
Reproducibility of computational workflows is automated using
continuous analysis

Brett K. Beaulieu-Jones1 and Casey S. Greene2,+

1Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University
of Pennsylvania

2Department of Systems Pharmacology and Translational Therapeutics, Perelman School of
Medicine, University of Pennsylvania, USA

Abstract

Replication, validation and extension of experiments are crucial for scientific progress.

Computational experiments are inherently scriptable and should be easy to reproduce. However, it

remains difficult and time consuming to reproduce computational results because analyses are

designed and run in a specific computing environment, which may be difficult or impossible to

match from written instructions. We report a workflow named continuous analysis that can build

reproducibility into computational analyses. Continuous analysis combines Docker, a container

technology akin to virtual machines, with continuous integration, a software development

technique, to automatically re-run a computational analysis whenever updates or improvements are

made to source code or data. This allows results to be accurately reproduced without needing to

contact the study authors. Continuous analysis allows reviewers, editors or readers to verify

reproducibility without manually downloading and re-running any code and can provide an audit

trail for analyses of data that cannot be shared.

Leading scientific journals have highlighted a need for improved reproducibility in order to

increase confidence in results and reduce the number of retractions1–5. In a recent survey,

90% of researchers acknowledged that there ‘is a reproducibility crisis’6. Computational

reproducibility is the ability to exactly reproduce results given the same data, as opposed to

replication, which requires a new independent experiment. Computational protocols used for

research should be readily reproducible because all of the steps are scripted into a machine-

readable format. However, results can often only be reproduced with help from the original

authors, and reproducing results requires a substantial time investment. Garijo et al.7

estimated that it would take 280 hours for a non-expert to reproduce the computational

construction of a drug-target network for Mycobacterium tuberculosis8. Written descriptions

of computational approaches can be difficult to understand and may lack sufficient details,

including data preprocessing, model parameter selection and software versions, which are

crucial for reproducibility. Indeed, Ioannidis et al.9 indicated that the outputs of 56% of

+Corresponding Author. csgreene@upenn.edu.

Competing Financial Interests
The authors have no competing financial interests to declare.

HHS Public Access
Author manuscript
Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

Published in final edited form as:
Nat Biotechnol. 2017 April ; 35(4): 342–346. doi:10.1038/nbt.3780.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

microarray gene expression experiments could not be reproduced and another 33% could

only be reproduced with discrepancies. Additionally, Hothorn and Leisch found that more

than 80% of manuscripts did not report software versions10.

It has been proposed that open science could aid reproducibility3,11. In open science the data

and source code are shared. Intermediate results and project planning are sometimes also

shared12. Sharing data and source code are necessary, but not sufficient, to make research

reproducible. Even when code and data are shared, it remains difficult to reproduce results

due to variability in computing environments, operating systems, and the versions of

software used during the original analysis. It is common to use one or more software

libraries during a project. Using these libraries creates a dependency to a particular version

of the library; research code often only works with old versions of these libraries13.

Developers of newer versions may have renamed functions, resulting in broken code, or

changed the way a function works to yield a slightly different result without returning an

error. For example, Python 2 would perform integer division by default, so 5/2 would return

2. Python 3 performs floating-point division by default, so the same 5/2 command now

returns 2.5. In addition, old or broken dependencies can mean that it is not possible for

readers or reviewers to recreate the computational environment used by the authors of a

study. In this case it becomes impossible to validate or extend results.

We first illustrate, using a practical example, the problem of reproducibility of

computational studies. Then we describe the development and validation of a method named

continuous analysis that can address this problem.

RESULTS

One example illustrating how data-sharing does not automatically make science

reproducible can be found in routine analyses of differential gene expression. Differential

expression analyses are performed first by quantifying RNA levels in two or more conditions

and then identifying the transcripts with expression levels that are altered by the experiment.

When a DNA microarray is used to measure transcript expression levels, positions on the

array correspond to oligonucleotides of certain sequences, termed probes. A certain set of

probes is used to estimate the expression level of each gene or transcript. As our

understanding of the genome changes, the optimal mapping of probes to genes or transcripts

can change as well.

Dai et al.14 publish and maintain a popular source of probe set description files that are

routinely updated (BrainArray Custom CDF). Analyses that fail to report the probe set

version, or that were performed with probe set definitions that are now missing, can never be

reproduced. We set out to ascertain the extent of this problem through a literature search. We

analyzed the one hundred most recently published papers citing Dai et al. that were

accessible at our institution (Supplementary Data 1). We identified these manuscripts using

Web of Science on November 14, 2016. We recorded the number of papers that cited a

version of Custom CDF, including which version was cited. These articles adhered to

expectations of citing methods appropriately because they cited the source of their probe set

definitions. Of these 100 papers, 49 (49%) specified which version was used (Figure 1A).

