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From homogeneous to 
heterogeneous network alignment 
via colored graphlets
Shawn Gu1, John Johnson1, Fazle E. Faisal1,2 & Tijana Milenković   1,2

Network alignment (NA) compares networks with the goal of finding a node mapping that uncovers 
highly similar (conserved) network regions. Existing NA methods are homogeneous, i.e., they can 
deal only with networks containing nodes and edges of one type. Due to increasing amounts of 
heterogeneous network data with nodes or edges of different types, we extend three recent state-of-
the-art homogeneous NA methods, WAVE, MAGNA++, and SANA, to allow for heterogeneous NA for 
the first time. We introduce several algorithmic novelties. Namely, these existing methods compute 
homogeneous graphlet-based node similarities and then find high-scoring alignments with respect 
to these similarities, while simultaneously maximizing the amount of conserved edges. Instead, we 
extend homogeneous graphlets to their heterogeneous counterparts, which we then use to develop 
a new measure of heterogeneous node similarity. Also, we extend S3, a state-of-the-art measure of 
edge conservation for homogeneous NA, to its heterogeneous counterpart. Then, we find high-scoring 
alignments with respect to our heterogeneous node similarity and edge conservation measures. In 
evaluations on synthetic and real-world biological networks, our proposed heterogeneous NA methods 
lead to higher-quality alignments and better robustness to noise in the data than their homogeneous 
counterparts. The software and data from this work is available at https://nd.edu/~cone/colored_
graphlets/.

Due to advancements of biotechnologies for data collection, increasing amounts of biological network data are 
becoming available1–4. A prominent type of biological networks is protein-protein interaction (PPI) networks. 
Aligning PPI networks of different species continues to be important5–9. This is because network alignment (NA) 
aims to uncover similar network regions by finding a node mapping between compared PPI networks. Then, anal-
ogous to genomic sequence alignment, NA can be used to transfer functional knowledge across species between 
their conserved PPI network (rather than sequence) regions. This is needed because functions of many proteins 
remain unknown even for well-studied species. Protein function prediction via NA-based across-species transfer 
can help close this gap.

NA methods typically consist of two main algorithmic components. First, the similarity between pairs of 
nodes from different networks is computed with respect to some measure of node conservation (NC). Second, 
an alignment strategy (AS) quickly identifies alignments that maximize total NC over all aligned nodes and the 
amount of conserved edges (i.e., edge conservation, EC). That is, intuitively, a good alignment should both map 
similar nodes to each other and preserve many edges.

Different types of NA methods exist. First, NA can be categorized as local (LNA) or global (GNA). LNA aims 
to find optimally conserved network regions, which typically results in the aligned regions being small10–18. On 
the other hand, GNA aims to find an overall node mapping between compared networks, which often results in 
the aligned network regions being large but suboptimally conserved19–31. Both LNA and GNA have (dis)advan-
tages32,33. Since most of the recent work has dealt with GNA9, we also focus on GNA, but our work can be gener-
alized to LNA as well.

Second, NA can be categorized as pairwise (PNA) or multiple (MNA). PNA is designed to find similar 
regions between exactly two networks, while MNA can align more than two networks. Because MNA is more 
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computationally complex than PNA34, and because current PNA methods are also more accurate than current 
MNA methods35, we focus on PNA, but our work can be generalized to MNA as well.

Third, NA can be divided into two categories based on the type of its AS. One AS type is seed-and-extend, 
where first two highly similar nodes (with respect to some NC measure) are aligned, i.e., seeded. Then, the seed’s 
neighboring nodes (or simply neighbors) that are similar are aligned, the seed’s neighbor’s neighbors that are 
similar are aligned, and so on. This step of extending around the seed and exploring the seed’s neighbors is 
intended to improve both NC and EC of the resulting alignment. The extension step continues until all nodes 
in the smaller of the two compared networks are aligned (formally, until a one-to-one node mapping between 
the two networks is produced). WAVE36 is a state-of-the-art seed-and-extend AS, which was shown to work the 
best under a graphlet-based NC measure23,37 (see below) and a score called “weighted EC”, which is high if the 
nodes of the conserved edges (see below) are also similar with respect to the NC measure. The other AS type is 
a search algorithm. Here, instead of aligning node by node as with seed-and-extend ASs, entire alignments are 
explored and the one that scores the highest based on some objective function is returned. A typical objective 
function optimizes some measure of NC, EC, or a combination of the two. MAGNA++38 and SANA39 are two 
state-of-the-art search algorithm-based ASs. MAGNA++ uses a genetic algorithm as its search strategy and it 
works the best under the objective function that optimizes the graphlet-based NC measure23,37 and the S3 EC 
measure38. SANA uses simulated annealing as its search strategy, and it was evaluated under several objective 
functions that optimize EC, including S3. In our study, we add to the EC (i.e., S3) part of SANA’s objective function 
the same graphlet-based NC measure that WAVE and MAGNA++ also optimize, in order to compare as fairly as 
possible the three NA methods and their heterogeneous counterparts.

All existing NA methods are homogeneous (HomNA). That is, they deal with networks containing nodes and 
edges of one type. However, a network can have nodes or edges of more than one type (or color). For example, 
different biological entities, such as proteins, phenotypes, or drugs, can be modeled as nodes, and different types 
of interactions, such as protein-protein, phenotype-phenotype, drug-drug, protein-phenotype, protein-drug, 
or phenotype-drug associations can be modeled as edges. Analyzing such heterogeneous multi-node- or 
multi-edge-type network data can lead to deeper insights into cellular functioning compared to homogeneous 
network analyses40. Therefore, there is a need for being able to perform heterogeneous NA (HetNA). Intuitively, 
HetNA aims to find a node mapping between heterogeneous networks (Fig. 1). In this study, we propose the first 
ever approach for HetNA.

While an existing method called AlignPI41 was claimed to align heterogeneous networks, it actually did not 
perform HetNA as we define it in this study. Namely, AlignPI was simply used to align two networks of different 
types to one other (specifically, the human PPI network to the disease-disease association network). However, 
each of the two considered networks is homogeneous, and thus the networks were aligned in the homogeneous 
fashion. Another relevant existing method is Fuse42, which works via data integration. As such, it might appear 
that Fuse deals with data of different types, i.e., heterogeneous networks. However, it does not. Namely, Fuse 
aligns homogeneous PPI networks of different species, where the data integration step refers to using information 
from all of the homogeneous networks to calculate similarities between their nodes. Then, an alignment is still 
produced in the homogeneous fashion. The remaining relevant existing method is multimodal network align-
ment43, which does deal with a special case of the HetNA problem. Namely, it aligns multimodal networks, which 
are a special case of heterogeneous networks as we define them. A multimodal (also called multiplex) network 
contains edges of different types (or modes) between the same set of nodes. That is, it contains only a single node 
type (Fig. 1). However, in our study, we define a heterogeneous network as a network that can contain different 
node types or different edge types (or both), and thus, our definition of HetNA is more broad than that of multi-
modal network alignment. Importantly, since the multimodal network alignment approach was not published as 
of completion of our evaluation (i.e., it was available only on arXiv), the code implementing it was not available at 
the time. So, we were unable to consider this approach in our study.

Figure 1.  Illustration of two heterogeneous networks, each containing different node as well as edge types 
(or colors). In a given network, different node shapes represent different node types, and different line styles 
represent different edge types. If we do not consider the ovals with red edges (the bottom portion of the 
network), then we have a heterogeneous network with different node types, and thus implicitly different edge 
types. If we only consider the ovals with blue or red edges, then we have a heterogeneous network with different 
edge types but a single node type (also called multimodal networks with two edge modes). The goal of HetNA 
as we define it is to find a node mapping between heterogeneous networks that contain different node types, 
different edge types, or both.
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Our Contributions
As already noted, current HomNA methods aim to find alignments with high homogeneous NC (HomNC) and 
homogeneous EC (HomEC). So, to generalize HomNA to HetNA, we generalize HomNC to heterogeneous NC 
(HetNC) and HomEC to heterogeneous EC (HetEC). We describe these modifications intuitively below and 
formally in Methods.

