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Atg9 proteins, not so different after all
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ABSTRACT
Macroautophagy (hereafter autophagy) is a catabolic pathway present in all eukaryotic cells. The yeast
Saccharomyces cerevisiae has been pivotal in the identification and characterization of the key autop-
hagy-related (Atg) proteins, which play a central role in the generation of autophagosomes. The
components of the core Atg/ATG machinery and their functions are highly conserved among species,
although mammalian cells also have isoforms and auxiliary factors. Atg9/ATG9 is the only transmem-
brane protein that is part of the core Atg/ATG machinery, but it appears to have divergent localizations
and molecular roles in yeast and mammals. A recent experimental analysis of the yeast endo-lysosomal
system by the laboratory of Benjamin Glick, however, suggests a more simple organization of this
membrane system. Although this study has not examined yeast Atg9, its findings place this protein in
the same compartments as its mammalian counterpart. Here, we will discuss the implications of this
conceptual change on the trafficking of yeast Atg9 and its function in autophagy.
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Commentary

The core Atg/ATG machinery involved in the formation of
autophagosomes has been subdivided into 5 functional clus-
ters: the Atg1 kinase complex, the autophagy-specific phos-
phatidylinositol 3-kinase complex, the Atg9 trafficking
system, and the Atg12 and Atg8 ubiquitin-like conjugation
systems [1,2]. Atg9/ATG9A is the only integral membrane
protein within the core Atg/ATG machinery; it has 6 highly
conserved transmembrane segments with 2 cytosolically
oriented termini that are involved in interactions with other
ATG components [3,4].

In all organisms, the Atg9 homologs appear to principally
localize to the trans-Golgi network (TGN) and endosomes or
endosome-like structures, although it has also been detected
at the plasma membrane and in vicinity of the mitochondria
in specific organsims [4–9]. Atg9/ATG9A is sorted from one
or more of these compartments to form cytoplasmic Atg9-
containing membranes, which comprise vesicular and tubular
structures [10–12] (Figure 1(a)). Atg9/ATG9A cycles between
these locations and the site of autophagosome formation, and
because of this dynamic aspect, it has been proposed that
Atg9-positive structures could represent one of the membrane
sources of autophagosomes [4,10,13]. In yeast, Atg9-contain-
ing membranes participate in the formation of the phago-
phore, the precursor cistern of autophagosomes [8,11],
possibly through homo- and heterotypic fusion events [14–
16]. As Atg9 is detected on the external membrane of closed
autophagosomes [11,17], this implies that it is probably
retrieved during the fusion of these large vesicles with the
vacuole or shortly thereafter, as it is not detected on the
limiting membrane of the vacuole. However, in mammalian

cells ATG9A-containing structures interact with, but do not
get incorporated into, the phagophore membranes [10]. It is
therefore possible that ATG9A is only involved in the regula-
tion of phagophore expansion, although ATG9A-containing
vesicles may nevertheless play a key role in the early event of
phagophore formation5.

Trafficking of Atg9 has been mainly studied in yeast, where
this protein primarily localizes to a post-Golgi compartment
that appears to have unique characteristics [11,12]. In this
organism, the movement of Atg9 towards the site of autopha-
gosome biogenesis requires Atg23 and Atg27, 2 non-con-
served proteins that form a complex with Atg9 [18–20].
Recent evidence shows that Atg23 and Atg27 are probably
participating in the biogenesis of Atg9-containing membranes
from the TGN [11,21]. Atg27 is additionally involved in
retaining Atg9 in the correct compartments, as Atg9 gets
mislocalized and degraded in the vacuole in its absence [11].
The autophagy-specific TRAPPIII complex is also associated
with Atg9-positive membranes and involved in their traffick-
ing [22–24]. Sorting nexins have also been implicated in Atg9
transport under specific conditions, though their exact role
remains largely unknown [6,25], but they may be participat-
ing in Atg27 retrieval from the vacuole [26,27].

In mammalian cells, ATG9A is mainly distributed between
the TGN and endosomes, and in part to the plasma mem-
brane [4,28–30]. In agreement with this notion, factors such
as the adaptor protein AP-1, AP-2 and AP-4 complexes,
RAB11, and the RAB GAPs TBC1D5 and TBC1D14 are
involved in ATG9A trafficking [28–32]. During starvation,
ATG9A redistributes from the TGN towards a peripheral
pool with an increased colocalization with autophagosomes
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[4,9,10]. The sorting of ATG9A and subsequent transport to
phagophore membranes appears to occur at RAB11-positive
recycling endosomes [31,33,34], where BAR domain-contain-
ing SH3GLB1/BIF-1 and sorting nexin SNX18 recruits DNM2
(dynamin 2) to induce budding of ATG9A-positive mem-
branes directed to ATG16L1-WIPI2-positive phagophores
[33,35,36]. In parallel, a TRAPPIII-like complex regulates
ATG9A trafficking from a tubulovesicular intermediate that
is required for autophagy, likely because it keeps ATG9A in
the correct recycling endosome-Golgi compartments [37].

