

and processes and these latent model states can be used to explain the modulation of brain states 

under different experimental conditions. Reciprocally, neural measures provide data that help 

constrain cognitive models and adjudicate between competing cognitive models that make similar 

predictions about behavior. As examples, brain measures are related to cognitive model parameters 

fitted to individual participant data, measures of brain dynamics are related to measures of model 

dynamics, model parameters are constrained by neural measures, model parameters or model 

states are used in statistical analyses of neural data, or neural and behavioral data are analyzed 

jointly within a hierarchical modeling framework. We provide an introduction to the field of 

model-based cognitive neuroscience and to the articles contained within this special issue.
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Exciting new synergies between mathematical psychology and cognitive neuroscience have 

emerged. This special issue of the Journal of Mathematical Psychology includes reviews, 

tutorials, and original research papers highlighting this new area of model-based cognitive 
neuroscience. In this opening article, we outline this new approach and introduce the articles 

contained in this special issue.
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1. What is model-based cognitive neuroscience?

Alternative approaches to theory in both psychology and neuroscience often begin by 

considering Marr’s (1982) classic three levels: The computational level considers the goals 

of the organism and the structure of the environment, without considering mechanism, 

typified by many Bayesian theories of the mind (e.g., Anderson, 1990; Oaksford & Chater, 

2007; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). The algorithmic level considers 

what representations and processes underlie cognition and perception, without considering 

their biological realization, typified by many mathematical and computational models of 

cognition and perception (e.g., Busemeyer, Wang, Townsend, & Eidels, 2015; Sun, 2008). 

The implementation level asks how mechanisms are physically realized within a biological 

substrate, namely neurons and their connections in the brain, typified by classical theoretical 

work in neuroscience (e.g., Carnevale & Hines, 2006; Dayan & Abbott, 2005).

While Marr envisioned connections between these levels, there often had been intellectual 

and disciplinary barriers to considering explanations that crossed levels. This led theorists to 

work traditionally within only one level of analysis. Not so long ago, a graduate student 

trained in mathematical psychology considering postdoctoral training in neuroscience might 

have been about as sensible as considering running off to join the circus. For some, the brain 

could well be made of tinker toys for its relevance to understanding human cognition. As 

well, not so long ago, few trained in systems neuroscience would ever consider whether 

insights from cognitive and mathematical psychology might inform understanding of neural 

function. Cognitive conceptual building blocks were often thought little more than folk 

psychology, with philosophical arguments lending support to a strict reductionist approach 

to understanding the brain (e.g., Churchland, 1986).1

Early attempts to address this impasse focused on connectionist models of cognition that 

took inspiration from the brain. Connectionists viewed the brain as consisting of simple 

computing units (akin to neurons) that integrated signals passed across connection weights 

that were adjusted by learning rules. However, these models rarely made contact with the 

implementational details of the brain. In most cases these models served as existence proofs 

that a model consisting of many simple computing elements could accomplish a task in 

roughly the same fashion as a human. Nevertheless, these models were attempts to bridge 

levels of analysis and were championed as more biologically plausible than competing 

models at the algorithmic or computational levels. Unfortunately, notions of biological 

plausibility were rarely defined nor evaluated rigorously. The gap between levels of analyses 

stubbornly remained.

Model-based cognitive neuroscience breaks the traditional barriers between models and the 

brain (e.g., Forstmann, Wagenmakers, Eichele, Brown, & Serences, 2011; Forstmann, 2015; 

Palmeri, Schall, Logan, & Townsend, 2015; Smith & Ratcliff, 2004). From the perspective 