From homogeneous to heterogeneous NC.  First, we introduce relevant concepts in the homoge-
neous context. Intuitively, two nodes from different homogeneous networks are topologically similar if their 
extended neighborhoods are similar. This idea can be quantified with homogeneous graphlets (small–typically 
up to 5-node–connected subgraphs), which have been been extensively studied in homogeneous network anal-
ysis4,36,37,44–48. For each node, for each graphlet, one counts how many times the given node touches each node 
symmetry group, or node orbit, in the given graphlet (e.g., in a 3-node path, the nodes at the end of the path are 
symmetric to each other and are thus in the same orbit, but they are distinct from the node in the middle, which 
is thus in a separate orbit). These counts over all graphlets summarize the extended network neighborhood of 
the node into its graphlet degree vector (GDV). Then, to compute topological similarity between two nodes, their 
GDVs are compared.

Second, when we have a heterogeneous (node- or edge-colored) network, we modify the above notion of top-
ological similarity between nodes; now, two nodes from different networks are topologically similar if they are of 
the same color and if their extended neighborhoods are of similar color and network structure. To quantify this, 
we extend homogeneous graphlets into heterogeneous (or colored) graphlets, as follows. Given a heterogeneous 
network containing n nodes and c different node (or edge) colors, an exhaustive extension would track both 
which combinations of node (or edge) colors exist in a given graphlet as well as at which node (or edge) positions 
in the graphlet the colors occur. With such an approach, the computational complexity of the problem, namely 
both the enumeration of all possible heterogeneous graphlet types on up to n nodes (the space complexity) and 
counting of the heterogeneous graphlets in a network (the time complexity), would increase exponentially with 
the number of colors49. Instead, we propose a more computationally efficient node-colored (or edge-colored) 
graphlet approach: we only track which combinations of node (or edge) colors exist in a given graphlet but not 
at which node (or edge) positions in the graphlet the colors occur (Fig. 2). Consequently, with our approach: 1) 
the number of possible colored graphlets and thus the computational space complexity is lower compared to the 
exhaustive approach, and 2) most importantly, the computational time complexity of counting colored graphlets 
in a heterogeneous network is the same as that of counting original graphlets in a homogeneous network, unlike 
with the exhaustive approach (Fig. 2). Given node- or edge-colored graphlets, analogous to the GDV of a node in 
a homogeneous network, we summarize the extended neighborhood of a node in a heterogeneous network with 
its node-colored GDV (NCGDV) or edge-colored GDV (ECGDV). Then, we compute topological similarity between 
two nodes from heterogeneous networks by comparing the nodes’ NCGDVs, ECGDVs, or both. Formal defini-
tions of node-colored and edge-colored graphlets, as well as NCGDVs and ECGDVs, can be found in Methods.

Figure 2.  Illustration of (a) node-colored and (b) edge-colored graphlets. (a) With the exhaustive approach for 
enumerating all possible heterogeneous graphlets corresponding to homogeneous graphlet G1, i.e., a 3-node 
path, given two colors, there would be six heterogeneous graphlets, each accounting for both which colors are 
present in the graphlet and which node position has which color. On the other hand, with our approach, there 
are three possible colored graphlets, denoted by c{ }n1

, c{ }n2
, and c c{ , }n n1 2

, each accounting only for which colors 
are present in the graphlet, ignoring the node-specific color information. Consequently, with our approach, the 
last four graphlets on the right of the arrow, which all have the same two colors present in them, are treated as 
the same heterogeneous graphlet. We design our approach in this way primarily to reduce the time complexity 
of counting heterogeneous graphlets in a network (but consequently, we also reduce the space complexity 
compared to the exhaustive approach). Namely, with our approach, the computational time complexity of 
searching for a given colored graphlet in a heterogeneous network remains the same as that of searching for its 
homogeneous equivalent. This is because the former involves: 1) counting in the heterogeneous network all 
graphlets, independent of their colors (which is the same as counting homogeneous graphlets in the network), 
and 2) for each of the homogeneous graphlets found in the network, simply determining which node colors 
appear in it and thus which node-colored graphlet the non-colored graphlet corresponds to. Step 1 is the time 
consuming part of the node-colored graphlet counting process, unlike step 2, which is trivial (can be done in 
constant time). (b) We develop a similar approach for edge-colored graphlets.
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Note that in our evaluation, we consider networks that contain only different node types. As such, our con-
sidered data contain different edge types only implicitly, because edges between nodes of different types will by 
definition be of different types themselves. So, in our evaluation, we need to consider only node-colored graphlets 
and NCGDVs, but not edge-colored graphlets or ECGDVs. Yet, we propose, define, and provide software imple-
mentation for edge-colored graphlets and ECGDVs as well, because these can be used alone for alignment of 
multimodal networks or combined with node-colored graphlets and NCGDVs for alignment of heterogeneous 
networks such as those in Fig. 1.

The software implementing node-colored and edge-colored graphlet counting can be found at https://
nd.edu/~cone/colored_graphlets/. We also provide an intuitive graphical user interface (GUI) for easy use by 
domain scientists.

From homogeneous to heterogeneous EC.  In HomNA, S3 is a state-of-the-art EC measure38,39. To 
explain S3, first, we need to define a conserved edge. Intuitively, given two nodes in one network, and given their 
aligned counterparts in another network, the alignment is said to conserve an edge (i.e., form a conserved edge) if 
the two nodes are connected in the first network and the aligned counterparts are connected in the other network. 
Otherwise, if only the two nodes in the first network are connected or only their aligned counterparts in the other 
network are connected, but not both, the alignment is said to not conserve an edge (i.e., form a non-conserved 
edge). Formal definitions of conserved and non-conserved edges can be found in Methods. Then, S3 is defined the 
ratio of the number of conserved edges to the number of both conserved and non-conserved edges. Intuitively, S3 
rewards an alignment whenever it aligns an edge in one network to an edge in the other network and penalizes it 
whenever it aligns an edge in one network to a non-edge in the other network (or vice versa).

We extend S3 into a new measure of heterogeneous EC. In particular, we redefine what a conserved edge 
means, by accounting for colors of its aligned end nodes. Specifically, given a conserved edge consisting of nodes 
u and v in one network, and the corresponding aligned nodes u′ and v′, respectively, in the other network, if both 
u and u′ have the same color and v and v′ have the same color, then the edge is fully conserved. Instead, if either 
u and u′ have the same color or v and v′ have the same color, but not both, then the edge is partially conserved, 
i.e., its contribution to the heterogeneous S3 score is penalized. If neither u and u′ have the same color nor v and 
v′ have the same color, then the edge is even less conserved than in the previous case, i.e., its contribution to the 
heterogeneous S3 score is penalized even more. Finally, if the edge is non-conserved, we treat it the same as in the 
homogeneous case. In this way, our new heterogeneous S3 measure favors both conserving edges and conserving 
edges whose aligned end nodes match in color.

