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A B S T R A C T

Perivascular stem cells (PSC) are a progenitor population defined by their perivascular residence. Recent studies
have examined the relative difference in Wnt ligands to induce PSC differentiation, including Wnt16. Here, we
examine the role of Wnt16 in the proliferation and osteogenic differentiation of human PSC. Treatment of PSC
with WNT16 significantly increased cell proliferation to a greater extent than did WNT3A. In addition, WNT16
showed a significant increase in osteogenic gene expression among PSC. These data demonstrate that WNT16
represents a combined mitogenic/pro-osteogenic stimulus that may play a functional role in human mesench-
ymal stem cell mediated bone repair.

1. Introduction

Mesenchymal stromal cells (MSC) are a multipotent stromal cell
population capable of mesenchymal differentiation into multiple cell
types, including: adipogenic, chondrogenic, and osteogenic cell fates.1

Multiple applications exist for MSC in tissue regeneration, which pri-
marily lie in MSC ability to function as paracrine regulators of tissue
repair.2 Adipose tissue (AT) is an appealing cell source as it is readily
available, accessible and dispensable by routine liposuction procedures.
The stromal vascular fraction (SVF) has been previously used for bone
repair, but forms bone tissue unreliably3 or with a low efficacy.4

To improve upon existing AT stromal therapies, we previously
purified a population of MSC termed perivascular stem/stromal cells
(PSC) from the SVF of human subcutaneous white adipose tissue.5 PSC
are purified by fluorescence activated cell sorting (FACS) and represent
a comparatively homogenous MSC population for regenerative medi-
cine applications.6,7 PSC are abundant in human white adipose tissue,
and are present in clinically relevant numbers for efforts in tissue en-
gineering (∼40% of viable mononuclear SVF).7 PSC originate in the
vessel wall, which represents a well-established source of mesenchymal
progenitor cells.8,9 PSC are composed of two distinct yet related cell
populations, including pericytes (CD34-CD146 + CD45-) and ad-
ventitial progenitor cells (CD34 +CD146-CD45-).9,10 PSC have been
shown to promote in vivo bone regeneration across animal models, in-
cluding a rat spinal fusion model6,11 and a calvarial defect model.12

The commitment of MSC to an osteogenic cell fate relies on many
signaling, including both β-Catenin dependent canonical Wnt signaling,
and β-catenin independent noncanonical Wnt signaling.13–15 See16 for a
review of canonical and non-canonical Wnt signal transduction.
WNT16, a mixed canonical and non-canonical Wnt signaling ligand,
was previously observed to be enriched within the transcriptome of
human PSC. In our recent observations,17 we found that sustained
treatment with rWNT16 increased osteogenic differentiation in a c-Jun
N-terminal kinase (JNK) pathway dependent fashion. In contrast, sus-
tained rWNT3A treatment significantly decreased PSC osteogenic dif-
ferentiation. Conversely, WNT16 knockdown significantly diminished
PSC osteogenic differentiation. These data suggested that WNT16 plays
a functional and necessary role in PSC osteogenesis. Here, we examine
in more detail the role of recombinant Wnt16 in the proliferation and
osteogenic differentiation of human PSC in vitro.

2. Methods

2.1. Perivascular stem/stromal (PSC) cell isolation

PSC were isolated from human lipoaspirate via fluorescence acti-
vated cell sorting (FACS). The stromal vascular fraction (SVF) was ob-
tained by collagenase digestion. Briefly, lipoaspirate was diluted with
an equal volume of phosphate-buffered saline (PBS) before digestion
with Dulbecco's modified Eagle's medium (DMEM) containing 3.5%
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bovine serum albumin (Sigma-Aldrich, St. Louis) and 1mg/ml type II
collagenase for 70min under agitation at 37 °C. Next, adipocytes were
separated and removed by centrifugation. The pellet was then re-
suspended in red-cell lysis buffer (155mM NH4Cl, 10 mM KHCO3, and
0.1 mM EDTA) and incubated for 10min at room temperature. After
centrifugation, pellets were resuspended in PBS and filtered at 70 μm.
The resulting SVF was incubated with a mixture of the following di-
rectly conjugated antibodies: anti-CD34-phycoerythrin (1:100; Dako,
Glostrup, Denmark), anti-CD45-allophycocyanin (1:100; Santa Cruz
Biotechnology Inc., Santa Cruz, CA), and anti-CD146-fluorescein iso-
thiocyanate (1:100; AbD Serotec, Raleigh, NC). All incubations were
performed at 4 °C for 15min in the dark. Before sorting, 4′,6-diamidino-
2-phenylindole (DAPI; 1:1000; Invitrogen, Carlsbad, CA) was added for
dead cell exclusion; the solution was then passed through a 70-μm cell
filter and then run on a FACSAria cell sorter (BD Biosciences, San Diego,
CA). Sorted cells were plated for in vitro studies. In this manner, peri-
cytes (CD34−CD146 + CD45−) and adventitial cells
(CD34 +CD146−CD45−) were isolated and combined to constitute
the PSC population. Cells were cultured at 37 °C in a humidified at-
mosphere containing 95% air and 5% CO2. The expansion of cells was
performed in DMEM, 20% fetal bovine serum (FBS), 1% penicillin/
streptomycin. Medium was changed every 3 d unless otherwise noted.