1Of course, there were exceptions to barriers between the algorithmic level and the implementation level, to again cast this in Marr’s 
terms. In the case of relatively low-level visual sensation and perception, there have long been deep connections between theoretical 
work in visual psychophysics and the underlying visual neurophysiology and neuroanatomy, in part because the relevant neural 
hardware is not far removed from the source of visual stimulation. And the field of cognitive neuropsychology has long considered 
theoretically how cases of brain damage and neurodegenerative and neurodevelopmental disorders influence understanding of human 
cognition.
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of cognitive and mathematical psychology, formal models explain behavior in terms of 

representations and processes instantiated in mathematics and computations, and observed 

variation in behavior across experimental conditions and individuals is explained in terms of 

variation in model parameters and model states. Model-based cognitive neuroscience allows 

for consideration of whether these latent model parameters or model states might be related 

to, or constrained by, observed brain measures or brain states, over and above whether a 

model fits or predicts observed behavior. From the perspective of systems and cognitive 

neuroscience, a key component of understanding neurons, neural circuits, or brain areas is 

explaining the computations that they perform. In a model-based cognitive neuroscience 

approach, to the extent that brain measures or brain states are predicted by model parameters 

or model states, those models provide a potential explanation of brain function, regardless of 

whether or not those models are implemented in neuron-like elements.

The emergence and growth of model-based cognitive neuroscience over the past decade can 

be attributed to a number of converging forces. One was the recognition on the part of 

cognitive modelers and mathematical psychologists interested in understanding the 

mechanisms that brain data is simply additional data by which to constrain and contrast 

models. Response probabilities, response times, confidence ratings and the like are the 

outcomes of processing. Brain data reflect intermediary states. Considering how internal 

processes predicted by a model relate to internal processes measured in the brain can break 

theoretical stalemates caused by model mimicry. While two different models making 

different mechanistic assumptions about representations and processes may make similar 

predictions about observed behavior, they may well make different predictions about internal 

model states, which can then be compared with or constrained by measured brain states 

(e.g., Boucher, Palmeri, Logan, & Schall, 2007; Mack, Preston, & Love, 2013; Palmeri, 

2014; Purcell et al., 2010; Purcell, Schall, Logan, & Palmeri, 2012).

Another force was the recognition on the part of cognitive and systems neuroscientists for 

the need for new approaches to making sense of the growing body of neural data from 

functional brain imaging, electrophysiology, neurophysiology, and other neuroscience 

techniques. Correlating brain measures with stimuli, conditions, and responses provides only 

a rather limited window on understanding brain function. To go beyond merely mapping out 

which brain areas or which neurons modulate their activity under which conditions means to 

explain and understand what mechanisms and computations are engaged within those brain 

areas or neurons. Algorithmic and computational models provide a language and a body of 

viable hypotheses, as well as a set of tools, for explaining and understanding those neural 

mechanisms and computations.

Recognition has grown for considering the algorithms and computations that underlie neural 

processing. Carandini (2012) characterized any direct link between neural circuits and 

behavior as a “bridge too far”, and argued that it was necessary to theorize at an intermediate 

level in Marr’s hierarchy, considering the algorithms and computations that neural circuits 

perform. The purely bottom-up approach to understanding the brain that characterized the 

initial stages of the billion Euro Human Brain Project was widely criticized by cognitive and 

computational neuroscientists and led to a shake-up of its leadership and vision (e.g., 

Enserink & Kupferschmidt, 2014; Theil, 2015). Rather than adopting a strictly bottom-up 
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(or top-down) approach, model-based cognitive neuroscience can be characterized as an 

inside-out approach (Love, 2015), that may well be a level of theorizing that is just right 

(Logan, Yamaguchi, Schall, & Palmeri, 2015).

Perhaps the most potent force propelling model-based cognitive neuroscience over the past 

decade has been its demonstrated success in providing new insight at both the cognitive and 

neural levels. One especially salient body of work has centered around accumulator models 

of decision making, a well-known class of models with a long history in cognitive 

psychology (e.g., Ratcliff & Smith, 2004). These models assume that variability in choice 

probability and response times arise from variability in the, often noisy, accumulation of 

evidence to response thresholds, and variants of these models have accounted for decisions 

in perception, memory, categorization, and other tasks (e.g., Bogacz, Brown, Moehlis, 

Holmes, & Cohen, 2006; Brown & Heathcote, 2008; Forstmann, Ratcliff, & Wagenmakers, 