Here we give a concrete example of these concepts for the alignment in Fig. 3. In the homogeneous case (i.e., 
if all nodes were of the same color), there exist four conserved edges: the one formed by (a, b) and (a′, b′)–because 
a is aligned to a′, b is aligned to b′, and an edge exists both between a and b as well as between a′ and b′; the one 
formed by (a, c) and (a′, c′); the one formed by (c, d) and (c′, d′); and the one formed by (b, d) and (b′, d′). On the 
other hand, (a, d) and (a′, d′) form a non-conserved edge, because while a is aligned to a′ and d is aligned to d′, 
there is an edge between a and d but not between a′ and d′. For a similar reason, (b, c) and (b′, c′) form another 
non-conserved edge. So, given the existence of four conserved edges and two non-conserved edges, homogene-
ous S3 is = + = .

+ −
4/(4 2) 0 67# conservededges

(# conservededges # non conservededges)
. In the heterogeneous case, for an edge to be 

conserved, the homogeneous condition is still required. However, we also account for colors of the aligned end 
nodes of a conserved edge and penalize for color mismatches. Specifically, (a, b) and (a′, b′) are counted as a fully 
conserved edge (with conservation weight of 1), because in addition to the fact that this edge is conserved in the 
homogeneous case, a has the same color as a′, and b has the same color as b′. (a, c) and (a′, c′) are counted as a less 
conserved edge (with conservation weight of 2

3
), because while a and a′ have the same color, c and c′ do not. 

Figure 3.  Illustration of HomEC and HetEC for an alignment between networks G and H. Arrows represent 
one possible alignment (mapping) between the networks, i.e., their nodes. Note that this node mapping is 
not the best alignment possible with respect to HomEC, but we use it to illustrate the concepts involved. 
For a detailed illustration of conserved edges, non-conserved edges, and S3, see Section Introduction–From 
homogeneous to heterogeneous EC.
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Similarly, (b, d) and (b′, d′) form a partly conserved edge with conservation weight of 2
3

. (c, d) and (c′, d′) are 
counted as an even less conserved edge (with conservation weight of 1

3
) because neither c and c′ nor d and d′ have 

the same color. Finally, (a, d) and (a′, d′) form a non-conserved edge, just as in the homogeneous case. Given the 
total edge conservation of + + + =1 2

3
2
3

1
3

8
3
 and two non-conserved edges (the same ones as in the homoge-

neous case), heterogeneous S3 uses the same formula as S3 and is + = .( )/ 2 0 578
3

8
3

.

From homogeneous to heterogeneous NA.  We modify existing HomNA methods WAVE, 
MAGNA++, and SANA to perform HetNA by optimizing our new HetNC and HetEC measures (instead of their 
original HomNC and HomEC measures) with these methods’ ASs. We choose WAVE and MAGNA++ because 
they rose to the top in a recent study by Meng et al.32, which is a recent comprehensive evaluation of 10 HomNA 
methods. Since then, SANA appeared and was promising. So, we include SANA into our study as well. We modify 
all three methods and evaluate their new heterogeneous versions as described below. Detailed descriptions of 
these methods and their heterogeneous modifications can be found in Methods.

We note that additional ASs exist. Some of them are network-based, such as that of GR-Align, which is a 
sequence alignment algorithm that is applicable to a single network type–protein structure networks–whose 
nodes have a sequential order50. However, we cannot use GR-Align’s AS because we are interested in the general 
NA problem, which is not specific to a single network type, and which typically deals with networks that do not 
contain node order (such as our considered networks). Other ASs are non-network-based, such as that of UAlign, 
which is an algorithm that aims to find a word alignment between two sentences51. Just as with GR-Align’s 
AS, UAlign’s AS also deals with ordered entities (i.e., it considers the order of the words in the sentences being 
aligned), which again makes in inapplicable to our considered general NA problem. Moreover, UAlign’s AS 
requires previously known word mappings, which are incorporated in a semi-supervised framework. This addi-
tionally makes UAlign’s AS inapplicable to the general NA problem, which is typically unsupervised.

Results
First, we describe our evaluation framework, specifically data that we use, networks that we align, and parameters 
of the three considered NA methods. Second, we compare HomNA and HetNA. That is, we compare each of 
homogeneous WAVE, MAGNA++, and SANA to its heterogeneous counterpart. Recall that there currently exist 
no HetNA methods, and thus, we cannot compare heterogeneous WAVE, MAGNA++, or SANA to any other 
HetNA method except to each other. In more detail, we evaluate: 1) the effect of HetNC, i.e., whether using more 
node colors increases alignment quality (and especially whether using two or more colors, i.e., HetNA, is superior 
to using a single color, i.e., HomNA), 2) the effect of HetEC, i.e., whether using heterogeneous S3 over homogene-
ous S3 increases alignment quality, and 3) the effect of the alignment method, i.e., which of our three new HetNA 
methods performs the best with respect to accuracy and running time.

Evaluation.  We perform three evaluation tests corresponding to three sets of networks: 1) synthetic networks 
with up to four artificially imposed node colors, 2) homogeneous human PPI networks that have up to four node 
colors imposed according to proteins’ involvement in a combination of aging, cancer, and Alzheimer disease 
(AD), and 3) heterogeneous human protein-GO networks, where the two node colors correspond to proteins 
and their Gene Ontology (GO) terms, and edges exist between proteins, between proteins and GO terms, and 
between GO terms. Note that while we evaluate WAVE and SANA in all three tests, due to MAGNA++’s com-
putational complexity, we evaluate MAGNA++ only in the first test on the smaller synthetic networks but not 
in the remaining two tests on the larger PPI or protein-GO networks. We align each of the above networks to its 
noisy versions. Details are as follows.

Synthetic networks.  We form synthetic networks using two random graph generators, namely: 1) geometric 
random graphs52 (GEO) and 2) scale-free networks53 (SF). The two models have distinct network topologies54, 
which enables us to test the robustness of our results to the choice of random graph model. We form five random 
network instances per model and average results over them to account for the stochastic nature of the models. 
We set all model network instances to the same size of 1,000 nodes and 6,000 edges. Since the existing random 
graph generators are not designed to produce heterogeneous networks, we simply randomly assign each node a 
color out of k possible colors, where there are approximately 1000/k nodes of each color. We vary k from one to 
four. That is, for each synthetic network, we form heterogeneous versions with one, two, three, and four colors.

Human PPI networks.  We obtain the human PPI network data from BioGRID1. We consider two types of PPIs: 
only affinity capture coupled to mass spectrometry (APMS) and only two-hybrid (Y2H). Sizes of the resulting 
networks are shown in Table 1.

We impose node colors onto each PPI network based on the proteins’ involvement in a combination of aging, 
cancer, and Alzheimer’s disease (AD). We obtain a list of sequence-based (Seq) human aging-related genes from 
GenAge3 and a list of gene expression-based (Expr) human aging-related genes from the study by Berchtold et al.55.  

Network # of nodes # of edges

APMS 11,450 92,257

Y2H 10,317 41,925

Table 1.  Number of nodes and edges in the two considered PPI networks.



www.nature.com/scientificreports/

6SciEntific REPOrTS |  (2018) 8:12524  | DOI:10.1038/s41598-018-30831-w

We obtain a list of genes related in cancer from COSMIC2. We obtain a list of human genes related to AD from 
Simpson et al.56.

We use these data to impose colors onto nodes in each of the two PPI networks (as well as their noisy coun-
terparts; see below). For a given network, we use sequence-based aging- and cancer-related data to form four 
different colored versions of the network, as follows:

•	 In the 1-colored network, we treat all the nodes the same, meaning they have the same color.
•	 In the 2-colored network, we use the aging-related data to color nodes as “aging-related”. Otherwise, they are 

“non-aging-related”. This gives us 270 “aging-related” and 10,047 “non-aging-related” nodes.
•	 In the 3-colored network, we use aging- and cancer-related data. If a node is present in the aging-related data, 

we color it “aging-related”. If a node is absent there but present in the cancer-related data, we color it as “can-
cer only”. If a node is absent from both, we color it as “non-aging-related and non-cancer”. In this way, we have 
270 “aging-related”, 405 “cancer only”, and 9,642 “non-aging-related and non-cancer” nodes.

