Skip to main content
. 2018 Aug 22;11(1):1496973. doi: 10.1080/16549716.2018.1496973

Table 4.

Logistic regression analyses of antibiotic use.

Factors Kept antibiotics
in dorm/home
N = 3963
Bought antibiotics without prescriptions N = 2121 Asked for
antibiotics
N = 3963
Took antibiotics prophylactically N = 3963
Province        
 Zhejiang (ref) 1 1 1 1
 Guizhou 1.01(0.86,1.19) 1.71(1.36,2.15)*** 1.48(1.22,1.80)*** 2.28(1.89,2.76)***
Age 1.00(0.96,1.04) 0.96(0.91,1.02) 1.05(1.00,1.11)* 1.00(0.95,1.05)
Gender        
 Female (ref) 1 1 1 1
 Male 0.70(0.61,0.80)*** 0.96(0.79,1.16) 0.87(0.74,1.02) 0.94(0.81,1.10)
Education level        
 Undergraduate (ref) 1 1 1 1
 Graduate 0.99(0.78,1.27) 1.94(1.35,2.80)*** 1.07(0.81,1.43) 0.83(0.63,1.09)
Major        
 Non-medicine (ref) 1 1 1 1
 Medicine 1.18(0.98,1.42) 1.15(0.88,1.50) 0.71(0.56,0.90)** 0.69(0.55,0.87)**
Education level of parents        
 Illiteracy/primary school (ref) 1 1 1 1
 Junior high school 1.33(1.07,1.66)* 0.88(0.63,1.22) 1.10(0.83,1.47) 1.13(0.87,1.46)
 Senior high school 1.70(1.32,2.17)*** 0.86(0.59,1.24) 1.39(1.01,1.91)* 1.31(0.98,1.74)
 University/above 2.03(1.53,2.69)*** 0.82(0.55,1.24) 1.40(0.98,2.00) 1.17(0.85,1.63)
Parent’s medical background        
 No (ref) 1 1 1 1
 Yes 1.68(1.24,2.27)** 0.62(0.43,0.89)* 1.07(0.78,1.48) 1.45(1.08,1.95)*
Household income per month        
 < 3000 (ref) 1 1 1 1
 3000 ~ 10,000 1.30(1.10,1.53)** 1.14(0.90,1.44) 1.17(0.95,1.43) 0.98(0.81,1.18)
 > 10,000 1.14(0.90,1.43) 1.05(0.76,1.46) 1.22(0.92,1.62) 1.03(0.79,1.34)
Hometown        
 Urban area (ref) 1 1 1 1
 Rural area 0.64(0.54,0.76)*** 0.85(0.66,1.09) 1.12(0.90,1.39) 1.10(0.89,1.34)

*< 0.05; **< 0.01; ***< 0.001.