Beaulieu-Jones and Greene Page 2

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

These manuscripts reported the use of versions 6, 10, 12, 14, 15, 16, 17, 18, and 19 of the

BrainArray Custom CDF. As of November 14, 2016 versions 6 and 12 were no longer

available for download on the BrainArray web site. To determine the extent to which a lack

of version reporting of the probe set affects high impact papers, we analyzed at the one

hundred most cited papers that cite Dai et al. (Supplementary Data 2). We determined the

one hundred most cited papers using Web of Science on November 14, 2016. Of these 100

papers, 36 (36%) specified which version of the Custom CDF was used (Figure 1B). These

manuscripts used versions 4, 6, 7, 8, 10, 11, 12, 13, 14 and 17. Versions 4, 6, 7, 11 and 12

were not available for download as of November 14, 2016.

In order to evaluate how different BrainArray Custom CDF versions affect the outcomes of

standard analyses, we downloaded a recently published gene expression dataset (GEO

accession number GSE47664). The reported experiment with this dataset measured gene

expression in normal HeLa cells and HeLa cells with TIA1 and TIAR knocked down15. We

ran the same source code using the same dataset altering only the version of the BrainArray

Custom CDF library (versions 18, 19 and 20). Each version identified a different number of

significantly altered genes (Figure 2A). There were 15 genes identified as significant in

version 19 that were not identified in version 18, and 10 genes identified as significant in

version 18 that were not identified version 19. There were 18 genes identified as significant

in version 20 that were not found in version 18 and 14 genes identified as significant in

version 18 that were not identified in version 20. These results indicate that study outcomes

are not reproducible without an accurate version number.

Using Docker containers improves reproducibility

To improve reproducibility, researchers can maintain dependencies using the free open-

source software tool Docker13,16. Docker can be used to create an “image” that allows users

to download and run a container, which is a minimalist virtual machine with a predefined

computing environment. Docker images can be several gigabytes in size, but once

downloaded can be started in a matter of seconds and have minimal overhead13. This

technology has been widely adopted and is now supported by many popular cloud providers

including Amazon, Google and Microsoft.

Docker wraps software into a container that includes everything the software needs to run

(operating system, system tools, installed software libraries etc.). This allows the software to

run the exact same way in any environment. Boettiger introduced Docker containers as a

path to reproducible research by eliminating dependency management, remediating issues

caused by imprecise documentation, limiting the effects of code rot (dependencies to

specific software library versions) and eliminating barriers to software reuse13. In addition,

Docker images can be tagged to coincide with software releases and paper revisions. This

means that even as software is updated, the exact computing environment of a specific older

version can be available through the tag of the container’s revision history.

In order to assess whether using Docker containers could improve reproducibility of the

same experiment we also carried out an analysis of differential gene expression using

Docker containers on mismatched machines17. This process allows versions to be matched,

and produces the same number and set of differentially expressed genes (Figure 2B).

Beaulieu-Jones and Greene Page 3

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Docker is a useful starting point for reproducible workflows. While it helps to match the

computing environment, users must manually rebuild the environment, rerun the analysis

pipeline, and update the container after each relevant change. In addition, it does not produce

logs of exactly what was run. It also does not automatically track results alongside the

specific versions of the code and data that generated them. In summary, Docker can provide

manual reproducibility when it is used appropriately.

Continuous Analysis

Our goal when developing continuous analysis was to produce an automatic and verifiable

end-to-end run for computational analyses with minimal start-up costs. The status quo

process requires researchers to perform an analysis and then diligently describe each step

and communicate exact versions of software library dependencies used, which can be

hundreds or thousands of packages for modern operating systems. To sidestep requiring

readers and reviewers to download and install multiple software packages and datasets,

continuous analysis preserves the exact computing environment used for the original

analysis. A Docker container is built at the time of original analysis and thus includes the

exact versions used by the original authors without the risk of packages later becoming

inaccessible. The continuous aspect refers to an analysis being rerun, the results saved in

version control, and the container being automatically updated after any relevant changes to

the software script or data.

Continuous analysis is an extension of continuous integration18. Continuous integration is

widely used in software development. In this workflow, whenever developers update code in

a source control repository, an automated build process is triggered. This automated build

process first runs any existing test scripts in an attempt to catch bugs introduced into

software. If there are no tests or the software passes the tests, the software is automatically

sent to remote servers so that users worldwide can access it.

Our continuous analysis workflows (Figure 3) use continuous integration services to run

computational analyses, update figures, and publish changes to online repositories whenever

changes are made to the source code used in an experiment. We provide continuous analysis

workflows for popular continuous integration systems that can be used with multiple types

of computing environments including local computing and cloud computing.

In the continuous analysis workflows that we developed, a continuous integration service is

used to monitor the source code repository. Whenever a change is made to a user-specified

branch of the repository, the service re-runs the scientific analysis. Workflows are defined in

files written in YAML that specify the configuration parameters and commands that should

be run. The YAML language is widely used by continuous integration services to specify a

human-readable set of instructions. The continuous analysis YAML files that we have

developed for multiple services to enable users to employ local computing, cloud-based

computing, or commercial service providers.