•	 In the 4-colored network, we use the same scheme as the 3-colored network, except if a node is present in 
both data sets, we color it as “both aging-related and cancer”. This gives us 203 “aging-related”, 405 “cancer 
only”, 67 “both aging-related and cancer”, and 9,642 “non-aging-related and non-cancer” nodes.

To test the robustness of the choice of node color data above, we vary the underlying data. Now, for each of the 
two PPI network types, we use expression-based aging- and AD-related data to form four colored versions of the 
given network, as follows:

•	 In the 1-colored network, we treat all the nodes the same, meaning they have the same color.
•	 In the 2-colored network, we use the aging-related data to color nodes as “aging-related”. Otherwise, they are 

“non-aging-related”. This gives us 2,889 “aging-related” and 7,428 “non-aging-related” nodes.
•	 In the 3-colored network, we use aging- and AD-related data. If a node is present in the aging-related data, 

we color it “aging-related”. If a node is absent there but present in the AD-related data, we color it as “AD 
only”. If a node is absent from both, we color it as “non-aging-related and non-AD”. In this way, we have 2,889 
“aging-related”, 356 “AD only”, and 7,072 “non-aging-related and non-AD” nodes.

•	 In the 4-colored network, we use the same scheme as the 3-colored network, except if a node is present in 
both data sets, we color it as “both aging-related and AD”. This gives us 2,232 “aging-related”, 356 “AD only”, 
657 “both aging-related and AD”, and 7,072 “non-aging-related and non-AD” nodes.

Human protein-GO networks.  A heterogeneous protein-GO network has two types of nodes: protein and GO 
term57, and three types of edges: 1) PPI, 2) protein-GO association, and 3) GO-GO semantic similarity. The PPI 
data are the same two types of PPI networks as before (APMS and Y2H), protein-GO associations are obtained 
from the Gene Ontology Consortium57 based on experimental evidence codes, and GO-GO semantic similari-
ties are computed as follows. We compute semantic similarity between all GOs that annotate at least one protein 
in the given considered PPI network. We use Lin method58 to compute the semantic similarity. We form edges 
between GOs using semantic similarity threshold of 0.7, because the density of the resulting GO-GO network 
approximately matches the density of the corresponding PPI network. Considering APMS PPIs only and Y2H 
PPIs only, we form two heterogeneous protein-GO networks for human, whose sizes are shown in Tables 2 and 3.

Creating noisy counterparts of a synthetic, PPI, or protein-GO network.  Given an original network G, we con-
struct its noisy counterparts as follows. Considering a noise level of x%, we randomly choose x% of the edges and 
remove them from the original network, and then we randomly choose the same number of node pairs that are 
disconnected in the original network and add edges between them. That is, we randomly rewire x% of the edges 
in the original network. Each noisy network has the same number of nodes and edges as the original network. 
For each considered original network, we use the following noise levels: 0%, 10%, 25%, 50%, 75%, and 100%. We 

Network

Node type

# of proteins # of GO terms # of all nodes combined

APMS 11,450 5,558 17,008

Y2H 10,317 5,554 15,871

Table 2.  Number of nodes in the two considered heterogeneous protein-GO networks.

Network

Edge type

# of PPIs
# of protein-GO 
associations

# of GO-GO semantic 
similarities

# of all edges 
combined

APMS 92,257 24,854 48,731 165,842

Y2H 41,925 24,473 48,873 115,271

Table 3.  Number of edges in the two considered heterogeneous protein-GO networks.



www.nature.com/scientificreports/

7SciEntific REPOrTS |  (2018) 8:12524  | DOI:10.1038/s41598-018-30831-w

construct multiple instances of noisy networks at each level to account for the randomness in edge rewiring; then, 
we average results (i.e., alignment quality) over the multiple runs. For WAVE and SANA, we use at least three 
instances. For MAGNA++, we only use one instance due to MAGNA++’s high computation complexity.

Measuring alignment quality.  Since we align an original network to its noisy counterpart, we know the true node 
mapping between the aligned networks (of course, this mapping is hidden from each NA method when it is asked 
to produce an alignment). Therefore, we evaluate the quality of the given network by measuring its node correct-
ness, which quantifies how well the alignment matches the true node mapping. Formally, node correctness is the 
percentage of node pairs from the given alignment that are present in the true node mapping.

Comparison of HomNA and HetNA.  We need to define our considered evaluation scenarios. 
HomNA uses HomNC and HomEC, and we call this scenario HomNC-HomEC. For HetNA, if HetNC 
is used with HomEC, we call this scenario HetNC-HomEC; if HomNC is used with HetEC, we call this sce-
nario HomNC-HetEC; and if HetNC is used with HetEC, we call this scenario HetNC-HetEC. Note that while 
MAGNA++ and SANA can optimize both NC and EC because they are search algorithms, WAVE only optimizes 
NC and it cannot directly optimize EC, because it is a seed-and-extend algorithm. Hence, while we can evaluate 
MAGNA++ and SANA in all four of the above scenarios, i.e., while for these two methods we can study the effect 
on alignment quality of both HomNC versus HetNC and HomEC versus HetEC, for WAVE, we can only study 
the effect of HomNC versus HetNC.

First, we compare HomNC-HomEC to HetNC-HomEC, to study the effect of HetNC alone on alignment 
quality, while still considering HomEC in both cases. Then, we compare HetNC-HomEC to HetNC-HetEC to 
study the effect of HetEC on alignment quality after we have already accounted for HetNC. We perform all of 
these comparisons comprehensively, using all considered methods on all considered data sets, as described in 
Methods. We also compare HomNC-HomEC to HomNC-HetEC to additionally study the effect of HetEC on 
alignment quality without first accounting for HetNC. Here, we perform only several case study comparisons out 
of all possible comparisons, due to the already comprehensive comparison experiments mentioned above.

The effect of HetNC.  In terms of accuracy, we expect that for a given noise level, HetNA (i.e., HetNC-HomEC 
or HetNC-HetEC – two or more node colors) should improve alignment quality over HomNA (i.e., 
HomNC-HomEC – one node color). Also, we expect that the more colors are used, the better the alignment 
quality should be, since more information is used in the process of producing the alignment. In addition, we 
predict that using more colors will make the given method more robust to noise, meaning that we should see 
a slower decrease in alignment quality as noise increases, compared to using fewer colors. However, alignment 
quality should be low at the highest noise levels regardless of how many colors we use, since we are essentially 
aligning two networks with almost random topologies compared to each other. Indeed, we observe these exact 