2016; Nosofsky & Palmeri, 1997; Palmeri, 1997). As one of the first examples of systems 

neuroscience making contact with cognitive modeling, when Hanes and Schall (1996) were 

interested in understanding how neurons in Frontal Eye Field (FEF) decide where and when 

to saccade in the visual field, they turned to the cognitive modeling literature for inspiration 

and insight. Based on the fact that the dynamics of certain FEF neurons mirrored the 

dynamics in accumulators, accumulation of evidence models provided a language for 

describing the computations that these FEF neurons were engaged in. Cognitive models 

provided insight into neural processes. Hanes and Schall also showed that the dynamics of 

these FEF neurons were more consistent with variable accumulation to a fixed threshold 

than fixed accumulation to a variable threshold, two competing mechanistic hypotheses of 

decision making that can be difficult to distinguish based on behavioral data alone (Grice, 

1968). Neural data provided insight into cognitive models.

These initial insights spawned a considerable body of research linking neurophysiology and 

cognitive modeling to understand elementary decision making (e.g., Forstmann et al., 2016; 

Gold & Shadlen, 2007; Logan et al., 2015; Mazurek, Roitman, Ditterich, & Shadlen, 2003; 

Palmeri et al., 2015; Ratcliff, Cherian, & Segraves, 2003; Schall, 2001, 2004; Smith & 

Ratcliff, 2004; Zandbelt, Purcell, Palmeri, Logan, & Schall, 2014). As one illustrative 

example, Purcell et al. (2010, 2012) applied accumulator models to understand existing data 

on the behavior and neurophysiology of saccade decision making by awake behaving 

primates (e.g., Bichot & Schall, 1999; Cohen, Heitz, Woodman, & Schall, 2009). Adopting a 

classic approach used in mathematical psychology, they formulated a variety of alternative 

models assuming various architectural components characteristic of various accumulator 

models of decision making, rejecting models that could not account qualitatively and 

quantitatively for observed response probabilities and distribution of response times for 

saccades.

Going beyond a pure mathematical psychology approach of fitting models to behavioral 

data, they turned to neurophysiology in two ways. First, they allowed neurophysiology to 

constrain key model components. In many, but not all (e.g., Nosofsky & Palmeri, 1997; 

Palmeri, 1997), applications of accumulator models, the rate at which evidence is 

accumulated, the drift rate, is allowed to be a free parameter. Purcell et al. (2010, 2012) 

instead instantiated an hypothesis that a particular class of neurons in FEF (visually-
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responsive neurons) represent the evidence that is accumulated, replacing the drift rate and 

other parameters with recorded neurophysiology. Neurophysiology significantly limited the 

flexibility of various model architectures to account for observed behavioral data.

Second, faced with several alternative model architectures that could account equally well 

for the observed behavioral data, if they had no other data to turn to, they would have had to 

appeal to parsimony in selecting a winning model architecture (see also Boucher et al., 

2007; Logan et al., 2015). Purcell et al. (2010, 2012) instead turned to neurophysiology as 

an additional data source for contrasting between alternative models. Adopting the linking 

proposition (Schall, 2004; Teller, 1984) that movement-related neurons in FEF instantiate an 

accumulation of evidence to a threshold for saccade decisions (Hanes & Schall, 1996), they 

compared the predicted dynamics of model accumulation to the observed dynamics of these 

FEF neurons (see also Purcell & Palmeri, 2017). Only their gated accumulator model could 

both account for the behavioral data and predict the dynamics of FEF movement-related 

neurons. Neurophysiology provided key data by which to contrast models that otherwise 

provided the same predictions of overt behavior.

Another approach for avoiding the theoretical stalemate that can ensue when fitting complex 

models to behavioral data alone is to treat neural data as auxiliary information on which 

latent model mechanisms should covary. Models like the classic diffusion model (Ratcliff & 

Rouder, 1998; Ratcliff & Smith, 2004) have three sources of trial-to-trial variability, 

assuming fluctuations in things like response bias, the rate of evidence accumulation, and 

perceptual and motor non-decision time. The assumption is that these parameters vary from 

one trial to another in ways that are completely consistent throughout the experiment (an 

assumption known as independent, identically distributed). However, because there is no 

mechanism to guide these fluctuations, we cannot appreciate aspects of the decision process 

that are vital to ensuring success on a specific trial. Furthermore, these assumptions are at 

odds with several findings in neuroscience that implicate the gradual waxing and waning of 

attention on behavioral performance. In summary of these findings, unique networks of 

brain activity arise from separating neural data on the basis of behavioral data: an “off-task” 

network gives rise to poor behavioral performance whereas an “on-task” network gives rise 

to good behavioral performance (Mittner et al., 2014; Turner, Van Maanen, & Forstmann, 

2015).

