Skip to main content
. Author manuscript; available in PMC: 2019 May 16.
Published in final edited form as: J Mater Chem A Mater. 2018 May 16;6:9229–9236. doi: 10.1021/acssuschemeng.8b01547

Table 1.

Comparison of adsorption capacities of MG adsorbed by various adsorbents.


Adsorbents
Experimental conditions

qmc (mg/g)

References
Dosage
(g/L)a
pH Temp.(K) C0b (mg/L)
CO2-activated porous carbon 0.4 Undefined 313 40–100 284 [52]
PVP@CNTs-Cu2O 2.0 Undefined 293 50–3000 1423 [53]
Fe-Cu bagasse composite 1.0 Undefined 298 1–150 61 [54]
chitosan–surfactant–core–shell (CSCS) beads 0.8 7.00 298 10–400 360 [55]
AC-H3PO4/Steam 1.0 Undefined 298 500–1200 769 [56]
granular composite hydrogel(AA–IA–APT5) 0.5 Undefined 303 200–1800 2433 [57]
NiO flowerlike nanoarchitectures 0.3 Undefined Ambient 50 142 [58]
Gx-cl-P(AA-co-AAm)/Fe3O4 hydrogel nanocomposite 0.2 neutral pH 298 100–500 497 [59]
bivalve shell-Zea mays L. husk leaf 2.5 6.00 303 10–200 82 [60]
Fe-Cu based adsorbent 0.3 6.58 303 50–500 1399 This work
Fe-Cu based adsorbent 0.3 6.58 313 50–500 1476 This work
a:

the mass of the adsorbent contained in each volume of MG aqueous solution

b:

the initial concentration of MG in the aqueous solution

c:

the maximum adsorption capacity of adsorbent (calculated from the Langmuir model)