Figure 4.  Summarized results regarding the effect of the number of considered node colors on alignment 
quality for (a) synthetic networks, (b) PPI networks, and (c) protein-GO networks. In panels (a) and (b), 
there are up to four considered node colors, while in panel (c), there are up to two considered node colors (see 
Section Evaluation for details). For each case (see below), we compare the different color levels (i.e., numbers of 
considered colors shown on x-axes) and rank them from the best (rank 1) to the worst (rank 4 in panels a and 
b, and rank 2 in panel c). Then, we compute the percentage or frequency of all cases (see below) in which the 
given color level is ranked as the first (rank 1), second (rank 2), third (rank 3), or fourth (rank 4) best among 
all considered color levels. In panel (a), there are 3 methods (WAVE, MAGNA++, SANA) × 2 networks 
(geometric, scale-free) × 5 noise levels (0%, 10%, 25%, 50%, 75%) = 30 cases. In panel (b), there are 2 methods 
(WAVE, SANA) × 4 networks (APMS-Expr, APMS-Seq, Y2H-Expr, Y2H-Seq) × 5 noise levels (0%, 10%, 25%, 
50%, 75%) = 40 cases. In panel (c), there are 2 methods (WAVE, SANA) × 2 networks (protein-GO-APMS, 
protein-GO-Y2H) × 5 noise levels (0%, 10%, 25%, 50%, 75%) = 20 cases. Note that we analyzed an additional 
noise level (100%), but we leave the corresponding results from this summary figure, because at this level all 
cases are expected to result in the same (random) alignments (Section Evaluation–Creating noisy counterparts 
of a synthetic, PPI, or protein-GO network). Instead, we show the results for the noise level of 100% in the 
detailed figures (Figs 5, 6 and 7). Also, note that in this figure, for each case, we choose the best between HetNC-
HomEC and HetNC-HetEC.
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Figure 5.  Detailed alignment quality results regarding the effect of the number of node colors on alignment 
quality as a function of noise level for synthetic, specifically geometric, networks, using (a) WAVE, (b) MAGNA, 
and (c) SANA. Gray squares, light blue circles, dark blue triangles, and black stars indicate the aligned networks 
containing one, two, three, and four node colors, respectively. For two or more node colors, solid lines represent 
using HetNC-HomEC, and dashed lines represent using HetNC-HetEC. Equivalent results for the remaining 
synthetic, specifically scale-free, networks are shown in Supplementary Figure S2.

Figure 6.  Detailed alignment quality results regarding the effect of the number of node colors on alignment 
quality as a function of noise level for PPI, specifically APMS-Expr, networks using (a) WAVE and (b) SANA. 
The figure can be interpreted in the same way as Fig. 5. Recall that for these larger networks, we have not run 
MAGNA++ due to its high computational complexity. Equivalent results for the remaining PPI, specifically 
APMS-Seq, Y2H-Expr, and Y2H-Seq, networks are shown in Supplementary Figures S4, S5, and S6.

Figure 7.  Detailed alignment quality results regarding the effect of the number of node colors on alignment 
quality as a function of noise level for protein-GO, specifically protein-GO-APMS, networks using (a) WAVE 
and (b) SANA. The figure can be interpreted in the same way as Fig. 5. Recall that for these larger networks, 
we have not run MAGNA++ due to its high computational complexity. Equivalent results for the remaining 
protein-GO, specifically protein-GO-Y2H, networks are shown in Supplementary Figure S8.
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trends (Figs 4, 5, 6 and 7). Note that the few observed ties occur typically at the lower (0% and 10%) noise levels, 
which makes sense because in such cases network similarity can be captured reliably, meaning that all methods 
perform well.

In terms of time complexity, due to the way we count homogeneous as well as heterogeneous graphlets, time 
does not increase with more colors. Because of this, and because using more colors results in higher accuracy, we 
recommend using as many colors as needed. Note, however, that space complexity increases with the increase in 
the number of considered colors, because there are more possible graphlets; yet, the space complexity is practi-
cally feasible for a reasonable number of colors, such as four considered colors in our study (Section Methods–
From homogeneous to heterogeneous NC).

The effect of HetEC.  In terms of accuracy, we expect improvement of HetNC-HetEC over HetNC-HomEC, 
because while both HomEC and HetEC favor aligning nodes that conserve edges, unlike HomEC, HetEC also 
favors aligning nodes whose colors match. Indeed, this is generally what we observe (Fig. 8).

However, we see some ties between HetNC-HomEC and HetNC-HetEC. Also, while for MAGNA++ 
HetNC-HetEC noticeably improves alignment quality over HetNC-HomEC, for SANA, improvements of 
HetNC-HetEC over HetNC-HomEC are usually small (Figs 5, 6 and 7). (WAVE does not explicitly optimize 
EC, so we are unable to compare HomEC versus HetEC for WAVE). This could be due to SANA’s algorithm: it 
explores millions of alignments a second, and thus, it seems to already find high-scoring ones with just HetNC, 
without the need for HetEC.

For these reasons, we consider the HomNC-HetEC scenario, to properly gauge the true potential of 
HetEC in the task of HetNA, without any “bias” of also already using HetNC. Here, we analyze only two cases 
as a proof-of-concept of the effect of HetEC while still considering HomNC. Specifically, the two cases are 
MAGNA++ on geometric networks and SANA on APMS-Expr networks.

For these two cases, we evaluate all of HomNC-HomEC, HetNC-HomEC, HomNC-HetEC, and 
HetNC-HetEC scenarios (Fig. 9). First, for a given scenario, for a given noise level, we ask whether using more 
colors yields higher alignment quality, as expected. Indeed, this is what we observe. Second, for both MAGNA++ 
and SANA, HomNC-HetEC improves over HomNC-HomEC (i.e., over HomNA), though for SANA improve-
ments are again small. However, using HetNC alone (HetNC-HomEC) improves alignment quality more than 
using HetEC alone (HomNC-HetEC). This might not be surprising, because HetNC favors aligning nodes of 
the same color that also have similar extended neighborhoods, while HetEC does not account for this extended 
neighborhood. As expected, HetNC-HetEC yields the best alignment quality of all four cases for all colors and 
all noise levels, except the highest (75% and 100%), as expected. For MAGNA++ on geometric networks, the 
improvements of HetNC-HetEC over the next best scenario (HetNC-HomEC) are large, while for SANA on 
APMS-Expr networks, the improvements over the next best scenario (also HetNC-HomEC) are marginal.

In terms of time complexity, calculating heterogeneous S3 (i.e., HetEC) has the same complexity as calculating 
homogeneous S3 (i.e., HomEC), since counting the number of conserved and non-conserved edges in a heteroge-
neous network takes the same amount of time as in a homogeneous network. Specifically, checking if node colors 

Figure 8.  Summarized results regarding the effect of using HetEC over HomEC (both with HetNC) on 
alignment quality for (a) synthetic networks, (b) PPI networks, and (c) protein-GO networks. In all panels, 
there are two evaluation scenarios (HetNC-HomEC and HetNC-HetEC). For each case (see below), we 
compare the two considered evaluation scenarios and rank them from the best (rank 1) to the worst (rank 2). 
Then, we compute the percentage or frequency of all cases (see below) in which the given scenario is ranked as 
the first (rank 1) and second (rank 2) best among the considered scenarios. In panel (a), there are 2 methods 
(MAGNA++, SANA) × 2 networks (geometric, scale-free) × 5 noise levels (0, 10, 25, 50, 75) × 3 colors (1 
color does not have a HetEC counterpart) = 60 cases. In panel (b), there is 1 method (SANA) × 4 networks 
(APMS-Expr, APMS-Seq, Y2H-Expr, Y2H-Seq) × 5 noise levels (as before) × 3 colors (as before) = 60 cases. 
In panel (c), there is 1 method (SANA) × 2 networks (protein-GO-APMS, protein-GO-Y2H) × 5 noise levels 
(as before) × 1 color (maximum 2 colors, but 1 color does not have a HetEC counterpart) = 10 cases. Note that 
we analyzed an additional noise level (100%), but we leave the corresponding results from this summary figure, 
because at this level all cases are expected to result in the same (random) alignments (Section Evaluation–
Creating noise counterparts of a synthetic, PPI, or protein-GO network). Instead, we show the results for the 
noise level of 100% in the detailed figures (Figs 5, 6 and 7).
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match (Section Introduction–From homogeneous to heterogeneous EC) to determine how much conserved an 
edge is takes constant time. Because of this, and because using both HetNC and HetEC results in the highest 
accuracy, we recommend using both HetNC and HetEC (i.e., HetNC-HetEC scenario).

