Skip to main content
. 2018 Aug 22;11(1):1496973. doi: 10.1080/16549716.2018.1496973

Table 3.

Logistic regression of antibiotic use.

Factors Went to see
a doctor
N = 1182
OR (95% CI)
Self-treated with antibiotics
N = 533
OR (95% CI)
Prescribed with antibiotics
N = 375
OR (95% CI)
Province      
 Zhejiang (ref) 1 1 1
 Guizhou 1.04(0.77,1.41) 3.00(1.84,4.90)*** 2.95(1.68,5.18)***
Age 1.08(1.00,1.17) 1.00(0.87,1.15) 0.91(0.80,1.04)
Gender      
 Female (ref) 1 1 1
 Male 1.03(0.80,1.32) 1.15(0.77,1.70) 0.80(0.50,1.29)
Education level      
 Undergraduate (ref) 1 1 1
 Graduate 0.64(0.40,1.01) 0.98(0.49,1.99) 1.79(0.72,4.42)
Major      
 Non-medicine (ref) 1 1 1
 Medicine 0.78(0.55,1.11) 0.57(0.31,1.02) 0.49(0.26,0.93)*
Education level of parents      
 Illiteracy/primary school (ref) 1 1 1
 Junior high school 0.74(0.49,1.11) 0.82(0.41,1.66) 1.18(0.55,2.54)
 Senior high school 0.82(0.52,1.30) 1.74(0.82,3.73) 1.45(0.62,3.40)
 University/above 0.82(0.50,1.37) 1.68(0.73,3.85) 2.57(0.98,6.76)
Parent’s medical background      
 No (ref) 1 1 1
 Yes 0.65(0.38,1.12) 3.01(1.66,5.47)*** 0.86(0.30,2.46)
Household income per month      
 < 3000 (ref) 1 1 1
 3000 ~ 10,000 0.73(0.53,1.00) 0.65(0.39,1.09) 0.69(0.38,1.26)
 > 10,000 0.68(0.44,1.05) 0.66(0.33,1.31) 0.57(0.25,1.30)
Hometown      
 Urban area (ref) 1 1 1
 Rural area 1.02(0.72,1.44) 0.91(0.53,1.57) 2.01(1.05,3.84)*

*< 0.05; **< 0.01; ***< 0.001