Each workflow begins by specifying a base Docker image to replicate the researcher’s

computing environment. The YAML files that we developed provide a place for researchers

to choose a base Docker image. Using Docker allows other researchers to re-run code in a

Beaulieu-Jones and Greene Page 4

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computing environment that matches what the original authors used, even if they do not

duplicate the original authors’ continuous integration configuration. Next, the continuous

analysis workflow YAML files specify one or more shell commands required to perform the

analysis. Researchers can replace the commands in our examples with their own analytical

code. Executing these steps generates the relevant figures from the analysis. Our YAML

implementation of continuous analysis then updates the remote source code repository by

adding figures and results generated during the run. Finally, a Docker container with the

final computing environment is automatically updated. This continuous analysis process

allows changes to be automatically tracked as a project proceeds and pairs each result with

the source code, data, and Docker container used to generate it.

Using continuous integration in this fashion automatically generates a log of exactly what

code was run that is synchronized to the code, data, and computing environment

(Supplemental Figure 1). Version control systems allow for images to be easily compared,

which provides continuous analysis users with the ability to observe results before and after

changes (Figure 4). Interactive development tools, such as Jupyter19,20, RMarkdown21,22

and Sweave23 can be incorporated to present the code and analysis in a logical graphical

manner. For example, we recently used Jupyter with continuous analysis in our own

publication24 and corresponding repository25. Reviewers can follow what was done in an

audit fashion without having to install and run software while having confidence that

analyses are reproducible.

When an author is ready to publish their work, they should archive their repository, which

contains the automatically generated results alongside the analytical source code and

scripted commands for data retrieval. With our continuous analysis workflows, the authors

can use the `docker save` command to export the latest static container, which should also be

archived. There are an increasing number of services that allow digital artifacts to be

archived and distributed, including Figshare or Zenodo. Journals may also allow authors to

upload these files as supplementary elements. If the archiving service used by the authors

provides a digital object identifier, future users can easily cite the computing environment

and source code. For example, our continuous analysis environment26 and results27 are

available in this fashion with results and our source code is provided as Supplementary

Source Code 1.

This system imposes minimal cost in terms of time and money on the researcher. Continuous

analysis is set up once per project, and will then run automatically for the life of the project.

We provide example YAML workflows for commonly used services. Researchers can

replace the steps in our example analyses with their own commands to enable automatic

reproducibility for their own projects.

Setting up continuous analysis

To set up continuous analysis, a researcher needs to do three things. First they must create a

Dockerfile, which specifies the software required for their analysis. Second, they need to

connect a continuous integration service to their version control system and add a

continuous analysis command script to run their analysis. Finally, they need to save their

Beaulieu-Jones and Greene Page 5

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

changes to the version control system. Many researchers already perform the first and third

tasks in the course of standard procedures for computational research.

The continuous integration system (Figure 3) will automatically rerun the specified analysis

with each change, precisely matching the source code and results. It can also be set to listen

and run only when changes are marked in a specific way, e.g. by committing to a specific

‘staging’ branch. For the first project, continuous analysis can be set up in less than a day.

For subsequent projects, the continuous analysis protocol can be amended in less than an

hour.

We have set up continuous analysis using the free and open source Drone software on a PC

and connected it to the GitHub version control service (detailed instructions are available in

Online Methods). This method is free to users. Our GitHub repository and Supplementary

Source Code include continuous analysis YAML scripts for local, cloud-based, and full-

service paid configurations27. However, it is important to note that while full service

providers can be set up in minutes, they may impose computational resource limits or

monthly fees. Private installations require configuration but can scale to a local cluster or

cloud service to match the computational complexity of all types of research. With free,

open-source continuous integration software28, computing resources are the only associated

costs.

We suggest a development workflow where continuous analysis runs only on a selected

branch (Supplemental Figure 2). Our example setup configures a “staging” branch for this

purpose. Researchers can push to this branch whenever they would like to generate results

files and figures. If the updates to this branch succeed, the changes – along with the results

of analyses – are then automatically carried over to the master or production branch and

released.

Reproducible workflows

Following initial setup, continuous analysis can be adopted into existing workflows that use

source control systems. We used continuous analysis in our work using neural networks to

stratify patients based on their electronic health records25. In addition, we provide two

example analyses using continuous analysis: a phylogenetic tree building and RNA-seq

differential expression analysis.

The phylogenetic tree-building example (detailed in Online Methods) aligned 4 mRNA

sequences (MouseTw1, HumanTw1, MouseTw2 and FlyTw) using MAFFT29 and built a

phylogenetic tree with these alignments using PHYLIP30 (Figure 4A). After adding an

additional sample (HumanTw2), continuous analysis rebuilt the tree (Figure 4B).

The RNA-seq example (detailed in Online Methods) demonstrated differential expression

analysis between three different organoid models of pancreatic cancer in mice based on Boi

et al.31 (GEO accession number GSE63348) while reusing source code from Balli32. This

analysis used kallisto33, limma34,35, and sleuth36 to quantify the transcript counts, performed

principal components analysis and ran a differential expression analysis. The analysis was

initially performed with 7 samples (Figure 4C). An 8th sample was added to show how

Beaulieu-Jones and Greene Page 6

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

continuous analysis tracked results (Figure 4D). This example also demonstrated the ability

of continuous analysis to scale to the analysis of large datasets – this GEO accession

includes 150GB of data (approximately 480 million reads).