The mammalian endo-lysosomal system has been mor-
phologically and functionally subdivided into recycling,
early and late endosomes (Figure 1(a)). Membranes are
lipid bilayers with embedded proteins, and enter this sys-
tem mainly from the TGN and via endocytosis, and they
can ultimately be delivered to lysosomes, when late

endosomes, also known as multivesicular bodies, fuse with
these degradative organelles [38]. The organization of the
yeast endo-lysosomal system, in contrast, is less well
defined despite the fact that it has been of fundamental
importance in the identification and characterization of
central and conserved factors involved in its biogenesis
such as phosphatidylinositol kinases, ESCRTs, the retromer,
and fusion factors [39]. Although it possesses late endo-
somes/multivesicular bodies, yeast appears to not have dis-
tinct recycling endosomes, and early endosomes remain
poorly characterized [40] (Figure 1(b)). The major 2 diffi-
culties in uncovering the exact architecture of the yeast
endo-lysosomal system have been the lack of 1) well-
defined marker proteins; and 2) a distinct morphology
associated with each compartment. In a recent work, Day
and co-workers have employed a series of elegant 4D live-
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Figure 1. Atg9/ATG9A trafficking in yeast and mammalian cells. (A) Architecture of the endosomal system in mammalian cells and the major putative ATG9A sorting
pathways to the PAS and phagophore membranes (red arrows). For simplicity, the potential fusion of the autophagosome with an endosome, resulting in the
formation of an amphisome, is not depicted. (B) Proposed organization of the yeast endosomal system and the main Atg9 transport routes to the PAS and
phagophore membranes (red arrows).
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cell imaging approaches to follow the dynamics of endocy-
tosis and trafficking of a few endosomal and TGN marker
proteins [40]. In particular, they observed that markers of
the TGN strongly colocalized with endocytic cargos such as
the endocytosed dye FM 4–64, whereas endosomal proteins
were all found in a prevacuolar endosome. Moreover, they
showed that endocytic vesicles fused directly with the TGN.
With their approach, they discovered that the yeast TGN
also combines the function of the early and the recycling
endosome, implying that the organization of its endo-lyso-
somal system is simpler and probably reflects an ancestral
design (Figure 1(b)).

This conceptual change also has a few implications for
autophagy, although this pathway and its components were
not directly studied. In particular for our understanding of
Atg9/ATG9A trafficking, it places Atg9 in the same com-
partment, i.e. the recycling endosomes, as its mammalian
homolog, because the yeast TGN bears this function as well
(Figure 1(b)). A similar origin could also explain the mor-
phological similarity of the Atg9- and ATG9A-positive
membranes that emerge from the secretory pathway
[10,12]. Moreover, it could clarify why multiple genes
involved in sorting from the yeast late Golgi compart-
ments/TGN such as the phosphatidylinositol 4-kinase
Pik1, the conserved oligomeric Golgi (COG) complex, the
GTPases Arf1, Arf2, Sec4, Arl1, and Ypt6, and some of
their guanine nucleotide exchange factors including Sec7,
Gea1, Gea2 and Sec2, are essential for autophagy progres-
sion [6,41–45]. Consistent with this hypothesis, several of
the indicated proteins play a role in Atg9 trafficking to the
PAS [41–44]. The involvement of mammalian recycling
endosomes is not restricted to the sorting and transport
of ATG9A. For example, ULK1-positive subdomains, which
are distinct from those containing ATG9A and are involved
in ULK1 transport to LC3-positive phagophores in a
TBC1D14-RAB11-mediated manner, have been observed
[31]. Analogously, one should keep in mind that the yeast
TGN/endosome hybrid compartment could carry out func-
tions critical for autophagy other than Atg9 sorting, as
autophagosomes also need to acquire the appropriate
SNARE machinery for their fusion with vacuole [46].

Although the study from Benjamin Glick’s group clari-
fies the identity of the compartments where Atg9 and
ATG9A originate from, it does not reconcile other differ-
ences between the yeast and mammalian proteins, in parti-
cular their dynamic connection with autophagosomal
membranes. ATG9A associates very transiently with phago-
phores throughout its formation [10], whereas its yeast
counterpart gets incorporated into phagophores at their
nucleation, and remains inserted in the external membrane
of the forming autophagosomes until their closure [11,17],
at least in mutant strains that delay or block fusion of the
autophagosome with the vacuole. Thus, not all the intri-
guing aspects of Atg9/ATG9A have been solved yet, and
their study will certainly help to unveil general conserved
molecular principles underlying the biogenesis of an autop-
hagosome but also to understand differences between
autophagy in different model organisms.
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