These observations lead Turner et al. (2015) to develop a model that blends neuroscience 

and mathematical psychology to formally ground decision-making models with 

neurophysiology. Their strategy was to treat trial-by-trial neural data (as measured by fMRI) 

as information about the trial-to-trial fluctuations in the latent parameters assumed by a 

standard diffusion model. The model was constructed on the basis of a previously developed 

framework for imposing neurophysiological constraints on behavioral models across 

subjects (Turner, 2015; Turner et al., 2013), but extends this framework to a trial-by-trial 

basis. Once fit to data, the model was able to articulate how disparate networks of brain 

activity were associated with orthogonal mechanisms in the model, such as pre-stimulus bias 

and the rate of evidence accumulation. Turner et al. also showed that not only did their 

model provide a new perspective on both neural and behavioral data using generative 
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modeling techniques, but the model could also outperform a standard diffusion model that 

only considered behavioral data in a leave-one-out cross-validation test.

Model-based neuroscience opens up possibilities for cognitive models to take on second 

lives as formal neuroscientific theories. For example, Love and Gureckis (2007) proposed a 

theory linking aspects of the SUSTAIN clustering model of human categorization (Love, 

Medin, & Gureckis, 2004; Sakamoto & Love, 2004) to the functions of prefrontal cortex and 

the hippocampus. They simulating various populations, such as amnesics (Love & Gureckis, 

2007), infants (Gureckis & Love, 2004), and the aged (Davis, Love, & Maddox, 2012), by 

adjusting model parameters hypothesized to relate to brain regions whose functions vary 

across populations. With the advent of model-based neuroscience, exact predictions of the 

theory were tested and confirmed with healthy young adults using fMRI (Davis et al., 2012; 

Davis, Love, & Preston, 2012a; Davis, Xue, Love, Preston, & Poldrack, 2014; Mack, 

Preston, & Love, in press). The analyses revealed a number of phenomena that would not be 

possible to observe without the model, such as how the involvement of the hippocampus 

changes over learning trials, ramping up for familiar items (related to recognition) at the 

time of decision and ramping down at the time of feedback as the error signal abates (Davis 

et al., 2012). The model-based imaging work also confirmed more speculative hypotheses 

such as that prefrontal and hippocampus interactions would be strongest in the early stages 

of mastering a new learning task as attention weights are established (Mack et al., in press).

While we opened this article by contrasting a bottom-up neural network approach with an 

inside-out (Love, 2015) cognitive modeling approach to relating brain and behavior, we want 

to make clear that the approaches used in a model-based cognitive neuroscience can just as 

well be applied to neural network models as to more abstract cognitive models. The 

SUSTAIN model (Love et al., 2004) used by Davis et al. (2012,a); Davis, Love, and Preston 

(2012b) discussed above is instantiated using a number of neural network building blocks. 

Yet the relation between SUSTAIN and brain imaging data is not cemented by any mapping 

from neural-like model elements to neurons in the brain, but by the ability of patterns of 

activity in the model to reveal and explain patterns of activity in the brain. Similarly, the 

overall structure of so-called deep learning models of vision (e.g., LeCun, Bengio, & 

Hinton, 2015) are inspired by neural networks and key aspects of the neurophysiology of the 

primate visual system. But the insights provided by these models into understanding the 

representation of objects in the brain (Kriegeskorte, 2015; Yamins et al., 2014) is based on 

how well patterns within high-level representational layers of these models predict patterns 

of brain activity, not on the neural-like building blocks of these models (Khaligh-Razavi, 

Henriksson, Kay, & Kriegeskorte, 2017; Khaligh-Razavi & Kriegeskorte, 2014).