Discussion

Continuous analysis provides a verifiable end-to-end run of scientific software in a fully

specified environment, thereby enabling true reproduction of computational analyses.

Because continuous analysis runs automatically, it can be set up at the start of any project to

provide an audit trail that allows reviewers, editors and readers to assess reproducibility

without a large time commitment. If readers or reviewers need to re-run the code on their

own (e.g. to change a parameter and evaluate the impact on results), they can easily do so

with a Docker container containing the final computing environment and results that has

been automatically kept up to date. Version control systems enable automatic notification of

code updates and new runs to those who “star” or “watch” a repository on services such as

Github, Gitlab, and Bitbucket. Wide adoption of continuous analysis could conceivably be

linked with the peer review and publication process allowing interested parties to be notified

of updates.

Continuous analysis can also be applied to closed data that cannot be released e.g. patient

data. Without continuous analysis, reproducing or replicating computational analyses based

on closed data is dependent on the original authors completely describing each step, which

often becomes relegated to supplementary information. Readers and reviewers must then

diligently follow complex written instructions without any confirmation they are on the right

track. The pairing of automatically updated containers, source code, and results with the

audit log provides readers with confidence that results would be replicable if the data were

available. This allows independent researchers to attempt to replicate findings in their own

non-public datasets without worrying that a failure to replicate could be caused by source

code or environment differences.

Continuous analysis currently has limitations. It may be impractical to use continuous

analysis at every commit for generic preprocessing steps involving very large data or

analyses requiring particularly high computational costs. In particular, steps that take days to

run or incur substantial costs in computational resources (e.g. genotype imputation) may be

too expensive for existing providers37. We demonstrate continuous analysis on a user-

defined “staging” branch. This enables researchers to control costs by choosing when to

trigger analyses that are automatically reproducible. We strongly recommend the use of

continuous analysis whenever a single machine can be used. For workflows that require

cluster computing, employing continuous analysis is technically feasible but requires

significant systems administration expertise because the cluster must be provisioned

automatically. For work involving cluster computing, researchers may elect to employ

continuous analysis for steps that do not require a cluster. In this case, researchers should

carefully report which steps in their workflows the process covers. It is conceivable that

continuous analysis systems could be specifically designed for scientific workflows to

facilitate reproducible cluster-based analyses with the same ease as single-machine analyses.

Beaulieu-Jones and Greene Page 7

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For small datasets and less intensive computational workflows it is easiest to use a full

service continuous integration service. These services have the shortest setup times – often

only requiring a user to enable the service and add a single file to their source code. With

private data or for analyses that include large datasets or require significant computing,

cloud-based or locally hosted continuous integration server can be employed.

Reproducibility could have wide-reaching benefits for the advancement of science. For

authors, reproducible work is credible. Stodden et al.38 highlight the importance of capturing

and sharing data, software, and the computational environments. Continuous analysis

addresses reproducibility in this narrow sense by automatically capturing the computational

reagents needed to generate the same results from the same inputs. It does not solve

reproducibility in the broader sense: how robust results are to parameter settings, starting

conditions and partitions in the data. By automating narrow-sense reproducibility,

continuous analysis lays the groundwork needed to address questions related to the

reproducibility and robustness of findings in the broad sense.

ONLINE METHODS

Assessment of reporting of Custom CDF versions

We performed a literature analysis of the 104 most recently published articles citing Dai et

al.14 that were accessible at our institution using the Web of Science on November 14, 2016.

We aimed to capture 100 articles that included expression analysis and used this resource.

We excluded four articles that did not perform expression analysis using the Custom CDF

and thus would not be expected to cite a version.

We repeated this process for the 115 highest cited articles that cited Dai et al.14 and were

accessible at our institution using the Web of Science on November 14, 2016. We again

aimed to capture 100 articles that included expression analysis. We excluded fifteen articles

that did not quantify expression with the Custom CDF and would not be expected to cite a

version.

For the 100 articles in each set that included expression analysis, we searched for the citation

or mention of Custom CDF and Dai et al. and examined the methods section and any

supplementary materials to determine which, if any, Custom CDF version was specified.

HeLa cell differential expression analysis using BrainArray Custom CDF

We compared the results of a differential expression using versions 18, 19 and 20 of the

BrainArray Custom CDF files14. We performed the differential expression analysis between

wild type HeLa cells and HeLa cells with a double knockdown of T-cell intracellular antigen

1 (TIA1) and TIA1 related/like (TIAR/TIAL1) proteins (GEO accession number

GSE47664). The experiment included 3 biological replicates of the wild type HeLA cells,

and 3 biological replicates of the HeLA cells with double knockdown.

Statistical analysis

Differential expression analysis was performed using the Bioconductor multtest R package39

to perform a two-sided t-test. The Bonferroni adjustment was used for multiple testing

Beaulieu-Jones and Greene Page 8

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

correction. The complete P values for Custom CDF versions 18, 19 and 20 are included

(Supplemental Data 3, 4, 5 respectively). For this analysis, an alpha threshold of 10−5 was

used. Continuous analysis was used for this example and is available17 (https://github.com/

greenelab/continuous_analysis_brainarray).