The effect of alignment method.  In terms of accuracy, regardless of noise level, WAVE and SANA generally 
outperform MAGNA++ (Fig. 10). WAVE and SANA have somewhat comparable performance (Fig. 10), in the 
following sense. For synthetic networks, the two are tied in 70% of all evaluation tests, WAVE is superior to SANA 
in 10% of the tests, and SANA is superior to WAVE in 20% of the tests. For PPI networks, the two are tied in 50% 
of all evaluation tests, WAVE is superior to SANA in 15% of the tests, and SANA is superior to WAVE in 35% of 
the tests. For protein-GO networks, the two are tied in 0% of all evaluation tests, WAVE is superior to SANA in 
50% of the tests, and SANA is superior to WAVE in 50% of the tests. Whenever WAVE is superior to SANA, it 
is typically for lower noise levels (up to 25%) (Fig. 11). Whenever SANA is superior to WAVE, it is typically for 
higher noise levels (above 25%) (Fig. 11). These trends for lower versus higher noise levels could be due WAVE’s 
algorithm. At lower noise levels, the networks being aligned are still very similar to each other, so if two nodes 
are topologically similar, then it is likely that they should be aligned to each other. In this situation, WAVE would 
start with a good seed and thus be likely to produce a good alignment. At higher noise levels, the networks being 
aligned are dissimilar. So, two nodes may be topologically similar only because of the random rewiring of edges, 
but still be (erroneously) mapped to each other. In this situation, WAVE would start with a poor seed and likely 
lead to a poor alignment. Since SANA is not a seed-and-extend method, it avoids this issue and performs well 
even at higher noise levels.

In terms of time complexity, MAGNA++ is the slowest of the three methods (Fig. 11(a)), which is expected 
since it uses a genetic algorithm. Of WAVE and SANA, for synthetic networks, which happen to be the smallest 
of our considered networks, WAVE is faster than SANA (Fig. 11(a)). However, keep in mind that the execution 
time is a parameter in SANA. In that sense, it is possible to run SANA so that it is faster than any other method. 
However, in this case, SANA might not reach desired alignment quality. It might be possible to run SANA for as 
long as needed to always beat or at least tie WAVE in terms of alignment quality, but the amount of time would 
have to be determined empirically for every network pair being aligned. For PPI and protein-GO networks, which 
happen to be the largest of our considered networks, SANA is faster than WAVE (Fig. 11(b and c).

Discussion
We modify WAVE, MAGNA++, and SANA to align heterogeneous networks by extending the existing notions 
of NC and EC to their heterogeneous counterparts. Specifically, we extend homogeneous graphlets to their het-
erogeneous counterparts, and homogeneous S3 to heterogeneous S3. We evaluate our methods by aligning syn-
thetic, PPI, and protein-GO networks to their noisy counterparts. We show that using more colors leads to better 
alignments, and that using both heterogeneous NC and heterogeneous EC is the preferred option where available. 
Also, we find that WAVE and SANA perform equally well at lower noise levels, though SANA does better at 
higher noise levels.

There are many new directions in which this work could be taken. Faster heterogeneous graphlet count-
ing methods could be developed by using combinatorial relationships between heterogeneous graphlets, akin to 
existing efficient methods for homogeneous graphlet counting59–62. Or, faster, more scalable methods for captur-
ing the topology of a node in a heterogeneous network could be developed as an alternative to graphlets, such as 
those based on random walks63,64. Also, our considered networks have up to four colors; aligning networks with 
more colors, as well as adding explicit (rather than just implicit, as in our study) edge colors, could show further 
improvements. Another direction is improving the AS of NA methods. For example, in WAVE, the choice of the 
first aligned (seed) node pair likely impacts the rest of the alignment. If there are many possibilities for this pair, 
can an algorithm discover the best one, independent of the noise level in the data? Furthermore, while NA has 

Figure 9.  Detailed alignment quality results regarding the effect of HomNC-HetEC compared to HomNC-
HomEC, HetNC-HomEC, and HetNC-HetEC on alignment quality for the two considered case study 
evaluation tests: (a) geometric networks using MAGNA++ and (b) APMS-Expr networks using SANA. The 
figure can be interpreted in the same way as Fig. 5, except that now solid lines represent HetNC-HomEC, short-
long dotted lines represent HomNC-HetEC, and finely dotted lines represent HetNC-HetEC.
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been extended from dealing with static networks to dealing with dynamic networks65,66, the existing dynamic NA 
work currently only deals with homogeneous dynamic networks. Developing methods to align heterogeneous 
dynamic networks may yield improvements. In a similar vein, our current heterogeneous work deals with PNA, 
and so extending it into heterogeneous MNA may be of future interest.

Methods
Calculating node similarities, i.e., NC.  Given the GDV for each node in a network, we form a matrix of 
GDVs over all nodes for each of the two networks being aligned. Then, we combine the two matrices by append-
ing the rows of one to the rows of the other and perform principal component analysis (PCA) on the combined 
matrix of the networks’ GDVs. We choose the first r principal components, where r is at least two and as small as 
possible such that the r components account for at least 90% of the variation in the data. Then, for every pair of 

Figure 10.  Summarized results regarding the effect of the alignment method on alignment quality for (a) 
synthetic networks, (b) PPI networks, and (c) protein-GO networks. In panel (a), there are three considered 
alignment methods (WAVE, MAGNA++, and SANA). In panels (b) and (c), there are two considered 
alignment methods (WAVE and SANA). For each case (see below), we compare the alignment methods and 
rank the different methods from best (rank 1) to worst (rank 3 in panel (a), and rank 2 in panels (b) and (c)). 
Then, we compute the percentage of all cases in which the given method is ranked as the first, second, or third 
best among all considered methods. In panel (a), there are 2 networks (geometric, scale-free) × 5 noise levels 
(0, 10, 25, 50, 75) = 10 cases. In panel (b), there are 4 networks (APMS-Expr, APMS-Seq, Y2H-Expr, Y2H-Seq) 
× 5 noise levels (as above) = 20 cases. In panel (c), there are 2 networks (protein-GO-APMS, protein-GO-Y2H) 
× 5 noise levels (as above) = 10 cases. Note that we analyzed an additional noise level (100%), but we leave 
the corresponding results from this summary figure, because at this level all cases are expected to result in the 
same (random) alignments (Section Evaluation-Creating noise counterparts of a synthetic, PPI, or protein-GO 
network). Instead, we show the results for the noise level of 100% in the detailed figures (Figs 5, 6 and 7). Also, 
note that in this figure, we give each method the best case advantage. That is, we show results for the best of 
HetNC-HomEC and HetNC-HetEC, and also only for the maximum node color level (four colors in panels (a) 
and (b), and two colors in panel (c)). We do the latter because of all color levels, it is the maximum color level at 
which the given method performs the best, for each method. Nonetheless, the results remain qualitatively the 
same if we account for all considered colored levels.

Figure 11.  Summarized results comparing the running times verus accuracy of different methods for 25% and 
50% noise on (a) synthetic, specifically geometric and scale-free, (b) PPI, specifically APMS-Expr and APMS-
Seq, and (c) protein-GO, specifically APMS and Y2H, networks. The x-axis is the running time of the given 
method on the given network data at the given noise level, and the y-axis is the alignment quality score. Here 
we use different shapes to represent the different methods, different colors to represent the different noise levels, 
and solid or broken lines to represent the different network data. Lines are drawn between the different methods 
for the same noise level and network data, for easier comparison of the different methods. Detailed running 
time results for all other noise levels and network data are shown in Supplementary Figures S9–S16.
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nodes between the two networks, we calculate their cosine similarity based on the nodes’ principal components 
and scale so that the values are between 0 and 1.