2.2. Cell proliferation

PSC were seeded in 96 well plates at a density of 1000 cells per well
and allowed to adhere overnight. Cells were cultured in DMEM + 20%
FBS + 1% Pen Strep and treated with rWNT16 (80 ng/mL), rWNT3A
(50 ng/mL), or rDKK1 (50 ng/mL) for 3 d followed by MTS assay per
the manufacturer's instructions (Promega, Madison, WI).

2.3. Osteogenic differentiation

Assays for PSC differentiation are adapted from our prior publica-
tions.18,19 The osteogenic differentiation medium (ODM) included
10 mM β-glycerophosphate and 50 μM ascorbic acid in DMEM + 20%
FBS. ODM with recombinant proteins was changed every third d. RNA
isolation for specific gene expression was performed on 0, 3, 6, and 9 d
of differentiation.

2.4. Ribonucleic acid (RNA) isolation and quantitative real-time
polymerase chain reaction (qRT-PCR)

Gene expression was assayed by quantitative RT-PCR, based on our
previous methods.19,20 Primers are in Supplemental Table 1. Time-
points for specific gene expression include 0, 3, 6, and 9 d of differ-
entiation. Briefly, total RNA was extracted using RNEasy Kit (Qiagen,
Santa Clarita, CA). 1 μg of total RNA from each sample was subjected to

first-strand complementary deoxyribonucleic acid (cDNA) synthesis
using the SuperScript III Reverse-Transcriptase Kit (Life Technologies)
to a final volume of 20 μL The reverse transcription reaction was per-
formed at 65 °C for 5min, followed by 50 °C for 50min and 85 °C for
5min. For qRT-PCR, the reaction was performed using 2× SYBR green
RT-PCR master mix and an ABI PRISM 7300 qRT-PCR system instru-
ment (Applied Biosystems, Foster City, CA). qRT-PCR was performed
using 96 well optical plates at 95 °C for 10min, followed by 40 cycles at
95 °C for 15 s, and at 60 °C for 60 s. The relative quantification of gene
expression was performed using a Comparative CT method according to
the manufacturer's protocol and was normalized to the expression levels
of the housekeeping gene, ACTB, in each sample.

2.5. Statistical analysis

All results were expressed as mean ± standard deviation (SD).
Statistical analyses were performed using the SPSS16.0 software. All
data were normally distributed. Student's t-test was used for two-group
comparisons, and one-way ANOVA test was used for comparisons of 3
or more groups, followed by Tukey's post hoc test. Differences were
considered significant when P < 0.05.

3. Results

3.1. Perivascular stem/stromal derivation

First, perivascular stem/stromal cells (PSC) were purified from
human lipoaspirate using FACS to detect a population of pericytes and
adventitial progenitor cells based on expression of CD146 and CD34
(Fig. 1). Briefly, using previously established protocols, the stromal
vascular fraction (SVF) of lipoaspirate was processed so as to remove
DAPI + non-viable cells (Fig. 1A), as well as CD45 + hematopoietic
cells (Fig. 1B). Next, pericytes were defined as a CD146 + CD34-CD45-
cell population while adventitial progenitor cells are CD34 +CD146-
CD45-cell population (Fig. 1C). When combined, this bipartite popu-
lation is termed PSC.9,10 Prior studies have confirmed that PSC have
multilineage differentiation potential, including an ability to differ-
entiate down osteogenic, adipogenic and chondrogenic lineages.9,10

3.2. WNT16 induces perivascular stem cell proliferation

Our prior examination identified an enrichment of WNT16 tran-
scripts among human PSC, and that WNT16 represented a context de-
pendent stimulator of osteogenic and adipogenic differentiation.17 As
well, WNT16 gene expression was observed to peak early in the process
of PSC osteogenic differentiation (day 3), suggesting a role in osteo-
progenitor cell expansion or early commitment.17 We next sought to
examine the effects of WNT16 on cellular proliferation in more detail