2. Overview

Here we provide brief outlines of the papers that appear in this special issue:

Approaches to analysis in model-based cognitive neuroscience

Turner, Forstmann, Love, Palmeri, and Van Maanen (2017) provide an overarching 

framework for describing the varying approaches to model-based cognitive neuroscience 

that have emerged in the literature over the past several years. They organize these 
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approaches on the basis of particular theoretical goals, which include using neural data to 

constrain a cognitive model, using a cognitive model to predict neural data, and accounting 

for both neural and behavioral data simultaneously using the same model. Accompanying 

each of these theoretical goals, they highlight some particularly successful examples. They 

also provide a conceptual guide to choosing among various approaches when performing 

model-based cognitive neuroscience.

Integrating theoretical models with functional neuroimaging

Pratte and Tong (2017) highlight a number of salient examples linking cognitive models and 

functional brain imaging data using a model-based cognitive neuroscience approach. Their 

selective review spans a broad range of core topics in perception and cognition, including 

visual perception (Brouwer & Heeger, 2011), attention (Pratte, Ling, Swisher, & Tong, 

2013), long-term memory (Kragel, Morton, & Polyn, 2015), categorization (Mack et al., 

2013), and cognitive control (Ide, Shenoy, Yu, & Li, 2013).

A step-by-step tutorial on using the cognitive architecture ACT-R in combination with fMRI 
data

Borst and Anderson (2017) provide a tutorial on using the ACT-R cognitive architecture 

(e.g., Anderson, Bothell, Lebiere, & Matessa, 1998) to understand fMRI data (e.g., 

Anderson, Betts, Ferris, & Fincham, 2010; Anderson, Fincham, Qin, & Stocco, 2008; Borst 

& Anderson, 2013). They illustrate how ACT-R can be used in combination with fMRI data 

in two different ways: first that fMRI data can be used to evaluate and constrain models in 

ACT-R by means of predefined Region-of-Interest (ROI) analysis, and second that 

predictions from ACT-R models can be used to locate neural correlates of model processes 

and representations by means of model-based fMRI analysis. As a tutorial, they provide 

code and worked examples of both types of analysis on a math problem solving task 

performed in an fMRI scanner.

Variability in behavior that cognitive models do not explain can be linked to neuroimaging 
data

Gluth and Rieskamp (2017) review evidence for the proposal that neural and behavioral 

variability can be linked to one another by allowing moment-to-moment fluctuations in 

neural measures, like fMRI and EEG, to inform trial-by-trial variability in cognitive model 

parameters. One approach to linking single-trial measures of the brain to single-trial 

parameters in models has been to simply regress them onto one another. Gluth and 

Rieskamp provide a tutorial of a novel and efficient alternative approach that goes beyond a 

raw two-stage correlational approach by increasing the resolution of the single-trial 

parameter estimates in an iterative fashion, similar in some ways to an EM algorithm. As 

illustration, they show how the variability in the parameters of an accumulator (sequential 

sampling) model can be related to variability in neuroimaging data.
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How attention influences perceptual decision making: single-trial EEG correlates of drift-
diffusion model parameters

Nunez, Vandekerckhove, and Srinivasan (2017) provide a specific illustration of how 

variability in neural measures can constrain variability in model parameters. Within a 

hierarchical Bayesian framework, various forms of a drift-diffusion model are fitted to 

behavioral data from a perceptual decision making task, with different model forms 

assuming different mathematical relationships between model parameters and EEG 

measures. Trial-to-trial measures of certain key attention-related evoked potentials in 

simultaneous EEG recordings can explain trial-to-trial evidence accumulation rates and 

perceptual processing times in a diffusion model fitted to perceptual decision making 

behavior.

A confirmatory approach for integrating neural and behavioral data into a single model

van Ravenzwaaij, Provost, and Brown (2017) provide another illustration of a joint modeling 

approach to model-based cognitive neuroscience. Within a hierarchical Bayesian framework 

they use the Linear Ballistic Accumulator (LBA) model (Brown & Heathcote, 2008) to 

account for behavioral data during a mental rotation task, testing different hypotheses 

linking cognitive model parameters and neural data measured via event-related potentials 

(ERPs). They specifically investigate how changes in drift rate and non-decision time with 

mental rotation angle might be constrained by changes in certain ERP amplitudes measured 

during the task.