Note that we have tested other dimensionality reduction techniques, minimum curvilinear embedding (MCE) 
and non-centered MCE (ncMCE)67. These two are nonlinear dimensionality reduction techniques, which may 
better capture node similarities compared to the linear PCA. Both MCE and ncMCE have a parameter that we 
refer to as an internal distance measure, which is used to compute an MCE/ncMCE-based dimensionality-reduced 
GDV matrix. This internal distance measure is different than the measure that is used to compute node similar-
ities from the dimensionality-reduced matrix. For each of MCE and ncMCE, we consider three different inter-
nal distance measures suggested by the original authors67: one minus the Pearson correlation, one minus the 
cosine similarity, and Euclidean distance. These combinations result in six dimensionality reduction techniques: 
MCE-correlation, MCE-cosine, MCE-Euclidean, ncMCE-correlation, ncMCE-cosine, and ncMCE-Euclidean.

We have also evaluated whether using dimensionality reduction causes information loss compared to using 
the full, non-reduced GDVs (we call the case of no dimensionality reduction as NoPCA).

Each of the six MCE/ncMCE variants, NoPCA, and PCA requires the choice of a node similarity measure. We 
have evaluated each of the eight techniques under three different node similarity measures: Pearson correlation, 
cosine similarity, and the inverse of Euclidean distance, because there is no guarantee that one particular measure 
will give the best results. Recall that these similarity measures are used after the dimensionality reduction in order 
to calculate the similarity between nodes, and do not serve the same purpose as the distances measures used 
by MCE and ncMCE internally. So, in total, we have tested 24 combinations: NoPCA with the three similarity 
measures, PCA with the three similarity measures, and the six variants of MCE/ncMCE with the three similarity 
measures. Out of all combinations, we have found empirically that PCA with cosine similarity overall performs 
the best, and that NoPCA with cosine similarity closely follows. By “performs the best”, we mean that the given 
combination is at least as good as any other combination in almost all evaluation tests, i.e., independent of the 
network type (e.g., geometric versus scale-free), noise level (e.g., 10% versus 25%), or alignment strategy (e.g., 
WAVE versus SANA). Importantly, PCA with cosine similarity and NoPCA with cosine similarity are the only 
combinations to perform well consistently across all evaluation tests; other combinations (including several MCE 
versions) result in comparable alignment quality for some evaluation tests, but do not hold up across all of them 
(Fig. 12 and Supplementary Figs S17–22). These analyses and results justify our choice of PCA with cosine simi-
larity as the default option.

Method parameters.  WAVE does not have any parameters. We set MAGNA++’s parameters as follows: we 
use initial population size of 15,000 and 2,000 generations, which are the suggested values in the MAGNA++ 
documentation; we run MAGNA++ on 16 threads on all networks. We give equal weight to MAGNA++’s NC 
and EC measures, i.e., we set its “a” parameter to 0.5; using this value has been suggested by several studies32,38. 
We set SANA’s parameters as follows: we give equal weight to its NC and EC measures for fair comparability with 
MAGNA++, i.e., we set the following parameters: “s3” (corresponding to EC) to 1, “esim” (corresponding to 
NC) to 1, “simFile” to the name of the NC-based node similarity file, and “simFormat” to 1 (this tells SANA to 

Figure 12.  Representative alignment quality results regarding the effect of the dimensionality reduction 
technique on alignment quality for geometric networks, 10% noise, and cosine similarity under (a) WAVE 
and (b) SANA. For MCE/ncMCE, we indicate the number of dimensions out of those tested (2, 3, 5, 10, 15, 20, 
25, 30, 40, 50) that gives the best results, i.e., the highest alignment quality. NoPCA corresponds to using no 
dimensionality reduction. For additional results, see Supplementary Figs S17–22.
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read the similarity file such that each line has 3 columns: node1, node2, and the similarity between them). SANA 
also has a parameter for how long it should search for alignments. For synthetic networks, we run SANA for the 
default 5 minutes (“t” 5). For PPI and protein-GO networks, we increase the “t” parameter to 60 minutes (“t” 60),  
since these networks are larger and thus SANA needs more time to find a good alignment (which we have verified 
empirically in our evaluation).

From homogeneous to heterogeneous NC.  Here we formalize the notion of heterogeneous (colored) 
graphlets. For ease of explanation, first, we define node-colored graphlets. Given k possible node colors from the 
set = …C c c c{ , , , }n n n nk1 2

, =S 2Cn is the set of all possible combinations of colors from Cn. S contains ( )k
0

 ele-

ments with no color (i.e. the empty set), ( )k
1

 elements with any one color, and in general ( )k
i

 elements with any i 

colors. Therefore, S contains 2k elements. So S\ 0 is the set of all possible color combinations from Cn that excludes 
the empty set, which contains 2k − 1 elements. Let ∈b S\ 0n . Given a homogeneous graphlet Gi, a set of colors Cn, 
and some bn, define a node-colored graphlet NCGi b, n

 to be the set of all distinct graphs that are isomorphic to Gi, 
such that for each graph, each node is colored with one of the colors from bn, and also, each color from bn has to 
be present in each such graph. Thus, given k node colors, there are 2k − 1 possible node-colored graphlets.

As an illustration, let us assume that a heterogeneous network has nodes with two possible colors: cn1
 and cn2

. 
These two node colors have 3 possible combinations: c{ }n1

, c{ }n2
, and c c{ , }n n1 2

. As a result, for each homogeneous 
graphlet Gi, there are three possible node colored graphlets (Fig. 2).

This definition of node-colored graphlets is more space efficient than the exhaustive approach is: given a 
heterogeneous network containing n nodes and k different colors, with the exhaustive approach, both the num-
ber of possible colored graphlets (the space complexity) and the the time needed to count such graphlets in the 
network (the time complexity) increase exponentially with the number of colors. With our approach, however, 
1) the number of possible colored graphlets is much smaller (though still exponential in terms of the number 
of colors) compared to the exhaustive approach, and 2) the time complexity of counting colored graphlets in a 
heterogeneous network is the same as that of counting original graphlets in a homogeneous network, unlike with 
the exhaustive approach.

Regarding the space complexity of our colored graphlet approach, as an illustration, for two colors, with the 
exhaustive definition, there would be six node-colored graphlets for homogeneous graphlet G1, a 3-node path, 
while with our approach there are only three of them. For three colors, with the exhaustive definition, there would 
be 18 node-colored graphlets for G1, while with our approach there are only seven of them. Although even with 
our approach, the number of node-colored graphlets increases drastically with the increase of k, but this is not a 
major concern because in practice we may expect a relatively small value of k. For example, one can study a heter-
ogeneous network whose nodes are proteins, functions, diseases, and drugs with k value of only four.

Just as an orbit (i.e., topological symmetry group) of a homogeneous graphlet37, we define an orbit of a 
node-colored graphlet NCGi b, n

 as the set of nodes that are “symmetric” to each other in NCGi b, n
; the symmetry 

ignores node colors (Fig. 2). For a homogeneous graphlet with x orbits, each of its colored graphlets also has x 
orbits. That is, given k node colors, there are 73 × (2k − 1) orbits for 2–5-node node-colored graphlets (there are 
73 orbits for homogeneous 2–5 node graphlets). Then, we define heterogeneous node-colored GDV (NCGDV) by 
counting the number of node-colored graphlets that the given node “touches” at each of the node-colored orbits. 
Analogous to the homogeneous case, to compare two nodes in heterogeneous networks, we compare their 
NCGDVs.

Second, analogous to the definitions for node-colored graphlets, without going again through all the formal-
isms, we define edge-colored graphlets (Fig. 2), orbits in edge-colored graphlets, and edge-colored GDV (ECGDV). 
In practice, we may expect a relatively small number of edge colors (e.g., we can study a network whose nodes are 
genes/proteins and whose edges are PPIs, genetic interactions, gene co-expressions, and signaling interactions 
with only four edge colors).