Setting up Continuous Analysis

Installing and Configuring Drone—We used a private local continuous integration

server with Drone 0.4 for the examples in this work. A detailed walkthrough is available27.

The first step to set up a local continuous integration server is to install Docker on the local

machine. We pulled the drone image via the Docker command:

sudo docker pull drone/drone:0.4

We created a new application within Github (https://github.com/settings/developers). The

homepage URL was the local machine’s IP address and the callback URL was the local

machine’s IP address followed by “/authorize”.

Homepage URL: http://IP-HERE/

Callback URL: http://IP-HERE/authorize/

After creating the application we noted of the Client ID and Client Secret generated by

Github. Next, we created the drone configuration file on our local machine at “/etc/drone/

dronerc”. First we created a directory:

sudo mkdir /etc/drone

Then, we created a new file named “dronerc” in the newly directory with the client

information in the following format. We filled in the Client ID and Secret with the

information obtained from GitHub:

REMOTE_DRIVER=github

REMOTE_CONFIG=https://github.com?client_id=....&client_secret=....

The drone instance was ready to run:

sudo docker run \

--volume /var/lib/drone:/var/lib/drone \

--volume /var/run/docker.sock:/var/run/docker.sock \

--env-file /etc/drone/dronerc \

--restart=always \

--publish=80:8000 \

--detach=true \

--name=drone \

drone/drone:0.4

Beaulieu-Jones and Greene Page 9

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/greenelab/continuous_analysis_brainarray
https://github.com/greenelab/continuous_analysis_brainarray
https://github.com/settings/developers
http://IP-HERE/
http://IP-HERE/authorize/
https://github.com?client_id=

The continuous integration server was accessed at ip-address/login. We clicked the login

button and chose the repository we wished to activate for continuous analysis. This

automatically created a webhook in GitHub to notify Drone when new changes were made

to the repository.

Creating a Docker image to replicate the research environment—We used a

Dockerfile to define a Docker image with the software required by the analysis (examples

available40–42). This file was named “Dockerfile.” The first line of the file specified a base

image to pull from. We used Ubuntu 14.04, so we set the first line to:

FROM Ubuntu:14.04

We specified the maintainer with contact information on the next line as:

MAINTAINER “Brett Beaulieu-Jones” brettbe@med.upenn.edu

Next, commands to install the appropriate packages were added to the file:

RUN apt-get install –y git python-numpy wget gcc python-dev python-setuptools

python-dev build-essential

After constructing the Dockerfile, we built the Docker image using the Docker build

command.

sudo docker build –t username/image_name

After building the image, we pushed it to Docker Hub in order to share the exact computing

environment with others. We used the following commands replacing the username and

image_name with the appropriate values.

sudo docker login

sudo docker push username/image_name

In addition to pushing the tagged docker images to Docker Hub, we saved static versions of

the docker images before and after analysis. We uploaded these to Zenodo to receive a

digital object identifier26.

docker save brettbj/continuous_analysis_base > continuous_analysis_base

docker save brettbj/continuous_analysis > continuous_analysis

Running a continuous analysis—After configuration, the analysis was run using a file

entitled “.drone.yml”. When this file was added to a repository, Drone performed all of the

commands within it (Supplemental Figure 3). Whenever changes are made to the source

code, Drone repeats these steps. Example “.drone.yml” files are available40–42.

Within continuous analysis, all commands were executed within a build section of

the .drone.yml file. First, the base Docker image created previously was pulled.

build:

image: username/image_name

Then shell scripting was used to re-run the appropriate analysis.

Beaulieu-Jones and Greene Page 10

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

commands:

- mkdir –p output

- …

To run continuous analysis only on the staging branch, a final section was added.

branches:

- staging

Phylogenetic tree-building example

This example aligned 5mRNA sequences and uses these alignments to build simple

phylogenies. We used 5 mRNA sequences accessible from the NCBI nucleotide database:

Twist – Fly (NM_079092, splice form A), Twist1 - Human (NM_000474), Twist1 - Mouse

(NM_011658), Twist2 - Human (NM_057179), Twist2 - Mouse (NM_007855).

This analysis was performed twice. The first analysis did not include: Twist2 – Human

(NM_05179). The second analysis included all five sequences (Supplemental Figure 4).

The sequences were aligned using MAFFT29 and then converted to PHYLIP interleaved

format using EMBOSS Seqret43. A maximum parsimony tree was generated for the

sequences using PHYLIP30 DNAPARS and a representation of this tree was drawn with

PHYLIP drawtree. PHYLIP Seqboot was used to assess robustness of the generated tree and

PHYLIP consense to determine the consensus tree form the bootstrapped trees. The

complete continuous analysis runs42 and Docker images before and after analysis are

available26.