On the efficiency of neurally-informed cognitive models to identify latent cognitive states

Hawkins, Mittner, Forstmann, and Heathcote (2017) illustrate how neural data can be used 

to test between cognitive models with different latent states. They focus on whether the 

underlying states driving performance in a speeded decision tasks are discrete or continuous. 

Through model recovery studies the authors determine that discrete state models are more 

robustly recovered than continuous state models, suggesting that neural data may more 

easily be linked to certain varieties of cognitive models.

Relating accumulator model parameters and neural dynamics

Purcell and Palmeri (2017) build on the work cited earlier on the identification of neural 

activity in certain brain areas with evidence accumulation in sequential sampling models. 

Through simulations, they caution against simply equating variability in measures of neural 

dynamics with variability in cognitive model parameters. Simulated variation in model 

dynamics in accumulators is not always related one-to-one with variation of accumulator 

model parameters. The most general mapping between neural measures and model 

mechanisms may be one between measured neural dynamics and predicted model dynamics, 

not one between measured neural dynamics and model parameters.

A primer on encoding models in sensory neuroscience

van Gerven (2017) explores fundamental questions of how the primate visual system 

represents the visual world. In visual neuroscience, the concept of the receptive field has 

been a key concept for understanding the response properties of neurons. While classical 
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receptive field mapping has proved successful for understanding representations in early 

visual areas like area V1, more general methods are needed for understanding higher-level 

visual representations and to allow for non-invasive mapping of visual representations in 

humans. van Gerven provides a mathematical and computational primer on Encoding 

Models, which at first approximation can be described as generalization of classical 

receptive field and population receptive field approaches, allowing for the nonlinear 

response properties of complex representations in high-level visual areas and their 

manifestation in functional brain imaging to be well characterized.

Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature 
sets from shallow and deep computational models

Khaligh-Razavi et al. (2017) provide a complementary approach to understanding how the 

primate visual system represents the world. Their starting point is existing neural network 

and computer vision models of object recognition. Their question is whether the 

representations produced in the model predict the activity measured in the brain. Using a 

technique called Representational Similarity Analysis (Kriegeskorte, 2009, 2015), they ask 

whether patterns of similarities in object representations produced in particular layers of a 

model are analogous to patterns of similarities measured in particular areas of the brain. 

Deep learning models (LeCun et al., 2015) have provided good accounts of object 

representations observed in high-level visual areas (Khaligh-Razavi & Kriegeskorte, 2014; 

Kriegeskorte, 2015; Yamins et al., 2014); this article reviews that work and outlines 

approaches to fixing or mixing the model representations when comparing to brain 

measures.

A tutorial on the free-energy framework for modeling perception and learning

Bogacz (2017) provides a tutorial on free energy and related predictive coding approaches. 

In these approaches, models assume that the sensory cortex infers the most likely values of 

attributes or features of sensory stimuli from the noisy inputs encoding the stimuli. The 

author demonstrates how powerful inferences can be made by very simple computations that 

could be carried out by neurons. Clear examples help the reader grasp these general concepts 

that link measures of uncertainty with neural computations.

Model-based functional neuroimaging using dynamic neural fields: An integrative 
cognitive neuroscience approach

Wijeakumar, Ambrose, Spencer, and Curtu (2017) provide a review and tutorial of an 

approach to model-based cognitive neuroscience using a theoretical framework called 

Dynamic Field Theory (Erlhagen & Schöner, 2002) applied to functional brain imaging 

(Buss, Wifall, Hazeltine, & Spencer, 2009). They outline the assumptions of DFT and how it 

is applied to behavioral data, describe how parameters of the model can be used in brain 

imaging analyses, and compare the model-based cognitive neuroscience approach to 

standard brain imaging analyses of the same dataset.
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College London), Xiaosi Gu (University of Texas at Dallas), Michael Mack (University of 
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HIGHLIGHTS

• Mathematical psychology and cognitive neuroscience come together in a 

powerful new approach called model-based cognitive neuroscience.

• This approach can both inform cognitive modeling and help to interpret 

neural measures.

• This article provides an introduction to the field of model-based cognitive 

neuroscience and to the articles contained within this special issue.
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