Third, the above ideas can be combined to define truly heterogeneous graphlets that have different node and 
edge colors. For each node-colored graphlet, one can vary its edge colors. Alternatively, it is possible and com-
putationally much simpler to concatenate NCGDVs and ECGDVs, which does not add any additional computa-
tional complexity compared to computing only NCGDVs or only ECGDVs.

From homogeneous to heterogeneous EC.  Let u, v be two nodes in a network G, and u′, v′ be two nodes 
in a network H. Let f be a mapping (i.e., alignment) from the nodes of G to the nodes of H such that f(u) = u′ and 
f(v) = v′ (another way to say this is that source node u has image u′, and source node v has image v′). That is, u is 
aligned to u′, and v is aligned to v′. Then, a conserved edge is formed by two edges from different networks such 
that each end node of one edge is aligned under f to a unique end node of the other edge. On the other hand, a 
non-conserved edge is formed by an edge from one network and a pair of nodes from the other network that do 
not form an edge, such that each end node of the edge is aligned under f to a unique node of the non-edge. Then, 
homogeneous S3 of an alignment is defined as the ratio of conserved edges to the sum of conserved and 
non-conserved edges (Fig. 3)68. We define a new measure of heterogeneous EC by modifying S3 to account for 
colors of aligned end nodes of a conserved edge, as described and illustrated in Section Intro–From homogeneous 
to heterogeneous EC. Note that our chosen heterogeneous edge conservation weights of 1 for a fully conserved 
edge in which each of the two pairs of aligned nodes match in color, 2

3
 for a partly conserved edge in which only 

one of the two pairs of aligned nodes match in color, and 1
3
 for even less conserved edge in which none of the two 

pairs of aligned nodes match in color, are just one of possible choices, which we use for simplicity, as a 
proof-of-concept of our new heterogeneous S3 measure. Other choices of weights are possible.
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From homogeneous to heterogeneous network alignment.  We modify three recent NA methods, 
WAVE, MAGNA++, and SANA, to account for heterogeneous networks. We describe these algorithms and their 
modifications below.

WAVE.  WAVE takes as input two networks and an NC-based matrix that captures pairwise similarities between 
the nodes across the compared networks, and then uses a seed-and-extend algorithm to align the networks. First, 
two highly similar nodes are aligned, i.e., seeded. Then, the seed’s neighbors that are similar are aligned, and 
then the seed’s neighbor’s neighbors that are similar are aligned, and so on, until there is a one-to-one mapping 
between the networks. By aligning similar nodes, NC is optimized, and by looking at neighbors of already aligned 
nodes, EC is optimized, though only implicitly.

To account for heterogeneous networks, we simply plug into WAVE’s alignment strategy a new matrix of 
node similarities that is based on our new HetNC measure generated by our proposed heterogeneous graphlet 
approach. Based on the fact that the algorithm looks at the neighbors of the seed, WAVE optimizes HetEC implic-
itly, and there is no ability to incorporate heterogeneous S3 as an optimization parameter.

MAGNA++.  MAGNA++ takes as input two networks and an NC-based matrix of node similarities, 
like WAVE. However, unlike WAVE, MAGNA++ uses a genetic search algorithm as its alignment strategy. 
MAGNA++ first starts with an initial population of randomly created alignments, the first generation. Then, 
high-scoring alignments (with respect to some objective function, see below) are given as input to a “crossover” 
function, which combines two alignments to create a new child alignment. Many alignments from the initial 
population are crossed over to form new children alignments, which become the new population for the next 
generation. This process continues for a user-specified number of generations, and the alignment that scores the 
highest with respect to the objective function is given as output.

MAGNA++’s objective function can be only NC, only EC, or some combination of both. In the homogeneous 
case, optimizing a combination of NC (based on homogeneous graphlets) and EC (S3) as objective function was 
shown to produce the best alignments (where the objective function is α × NC + (1 − α) × EC, for some 

α< <0 1; the best α value was determined to be 0.5)38. Thus, to generalize MAGNA++ to its heterogeneous 
counterpart, we use MAGNA++’s alignment strategy to optimize the equally weighted combination of colored 
graphlet-based HetNC and heterogeneous S3-based HetEC measures. To account for colored graphlet-based 
HetNC, we give MAGNA++ as input the colored-graphlet based node similarity matrix. To account for hetero-
geneous S3, we modify the calculation of S3 to account for node colors; source code for these changes can be found 
on the project website (see Abstract).

SANA.  SANA takes as input two networks and an NC-based matrix of node similarities, like WAVE and 
MAGNA++, and is a search algorithm, like MAGNA++. However, it uses simulated annealing instead of a 
genetic algorithm as its alignment strategy. SANA starts with a single random alignment rather than a population 
of random alignments, and in each step it explores “neighboring” alignments (described below). If a neighboring 
alignment scores higher with respect to the objective function, then it is chosen as the new alignment for the 
next iteration. Exploring neighboring alignments allows SANA to incrementally calculate the objective func-
tion; in particular for S3, each move in the exploration process is only a small change in the alignment, and so 
only the changes in conserved and non-conserved edges resulting directly from the swap or change affect the S3 
value. Note that there is also a small chance a worse-scoring neighbor is chosen; this chance is described by the 
“temperature schedule”. Intuitively, the longer SANA has been running, the lower the chance of choosing a worse 
alignment. This continues for a set amount of time, which is a parameter of SANA. After the algorithm finishes, 
the alignment of the last iteration is given as output.

SANA’s objective function can be only NC, only EC, or some combination of both, as is the case with 
MAGNA++. Thus, to generalize SANA to its heterogeneous counterpart, we use SANA’s alignment strategy to 
optimize the equally weighted combination of colored graphlet-based HetNC and heterogeneous S3-based HetEC 
measures. To account for colored graphlet-based HetNC, we give SANA as input the colored-graphlet based node 
similarity matrix. To account for heterogeneous S3, we modify the incremental calculation of S3 to account for 
node colors; pseudocode for these changes can be found on the project website (see Abstract). Note that for our 
heterogeneous modification of SANA we provide pseudocode rather than modified source code because SANA is 
not our group’s method (MAGNA++ and WAVE are), and thus, there could be intellectual property restrictions 
regarding us sharing SANA’s source code. Instead, the user can get the homogeneous SANA’s code from the orig-
inal authors and then modify it according to our pseudocode to allow for heterogeneous NA.

Here, we explain what a neighboring alignment means according to SANA. Let G and H be two networks 
being aligned, with G having fewer nodes than H, and let a, b, c, d be nodes in G, and a′, b′, c′, d′ be nodes in H 
such that a is aligned to a′, b to b′, c to c′, and d to d′. There are two kinds of neighboring alignments: swap and 
change. Swap neighbors differ from the original alignment in exactly two places, i.e., two source nodes in question 
remain the same but their images are exchanged. For example, given the existing alignment in Fig. 3, one of its 
possible swap neighbors is the alignment where a is aligned to b′ and b is aligned to a′, while all other aspects of 
the alignment remain the same. Change neighbors differ in only one place, i.e., a source node in question remains 
the same but its image is changed. In the example of Fig. 3, a possible change neighbor of the given alignment is 
one where a is aligned to some e′ that initially was not part of the alignment, while all other aspects of the align-
ment remain the same. Consequently, if the two networks being aligned are of the same size, only swap neighbors 
are possible. With just these two types of neighbors, all possible alignments can potentially be reached; however, 
SANA focuses on those alignments that improve with respect to the objective function.
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