RNA-seq differential analysis of mouse models for pancreatic cancer

This workflow was based on Balli32 and uses mouse organoid cultures generated by Boj et

al.31. Boj et al. generated organoids from three different tissues: normal pancreas (mN),

early stage lesions (mP) and pancreatic adenocarcinoma (mT). The authors then performed

RNA-seq on these organoids (GEO accession number GSE63348; SRA accession number

SRP049959).

We performed differential expression analysis initially on 7 samples: 2 normal, 3 mP and 2

mT (150gb FASTQ format, 480 million reads. An eighth sample (mT) was added in the

second run to demonstrate the differences under continuous analysis. Four preprocessing

steps were performed prior to beginning continuous analysis.

These steps were performed to reduce the amount of time continuous analysis runs for and

to limit the necessary bandwidth. Pre-processing steps should only be performed with time

and/or resource heavy tasks that follow a standard easy to follow workflow. First, the

samples were downloaded from the Sequence Read Archive (SRA accession number

SRP049959). The SRA36 toolkit was used to split the .sra files in to FASTQ files. The

mouse reference genome (mm10) assembly was downloaded. Finally, these files were stored

in a folder accessible to local FTP so they would not need to be re-downloaded with each

run.

Beaulieu-Jones and Greene Page 11

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Within the continuous analysis process, kallisto36 was used to generate an index file from

the reference mouse genome and then to quantify abundances of transcripts for each RNA-

seq sample. Next, lowly expressed genes were filtered out (<1) and a principal components

plot was generated (2-components) (Supplemental Figure 5). Finally, a limma34 linear model

was fit for differential gene expression analysis and the results were plotted in the form of a

volcano plot (Supplemental Figure 6).

The complete continuous analysis runs40 and Docker images before and after analysis were

uploaded and made available26.

Data Availability

The HeLA cells (wild type and double knockout) are available through GEO (accession

number GSE47664). The genes used in the Phylogenetic tree-building example are available

via the NCBI nucleotide database (IDs: NM_079092, NM_000474, NM_011658,

NM_057179, NM_007855). The RNA-seq data used for the larger differential expression

analysis are available in the Sequence Read Archive (Accession number SRP049959).

Code Availability

The Docker images for all three experiments are available on figshare (10.6084/m9.figshare.

3545156.v1). The Continuous Analysis examples and instructions accompanying this

manuscript are available on Zenodo (http://doi.org/10.5281/zenodo.178613). Instuctions and

examples will be periodically updated on Github and contributions are welcomed (https://

github.com/greenelab/continuous_analysis).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the Gordon and Betty Moore Foundation under a Data Driven Discovery Investigator
Award to CSG (GBMF 4552). A Commonwealth Universal Research Enhancement (CURE) Program grant from
the Pennsylvania Department of Health supported BKB. We would like to thank D. Balli for providing the RNA-seq
analysis design, K. Siewert for providing the phylogenetic analysis design, and A. Whan for contributing a Travis-
CI implementation. We also thank M. Paul, Y. Park, G. Way, A. Campbell, J. Taroni, and L. Zhou for serving as
usability testers during the implementation of continuous analysis.

References

1. Rebooting review. Nat Biotech. 2015; 33(4):319.doi: 10.1038/nbt.3202

2. Software with impact. Nat Meth. 2014; 11(3):211.doi: 10.1038/nmeth.2880

3. Peng RD. Reproducible Research in Computational Science. Science (80-). 2011; 334(6060):1226–
1227. DOI: 10.1126/science.1213847

4. McNutt M. Reproducibility. Science (80-). 2014; 343(6168):229. http://science.sciencemag.org/
content/343/6168/229.abstract.

5. Illuminating the black box. Nature. 2006; 442(7098):1.doi: 10.1038/442001a [PubMed: 16823413]

6. Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016; 533(7604):452–454. DOI:
10.1038/533452a [PubMed: 27225100]

Beaulieu-Jones and Greene Page 12

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://doi.org/10.5281/zenodo.178613
https://github.com/greenelab/continuous_analysis
https://github.com/greenelab/continuous_analysis
http://science.sciencemag.org/content/343/6168/229.abstract
http://science.sciencemag.org/content/343/6168/229.abstract

7. Garijo D, Kinnings S, Xie LL, et al. Quantifying reproducibility in computational biology: The case
of the tuberculosis drugome. PLoS One. 2013; 8(11)doi: 10.1371/journal.pone.0080278

8. Kinnings SL, Xie LL, Fung KH, Jackson RM, Xie LL, Bourne PE. The Mycobacterium tuberculosis
drugome and its polypharmacological implications. PLoS Comput Biol. 2010; 6(11)doi: 10.1371/
journal.pcbi.1000976

9. Ioannidis JPA, Allison DB, Ball CA, et al. Repeatability of published microarray gene expression
analyses. Nat Genet. 2009; 41(2):149–155. DOI: 10.1038/ng.295 [PubMed: 19174838]

10. Hothorn T, Leisch F. Case studies in reproducibility. Brief Bioinform. 2011; 12(3):288–300. DOI:
10.1093/bib/bbq084 [PubMed: 21278369]