Fig. 1. Human perivascular stem/stromal cell (hPSC) isolation and osteogenic differentiation. (A–C) Fluorescence-activated cell sorting (FACS) isolation method for
hPSC. (A) DAPI + non-viable cells and (B) CD45 + hematopoietic cells were excluded from the stromal vascular fraction of human lipoaspirate. (C) Purified hPSC
consist of CD146 + CD34-pericytes and CD34 +CD146-adventitial cells. Reproduced with permission from Askarinam & James et al., Tissue Eng Part A, 2013,
PMCID: PMC3638559.
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among hPSC. Cells were exposed to recombinant WNT16 (80 ng/mL) or
the canonical ligand WNT3A (Fig. 2). As a further control, cells were
also incubated with DKK1 (50 ng/mL). Results showed that at 3 days of
osteogenic differentiation, WNT16 treated cells proliferated at ∼3
times the rate of the control, whereas the cells treated by WNT3A
proliferated only slightly more rapidly (32% rate increase). In contrast,
the DKK1 treated cells showed no significant change in proliferation
rate. In summary, WNT16 significantly increased cell proliferation, and
did so to a greater extent than did WNT3A in human PSC (see Fig. 3).

3.3. WNT16 treatment enhances osteoblastogenic gene expression

Next, PSC were next exposed to exogenous WNT16 under osteogenic
differentiation conditions. Previously, we found that sustained WNT16
treatment significantly increased osteogenic differentiation in a JNK
signaling-dependent manner.17 Here, we inquired as to whether
changes in cell proliferation were accompanied by changes in osteo-
blastogenic gene expression among human PSC in vitro. Results showed
that markers of osteogenic differentiation, ALP, RUNX2, and OCN were
significantly elevated in the rWNT16 treated group in comparison to
the control group from the same day. Specifically, on days 3, 6, and 9,
RUNX2 was increased. While the RUNX2 increase peaked on day 9
(75.5% increase over control), ALP increase was measured (74.9% in-
crease over control) on day 3. OCN, a late marker of osteogenesis, was

elevated at day 12 after osteogenic induction (55.7% increase over
control). In summary, WNT16 represents a combined mitogenic/pro-
osteogenic stimulus in human PSC in vitro.

4. Discussion

Our findings reinforce the importance of mixed canonical and
noncanonical Wnt ligands, such as WNT16, in the process of osteogenic
differentiation of human PSC. Overall, this lies in contrast to canonical
Wnt ligands such as WNT3A, which tends to inhibit MSC osteogenesis
when applied in a sustained fashion.21,22 WNT16 is generally re-
cognized as a mixed canonical and noncanonical Wnt signaling ligand
in osteoblastic cells.23 Although it has been hypothesized that WNT16
mainly stimulates bone formation through canonical signaling, while
inhibiting osteoclast formation through non-canonical signaling,23

there have also been evidence supporting WNT16's ability to effect bone
formation via non-canonical signaling.24 Indeed in human PSC,
WNT16's ability to stimulate noncanonical activity via the JNK pathway
was required for osteogenic differentiation.17 Knockdown of WNT16
has inhibited MSC osteoblastogenesis, either in human skeletal muscle
MSC25 or in AT derived PSC.17

Overall, an purified AT derived stromal cell therapy has significant
advantages over currently available bone graft substitute products. The
gold standard for regeneration is autograft bone.26,27 However, bone
grafts are encumbered by numerous disadvantages, including donor site
morbidity,26,28 complications of extended operating time, and limita-
tions in autogenous supply. Alternatives to autograft bone are nu-
merous, however each has significant drawbacks.29,30 Demineralized
bone matrix is processed to reduce immunogenicity, but this processing
also eliminates stem cells in comparison to autograft bone. Dis-
advantages are also present with the commonly used growth factor,
Bone Morphogenetic Protein (BMP)-2), confirmed by independent re-
views in the Yale University Open Data Access project.31–33 Adverse
effects include osteoclast activation,34 life-threatening inflammatory
swelling,35 and inappropriate adipogenesis.36–38 Overall the combined
mitogenic/pro-osteogenic effects of WNT16 suggest the utility of a
combined growth factor + autologous cell therapy approach for bone
tissue engineering.
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Fig. 2. The effects of canonical and noncanonical Wnt signaling on PSC pro-
liferation. PSC proliferation was assessed by MTS assay, performed at 3 days.
PSC were exposed to WNT3A (50 ng/mL), DKK1 (50 ng/mL), or WNT16
(80 ng/mL). *p < 0.05, **p < 0.01 versus control. #p < 0.05, ##p < 0.01
versus WNT3A.

Fig. 3. The effects of WNT16 on osteogenic gene expression. PSC were cultured in osteogenic differentiation medium (10 mM β-glycerophosphate and 50 μM ascorbic
acid in DMEM + 20% FBS) with or without exogenous WNT16 (80 ng/mL). Gene expression of RUNX2 (0,3,6, and 9 days), ALP (3 days), and OCN (12 days) of
differentiation. *p < 0.05, **p < 0.01 versus control.
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