11. Groves T, Godlee F. Open science and reproducible research. BMJ. 2012; 344doi: 10.1136/
bmj.e4383

12. [Accessed January 1, 2016] ThinkLab. https://thinklab.com/

13. Boettiger C. An introduction to Docker for reproducible research, with examples from the R
environment. ACM SIGOPS Oper Syst Rev Spec Issue Repeatability Shar Exp Artifacts. 2015;
49(1):71–79. DOI: 10.1145/2723872.2723882

14. Dai M, Wang P, Boyd AD, et al. Evolving gene/transcript definitions significantly alter the
interpretation of GeneChip data. Nucleic Acids Res. 2005; 33(20):e175.doi: 10.1093/nar/gni179
[PubMed: 16284200]

15. Nunez M, Sanchez-Jimenez C, Alcalde J, Izquierdo JM. Long-term reduction of T-cell intracellular
antigens reveals a transcriptome associated with extracellular matrix and cell adhesion
components. PLoS One. 2014; 9(11)doi: 10.1371/journal.pone.0113141

16. Docker. Docker. https://www.docker.com

17. Beaulieu-Jones B, Greene C. Continuous Analysis BrainArray: Submission Release Continuous
Analysis BrainArray: Submission Release. Aug.2016 doi: 10.5281/zenodo.59892

18. Duvall P, Matyas S, Glover A. Continuous Integration: Improving Software Quality and Reducing
Risk. 2007. http://portal.acm.org/citation.cfm?id=1406212

19. Pérez F, Granger BE. {IP}ython: a System for Interactive Scientific Computing. Comput Sci Eng.
2007; 9(3):21–29. DOI: 10.1109/MCSE.2007.53

20. [Accessed January 8, 2016] Jupyter. http://jupyter.org/. Published 2016

21. RStudio. RStudio: Integrated development environment for R (Version 0.97.311). J Wildl Manage.
2011; 75(8):1753–1766. DOI: 10.1002/jwmg.232

22. Baumer B, Cetinkaya-Rundel M, Bray A, Loi L, Horton NJ. R Markdown: Integrating A
Reproducible Analysis Tool into Introductory Statistics. Technol Innov Stat Educ. 2014; 8(1):
20.doi: 10.5811/westjem.2011.5.6700

23. Leisch Friedrich. Sweave: Dynamic generation of statistical reports using literate data analysis.
Compstat 2002 - Proc Comput Stat. 2002; (69):575–580. doi:10.1.1.20.2737.

24. Beaulieu-Jones BK, Greene CS. Semi-supervised learning of the electronic health record for
phenotype stratification. J Biomed Inform. 2016 Dec.64:168–178. DOI: 10.1016/j.jbi.2016.10.007
[PubMed: 27744022]

25. Beaulieu-Jones BK. Denoising Autoencoders for Phenotype Stratification (DAPS): Preprint
Release. Zenodo. Jan.2016 doi: 10.5281/zenodo.46165

26. Beaulieu-Jones BK, Greene CS. Continuous Analysis Example Docker Images. 2016; doi:
10.6084/m9.figshare.3545156.v1

27. Beaulieu-Jones BK, Whan A, Greene CS. greenelab/continuous_analysis: Continuous Analysis
v1.0 [Data set]. Zenodo. . Published 2016

28. Drone.io. https://drone.io/

29. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence
alignment based on fast Fourier transform. Nucleic Acids Res. 2002; 30(14):3059–3066. DOI:
10.1093/nar/gkf436 [PubMed: 12136088]

30. Plotree D, Plotgram D. [Accessed August 2, 2016] PHYLIP-phylogeny inference package (version
3.2). cladistics. 1989. http://onlinelibrary.wiley.com/doi/10.1111/j.1096-0031.1989.tb00562.x/
abstract

Beaulieu-Jones and Greene Page 13

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://thinklab.com/
https://www.docker.com
http://portal.acm.org/citation.cfm?id=1406212
http://jupyter.org/
https://drone.io/
http://onlinelibrary.wiley.com/doi/10.1111/j.1096-0031.1989.tb00562.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1096-0031.1989.tb00562.x/abstract

31. Boj SF, Hwang C-I, Baker LA, et al. Organoid Models of Human and Mouse Ductal Pancreatic
Cancer. Cell. 2015; 160(1):324–338. DOI: 10.1016/j.cell.2014.12.021 [PubMed: 25557080]

32. Balli D. [Accessed August 1, 2016] Using Kallisto for expression analysis of published RNA-seq
data. https://benchtobioinformatics.wordpress.com/2015/07/10/using-kallisto-for-gene-expression-
analysis-of-published-rnaseq-data/. Published 2015

33. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNAseq quantification. Nat
Biotechnol. 2016; 34(5):525–527. DOI: 10.1038/nbt.3519 [PubMed: 27043002]

34. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):e47.doi: 10.1093/nar/gkv007
[PubMed: 25605792]

35. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in
microarray experiments. Stat Appl Genet Mol Biol. 2004; 3 Article3. doi:
10.2202/1544-6115.1027

36. Pimentel HJ, Bray N, Puente S, Melsted P, Pachter L. Differential analysis of RNA-Seq
incorporating quantification uncertainty. bioRxiv. 2016; doi: 10.1101/058164

37. Souilmi Y, Lancaster AK, Jung J-Y, et al. Scalable and cost-effective NGS genotyping in the cloud.
BMC Med Genomics. 2015; 8(1):64.doi: 10.1186/s12920-015-0134-9 [PubMed: 26470712]

38. Stodden V, McNutt M, Bailey DH, et al. Enhancing reproducibility for computational methods.
Science. 2016; 354(6317)doi: 10.1126/science.aah6168

39. Pollard KS, Dudoit S, van der Laan MJ. Multiple Testing Procedures: the multtest Package and
Applications to Genomics. Springer New York: 2005. 249–271.

40. Beaulieu-Jones BK, Greene CS. Continuous Analysis RNA-seq Example. GitHub repository.
https://github.com/greenelab/continuous_analysis_rnaseq. Published 2016

41. Beaulieu-Jones BK, Greene CS. Continuous Analysis BrainArray Example. GitHub repository.
https://github.com/greenelab/continuous_analysis_brainarray. Published 2016

42. Beaulieu-Jones BK, Greene CS. Continuous Analysis Phylogenetic Tree Building Example.
GitHub repository. https://github.com/greenelab/continuous_analysis_phylo. Published 2016

43. Rice P, Longden I, Bleasby A, et al. EMBOSS: the European Molecular Biology Open Software
Suite. Trends Genet. 2000; 16(6):276–277. DOI: 10.1016/s0168-9525(00)02024-2 [PubMed:
10827456]

Beaulieu-Jones and Greene Page 14

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://benchtobioinformatics.wordpress.com/2015/07/10/using-kallisto-for-gene-expression-analysis-of-published-rnaseq-data/
https://benchtobioinformatics.wordpress.com/2015/07/10/using-kallisto-for-gene-expression-analysis-of-published-rnaseq-data/
https://github.com/greenelab/continuous_analysis_rnaseq
https://github.com/greenelab/continuous_analysis_brainarray
https://github.com/greenelab/continuous_analysis_phylo

Figure 1. Reporting of custom CDF file descriptors in published papers
Works citing custom chip description files (Custom CDF) frequently do not cite the version.

Each manuscript is represented by a circle in which color indicates the version used by each

paper. A.) 51 of the 100 most recent papers citing Dai et al.14 do not list a version (4

additional papers were excluded from analysis because they cited Dai et al.14 but do not use

the Custom CDF). B.) 64 of the 100 most cited papers which cite Dai et al.14 do not list a

version. (15 additional papers were excluded from analysis because they cited Dai et al.14

but do not use Custom CDF).

Beaulieu-Jones and Greene Page 15

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2. Research computing versus container-based approaches
A.) The status quo requires a reader or reviewer to find and install specific versions of

dependencies. These dependencies can become difficult to find and may become

incompatible with newer versions of other software packages. Different versions of packages

identify different numbers of significantly differentially expressed genes from the same

source code and data. B.) Containers define a computing environment that captures

dependencies. In containerbased systems, the results are the same regardless of the host

system.

Beaulieu-Jones and Greene Page 16

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3. Setting up continuous analysis
Continuous analysis can be set up in three primary steps (numbered 1, 2, and 3). (1) The

researcher creates a Docker container with the required software. (2) The researcher

configures a continuous integration service to use this Docker image. (3) The researcher

pushes code that includes a script capable of running the analyses from start to finish. The

continuous integration provider runs the latest version of code in the specified Docker

environment without manual intervention. This generates a Docker container with

intermediate results that allows anyone to rerun analysis in the same environment, produces

updated figures, and stores logs describing everything that occurred. Example configurations

are available in the online methods our online repository (https://github.com/greenelab/

continuous_analysis). Because code is run in an independent, reproducible computing

environment and produces detailed logs of what was executed, this practice reduces or

eliminates the need for reviewers to re-run code to verify reproducibility.

Beaulieu-Jones and Greene Page 17

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/greenelab/continuous_analysis
https://github.com/greenelab/continuous_analysis

Figure 4. Reproducible workflows with continuous analysis
Resulting figures from the run are committed back to Github where changes between runs

can be viewed. A, B.) The effect of adding an additional gene (HumanTw2) to a

phylogenetic tree-building is shown. C, D.) The effect of adding an additional sample (mt8)

to an RNA-seq differential expression experiment PCA plot is shown.

Beaulieu-Jones and Greene Page 18

Nat Biotechnol. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	RESULTS
	Using Docker containers improves reproducibility
	Continuous Analysis
	Setting up continuous analysis
	Reproducible workflows

	Discussion
	ONLINE METHODS
	Assessment of reporting of Custom CDF versions
	HeLa cell differential expression analysis using BrainArray Custom CDF
	Statistical analysis
	Setting up Continuous Analysis
	Installing and Configuring Drone
	Creating a Docker image to replicate the research environment
	Running a continuous analysis

	Phylogenetic tree-building example
	RNA-seq differential analysis of mouse models for pancreatic cancer
	Data Availability
	Code Availability

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

